A brief introduction to probabilistic machine
learning with neuroscientific relations

Thomas Trappenberg

Abstract My aim of this article is to summarize in a concise way what I con-
sider the most important ideas of modern machine learning. I start with some
general comments of organizational mechanisms, and will then focus on unsu-
pervised, supervised and reinforcement learning. Another aim of this introduc-
tory review is the focus on relating different approaches in machine learning such
as SVM and Bayesian networks, or reinforcement learning and temporal super-
vised learning. Some examples of relations to brain processing are included such
as synaptic plasticity and models of the Basal Ganglia. I also provide Matlab ex-
amples for each of the three main learning paradigms with programs available at
www.cs.dal.ca/~tt/repository/MLintro2012.

1 Evolution, Development and Learning

Development and learning are both important ingredients for the success of natural
organisms, and applying those concepts to artificial systems might hold the key to
new breakthroughs in science and technology. This article is an introduction to ma-
chine learning with examples of its relation to neuroscientific findings. There has
been much progress in this area, specifically by realizing the importance of repre-
senting uncertainties and the corresponding usefulness of a probabilistic framework.

1.1 Organizational mechanisms

Before focusing on the main learning paradigms that are dominating much of our
recent thinking in machine learning, I would like to start by outlining briefly some

Thomas Trappenberg
Dalhousie University, Halifax Canada, e-mail: tt@cs.dal.ca

2 Thomas Trappenberg

of my views on the intimate relations between organizational mechanisms discussed
in this volume. It seems to me that there are at least three levels of organizational
mechanisms that contribute to the success of living organisms, evolutionary mecha-
nisms, developmental mechanisms and learning mechanisms. Evolutionary mecha-
nisms seems to focus on the long-term search for suitable architectures. This search
takes time; it takes usually many generations to establish small modifications that
are beneficial for the survival of a species, and it takes even longer to branch off
new species that can exploit niches in the environment. This mechanisms is adap-
tive in that it depends on the environment, the physical space and other organisms. A
good principle organization and good choices of an organisms ultimately determine
survival of the individuals and thereby to the species in general.

While evolution seems to work on a general architectural level of a population, a
principle architecture has to be realized in specific individuals. This is where devel-
opment comes into play. The genetic code can be used to grow a specific organisms
from the master plan and the environmental conditions. Thus, this mechanisms is it-
self adaptive in that the environment can influence the specific encoding of the mas-
ter plan. For example, the physique and metabolism of the socky salmon can change
drastically when environmental conditions allow migration from the freshwater en-
vironment to the ocean, though the fish stays small and adapted to fresh water if
prevented from migration or if food sources are sufficient in the river. Growing spe-
cific architectures in response to environmental conditions can give an organisms
considerable advantages. Epigenetics, which is the study of how the environment
can influence genetic decoding, is a fascinating new area in science.

Having grown a specific architecture, the resulting organisms can continue to
respond to environmental conditions by learning about specific situations and by
learning to take appropriate actions. This type of adaptation (learning) of a specific
learning architecture can take several forms. For example, the learning can be super-
vised by other individuals such as the parents of an offspring to teach behavioural
patterns that the parents finds advantageous. The organisms can also learn from
more general environmental feedback by receiving reinforcing signals such as food
or punishment. This article will focus mainly on such learning mechanisms.

The three different adaptive frameworks outline above are somewhat abstract at
this level and it is important to give it more specific meaning with specific imple-
mentations. But this is also when the distinction between the different mechanisms
can becomes a bit murky. For example, the development of receptive fields during
the critical postnatal periods are certainly an important mechanisms on a develop-
mental level, but we will discuss such mechanisms as special form of learning in this
chapter. For the sake of this volume it is indeed useful to think about the learning
mechanisms described in this section as the mechanisms that allow the fine tuning
of the systems to specific environmental conditions as experienced by the specific
individual during its lifetime, while other mechanisms discussed in this volume are
aimed to develop better learning systems in the long term or to grow specific indi-
viduals in response to environmental conditions.

A brief introduction to probabilistic machine learning with neuroscientific relations 3

1.2 Generalization

A. Linear model B. Quadratic model C. 4th-order model

Fig. 1 Example of under- and overfitting.

An general goal of a learning system as described here is to predicting labels for
future unseen data. The examples give during a learning phase are used to choose
parameters of the model so that a specific realization of this model can make good
predictions. The quality of generalization from training data depends crucially on
the complexity of the model that is hypothesized to describe the data as well as the
number of training data. This is illustrated in the left graph of Fig.1. Let’s think
about describing the six data points shown there with a linear model. Its regression
curve is shown in the left graph, while the other two graphs show the regression with
a quadratic model and with a model where the highest exponent is 4. Certainly, the
linear model seem too low dimensional since the data points deviate systematically
with the data points in the middle laying above the curve and the data points at
the ends laying below the curve. Such a systematic bias is a good indication that
the model complexity is too low. The curve on the right fits the data perfectly. We
can always achieve a perfect fit of a finite number of training data if the number of
free parameters (one for each order of the polynomial in this example) approaches
the number of training points. But this could be overfitting the data. To evaluate if
we are overfitting we need additional validation examples. In case of overfitting the
variance of this validation error grows with increasing model complexity.

The bias-variance tradeoff that we just discussed is summarized in the left graph
of Fig. 2. Many advances in machine learning have been made by addressing ways
to choose good models. While the bias-variance tradeoff is now well appreciated in
the machine learning community, many methods are based on general learning ma-
chines that have a large number of parameters. For such machines it is now common
that a meta-learning method address the bias-variance tradeoff to find the points of
minimal generalization error. However, an important question we need to consider
is if the models take all necessary factors into account. How about including new
features not previously considered such as the inclusion of a temporal domain? I
believe that genetic and developmental mechanisms can address these issues by ex-
ploring different architectures or structures. However, only exploring architectural
varieties of models is also not sufficient to find the best possible generalization per-

4 Thomas Trappenberg

<«— Bias Variance —)>

Error

! Generalization
'

Training

Training examples
Model complexity

Fig. 2 Bias-variance tradeoff and explorative learning.

formance, and I believe that parameter optimization in the sense of supervised learn-
ing discussed below must accompany the architectural exploration. Several of the
contributions in this volume are good examples of this.

1.3 Learning with uncertainties

In the following sections I give a modern view of learning theories that includes
unsupervised, supervised and reinforcement learning. I will start with unsupervised
learning since this is likely less known and relates closer to some developmental
aspects of an organisms. I will then briefly review supervised learning in a prob-
abilistic framework. Finally I will discuss reinforcement learning as an important
generalization of supervised learning. I will also discuss some relations of these
learning theories with biological analogies. In particular, I will outline the relations
of unsupervised learning with the development of filters in early sensory cortices,
discuss synaptic plasticity as the physical basis of learning, and I outline research
that relates to the Basal Ganglia which has intriguing analogies with reinforcement
learning theories.

Machine Learning has recently revolutionized computer applications such as au-
tonomously driving cars or searching for information. Two major ingredients have
been contributing to the recent success. The first is building into the system the abil-
ity to adapt to unforeseen events. In other words, we must build machines that learn
since the traditional method of encoding appropriate responses to all future situa-
tions is impossible. Like humans, machines should not be static entities that only
blindly follow orders which might be outdated by the time real situations are en-
countered. Although learning machines have been studied for at least half a century,
often inspired by human capabilities, the field has matured considerably in recent
years through more rigorous formulations of learning machines and the realization
of the importance of predicting previously unseen events rather than only memoriz-

A brief introduction to probabilistic machine learning with neuroscientific relations 5

ing previous events. Machine learning is now a well established discipline within
artificial intelligence.

The second ingredient for the recent breakthroughs is the acknowledgment that
there are uncertainties in the world. Rather than only following the most likely ex-
planations for a given situation, keeping an open mind and considering other pos-
sible explanations has proven to be essential in systems that have to work in a real
world environment in contrast to controlled lab environment. The language of de-
scribing uncertainty, that of probability theory, has proven to be elegant and tremen-
dously simplifies arguing in such worlds. This chapter is dedicated to an introduction
to the probabilistic formulation of machine learning.

It was important to me to include supervised, unsupervised and reinforcement
learning in this review in the form that I think matches advanced treatments in
a machine learning course of machine learning. While there are now many good
publications which focus on specific approaches in machine learning (such as Ker-
nel methods or Bayesian models), my aim is to relate and contrast several popular
learning approaches. While it is common to start with supervised learning, I opted
for starting with a discussion of unsupervised learning as this logically precedes
supervised learning and is generally less familiar compared to supervised learning.

1.4 Predictive learning

Finally, I include some examples of how machine learning topics might be related to
neuroscientific issues. As already mentioned, the goal of learning as described here
is anticipation or prediction. I believe that this is also the general goal of the brain,
making good predictions to aid survival and evolutionary advantages. A possible
architecture of good learning systems is outlined in Fig.3. An agent has to interact
with the environment from which it learns and receives reward. This interaction has
two parts, sensation and action. The state of the environment is conveyed by sensa-
tions that are caused by specific situations in the environment. A comprehension of
these sensation requires hierarchical processing in deep learning systems. The hier-
archical processes are bidirectional so that the same structures can also be used to
generate expectation which should ultimately generate good actions. These actions
have to be guided by a value system that need to learn itself from the environment.
This chapter reviews the components of such learning systems.

6 Thomas Trappenberg

ENVIRONMENT

Sensation

Action

Fig. 3 The anticipating brain with deep believe networks and a value system.

2 Unsupervised Learning

2.1 Representations

An important requirement for natural or artificial agents is to decide on an appropri-
ate course of action given its specific circumstances of an encountered environment.
We can treat the environmental circumstances as cues given to the agent. These cues
are communicated by sensor that specify values of certain features. Let’s represent
these feature values as vector x. The goal of the agent is then to calculate an appro-
priate responses

y = f(x). ey

In this review we use a probabilistic framework to address uncertainties. The cor-
responding statement of the deterministic function approximation of equation (1) is
then to find a probability density function

py[x). (2)

A common example is object recognition where the feature values might be RGB
values of pixels in a digital image and the desired response might be the identifica-
tion of a person in this image. A learning machines for such a task is a model that
is given examples with explicit features vectors x and desired labels y. Learning in
this circumstance is mainly about adjusting the model’s parameters from the given
examples. A trained machine should be able to generalize by predicting labels of
previously unseen feature vectors. Since this type of learning is based on specific
training examples with give labels, this type of learning is called supervised. We
will discuss specific algorithms of supervised learning and corresponding models in
the next section. Here we start with discussing unsupervised learning since this is a
more fundamental tasks that precedes supervised learning.

As already stated, the aim of learning is to find a mapping function y = f(x) or
probability density function p(y|f(x)). An important insight that we explore in this

A brief introduction to probabilistic machine learning with neuroscientific relations 7

sections is that finding such relations is much easier if the representation of the fea-
ture vector is chosen carefully. For example, it is actually very challenging to use
raw pixel values to infer the content of a digital photo. In contrast, if we have given
a useful descriptions of faces, such as the distance between eyes and other landmark
features, the colour of hair, and the length of the nose etc, it is much easier to classify
photographs to specific target faces. Finding a useful representation of a problem is
often key for successful applications. When we use learning techniques for this task
we talk about representational learning. Representational learning is often exploit-
ing statistical characteristics of the environment without the need of labeled training
examples. This is therefore an important area of unsupervised learning.

Representational layer

h O O O O O O O (hidden nodes)

\

X00000 Input layer

(visible nodes)

Fig. 4 Restricted Boltzmann machine which is a probabilistic two layer network with bidirectional
symmetric connections between the input layer and the representational (hidden) layer.

Representational learning can be viewed itself as a mapping problem, such as the
mapping from raw pixel values to more direct features of a face. This is illustrated
in Fig.4 where the raw input feature vector, X, is represented by a layer of nodes at
the bottom. Let’s call this layer the input layer. The feature vector for higher order
representations, h, is represented as nodes in the upper layer of this network. Let’s
call this the representational layer or hidden layer. The connections between the
nodes represent the desired transformation between input layer and hidden layer. In
line with our probabilistic framework, each node represents a random variable. The
main idea of the principle that we will employ to find useful representations is that
this representations should be useful in reconstructing the input.

Fig. 5 Logistic function with different slopes and offsets.

Before we discuss different variations of hidden representations, let us make the
functions of the model more concrete. Specifically, let us consider mainly binary

8 Thomas Trappenberg

random variables for illustration purposes. Given the values of the inputs, we choose
to calculate the value of the hidden nodes with index 7, or more precisely the proba-
bility of having a certain value, with a logistic function shown in Fig.5,

1

hi=1x)=—
P(' |) 1+e*%(wix+bi)

3)

where T is a temperature parameter controlling the steepness of the curve, w are the
weight values of the connections between input and hidden layer, and b? is the offset
of the logistic function, also called bias of the hidden node. In this model, which is
called a restricted Boltzmann machine [4], there are no connections between hidden
nodes so that the hidden nodes represent random variables that are conditionally in-
dependent when the inputs are observed. In other words, the joined density function
with fixed inputs factorizes,

Pl =[] —— @)

-
14 e T LiwiXth

The connections in this model are bidirectional, and such a model represents there-
fore a symmetric Bayesian network discussed further below. The state of the input
nodes can be generated by hidden activations like

1
1 b)
1 4 e~ T Ljwijhj+b]

p(xlh) =T]

i

®)

where b} are the biases for each visible (input) node.

Alternating Gibbs Sampling

Contrastive Divergence

CR9CASCRD) ©89

eo0

B9 B9 ®) B9

t=1 t=2 /=3 t=00

Fig. 6 Alternating Gibbs sampling.

The remaining question is how to choose parameters, specifically the weights and
biases of the model? Since our aim is to reconstruct the world, we can formulate
this in a probabilistic framework by minimizing the distance between the world
distribution (the density function of visible nodes when set by unlabeled examples
from the environment) and the generated model of the world when sampled from
hidden activities. The difference between distributions is often measured with the
Kullbach-Leibler divergence, and minimizing this objective function with a gradient
method leads to a Hebbian-type learning rule

A brief introduction to probabilistic machine learning with neuroscientific relations 9

AWij = nai/l,] = n% (<Sisj>clamped - <Si5j>free) . (6)
The angular brackets (.) denote thermal averages, either in the clamped mode where
the inputs are fixed or in the free running mode where the input nodes activity is
determined by the hidden nodes. unfortunately, this learning rule suffers in practice
from the long time it takes to produce thermal average. However, it turns out that
learning still works for a few steps in Gibbs sampling as illustrated in Fig.6. This
learning rule is called contrastive divergence [1].

An example of a basic restricted Boltzmann machine is given in Table 1. This
network is used to learn digitized letters of the alphabet that are provided in file
patternl.txtatwww.cs.dal.ca/~tt/repository/MLintro2012 to-
gether with the other programs of this article. This RBM has ni = 100 hidden nodes
and is trained for nepochs = 150 epoch, where one epoch consists of presenting all
images once. The network is trained with contrastive divergence in the next block
of code. The training curve, which shows the average error of recall of pattern, is
shown on the left in Fig.7. After training, 20% of the bits of the training patterns are
flipped and presented as input to the network. Then plots the patterns after repeated
reconstructions as shown on the right in Fig.7. Only the first 5 letters are shown
here, but this number can be increased to inspect more letters.

! Fat ol W T
o kIO
SN AR
e ALl IIE

epoch1

Fig. 7 Output of the example program for a restricted Boltzmann machine. The learning curve on
the left shows the development of the average reconstruction error, and the reconstructions of noisy
patterns after training are shown on the right.

2.2 Sparse and topographic representations

In the previous section we reviewed a basic probabilistic network that imple-
ments representational learning based on reconstructions of inputs. There are many
other unsupervised algorithms that can do representational learning such as non-
probabilistic recurrent networks. Also, many other representational learning algo-

10 Thomas Trappenberg

Table 1 Basic restricted Boltzmann machine to learn letter patterns

clear; nh=100; nepochs=150; lrate=0.01;

%$load data from text file and rearrange into matrix

load patternl.txt;

letters = permute(reshape(patternl, [12 26 13]), [1 3 21);

$%train rbm for nepochs presentations of the 26 letters
input = reshape (letters, [12x13 26])
vb =zeros(12x13,1); hb =zeros(nh,1l); w =.lxrandn(nh,12x13);

figure; hold on;
xlabel ’epoch’; ylabel 'error’; xl1lim ([0 nepochs]);
for epoch=1:nepochs;

err=0;
for i=1:26
%$Sample hidden units given input, then reconstruct.
v = input(:,1i);
h=1./(1 + exp(—(w v + hb))); %$sigmoidal activation
hs= h > rand(nh,1); $probabilistic sampling
vr= 1./(1 + exp(—(w’+hs+ vb))); %input reconstruction
hr= 1./(1 + exp(—(w *vr+ hb))); %hidden reconstruction
%$Contrastive Divergence rule: dw ~ hxv - hrxvr
dw = lratex (hxv’-hr*vr’); w = w +dw;
dvb = lratex(v - vr); vb= vb+dvb;
dhb = lratex(h - hr); hb= hb+dhb;
err = err + sum((v-vr). 2); $reconstruction error
end

plot (epoch, err/(12%«13x26), ’.’); drawnow;%figure output
end

$%plot reconstructions of noisy letters
r = randomFlipMatrix (round(.2%x12%x13)); %(20% of bits flipped)
noisy_letters = abs(letters - reshape(r,[12 13 26]));

recon = reshape (noisy_letters, 12%13, 26); %put data in matrix
recon=recon(:,1:5); %only plot first 10
figure; set (gcf,’Position’,get (0,’screensize’));
for 1=0:3
for j=1:5
subplot (3+1, 5, ix5 + 3j);
imagesc(reshape (recon(:,3j),[12 13])); Splot

colormap gray; axis off; axis image;

h=1./(1 + exp(-(w *recon(:,3j) + hb))); %Scompute hidden

hs= h > rand(nh,1); %$sample hidden
recon(:,J) = 1./(1 + exp(—(w'*hs + vb)));%compute visible
recon(:,j) = recon(:,7j) > rand(l2«13,1); %$sample visible
end
end

function r=randomFlipMatrix(n);
% returns matrix with components 1 at n random positions
r=zeros (156, 26) ;
for i=1:26
x=randperm(156) ;
r(x(l:n),i)=1;
end

A brief introduction to probabilistic machine learning with neuroscientific relations 11

rithm are known from signal processing such as Fourier transformation, wavelet
analysis, or independent component analysis (ICA). Indeed, most advanced signal
processing include steps to re-representing or decompose a signal into basis func-
tions. For example, the Fourier transformation decomposes a signal into sine waves
with different amplitudes and phases. The individual sine waves form a dictionary
and the original signal is represented with the coefficient for each of these basis
functions. An example is shown in Fig.8. The signal in the upper left is made out of
three sine waves, as revealed by the power spectrum on the right.

6
4 3x10
2 2
0
g -2 N
% 4o 50 100 150 2 % 5
£ € 30
<
20
05
10
0 ‘ : 0
0 50 100 150 0 5
Time Frequency

Fig. 8 Decomposition of signals into sine waves. The example signals are shown on the left side,
and the corresponding description of the power spectrum on the right. The power spectrum shows
the square of the amplitude for each contributing sine wave with specified frequency.

The Fourier transformation has been very useful in describing periodic signals,
but one problem with this representation is that an infinite number of basis functions
is need to represent a signal that is localized in time. An example of a square signal
localized in time is shown in the lower left panel of Fig.8 together with its power
spectrum on the right. The power spectrum plots the absolute of the amplitudes for
different frequencies of the Fourier transform. In the case of the time-localized sig-
nal, the power spectrum shows that a continuous number of frequencies are neces-
sary to accurately represent the original signal. A better choice for such formulations
would be basis functions that are localized in time. An example of such transforma-
tions are wavelet transforms [2] or the Huang-Hilbert transform [3]. The usefulness
of a specific transformation depends of course on the nature of the signals. Periodic
signals with few frequency components, such as the rhythm of the heart or yearly
fluctuations of natural events, are well represented by Fourier transforms, while sig-
nals with localized features, such as objects in a visual scene, are often well repre-
sented with wavelets. The main reason for calling a representation useful is that the
original signal can be represented with only a small number of basis functions, or
with other words, when only a small number of coefficients have significant large
values. Thus, even if the dictionary might be large, each example of a signal of the

12 Thomas Trappenberg

specific environment can be represented with a small number of components. Such
representations are called sparse.

The major question is then how to find good (sparse) representations for specific
environments. One solution within the learning domain is to learn representations
by unsupervised learning as demonstrated above with the example of a Boltzmann
machine. To learn sparse representations we now add additional constrains that force
the learning of specific basis functions. In order to do this we can keep track of the
mean activation of the hidden nodes,

qj(t) = (1=A)q;(t = 1)+ Ah;(t), ()

where the parameter A determines the averaging window. We then add the con-
straint of minimize the difference between the desired sparseness p and the actual
sparseness q to the learning rule,

Awijocvi(hj—l—p—qj)—vfh;. ®)

This works well in practice and has the added advantage of preventing dead nodes
[5]. The importance of sparse representations in the visual system has long been
pointed out by Horace Barlow [6], and one of the best and probably first examples
that demonstrate such mechanisms was give by his student Peter Foldiak [7] (see
also [8]). Another very influential paper was that by Olshausen and Field [9] who
demonstrated that sparseness constrains are essential in learning basis functions that
resemble receptive fields in the primary visual cortex, and similar concepts should
also hold for higher order representations in deep believe networks [10]. It is now
argued that such unsupervised mechanisms resemble receptive fields of simple cells.

Ji
Z
1
o
V)
1
0l
5
v
3
.

Fig. 9 Examples of learned receptive fields of a RBM without (left) and with (right) sparse and
topographic constrains.

A brief introduction to probabilistic machine learning with neuroscientific relations 13

In addition to the typical from of receptive fields, many brain areas show some
topographic organizations in that neurons with adjacent features of receptive fields
are located in adjacent tissue. An example of unsupervised topographic represen-
tations is the self-organizing map (SOM) [11]. Topographic self-organization can
be triggered by lateral interactions with local facilitation and distant competition as
can be implemented with pairwise local excitation and distant inhibition between
neurons. Such interactions also promote sparse representations. My student Paul
Hollensen, together with my collaborator Pitoyo Hartonon and me, did therefore
propose to lateral interactions within the hidden layer [12] such as,

p(hjv) = Zi A xp(helv) 9)

where .4} ; is a Kernel such as a shifted Gaussian or a Mexican-hat function centered
on hidden node j. For binary hidden units the natural measure of the difference in
distributions is the cross entropy, for which the derivative with respect to the weights
is simply (/1; — h;) - v. Combining this with the CD update yields

Awij o< vihj = Vi + (hj = hj)vi = vihj —vih}. (10

Examples of receptive field learned with (right) and without (left) sparse topo-
graphic learning are shown in Fig.9.

3 Supervised Learning

3.1 Regression

The representational learning is about learning a mapping function that transforms
a signal (input vector) to a new signal (hidden vector),

fr :x—h (given unlabeled examples and constrains). (11)

The unsupervised learning of this mapping function typically exploiting statistical
regularities in the signals on depends therefore on the nature of the input signals.
This learning is also guided by principles such as good reconstruction abilities,
sparseness and topography. Supervised learning is about learning an unknown map-
ping function from labeled examples,

fy h—y (given labeled examples). (12)

We have indicated in the formula above that supervised learning takes the hidden
representation of examples, h to map then to a desired output vector y. This assumes
that representational learning is somewhat completed during a developmental learn-
ing phase, which is then followed by supervised learning with a teacher that supplies
desired labels (output values) for given examples. It may be argued that in natural

14 Thomas Trappenberg

learning systems these learning phases are not as strictly separated as discussed here,
but for the purpose of this tutorial it is useful to make this distinctions of principle
learning components.

By discussing now strictly supervised learning, let us follow the common nomen-
clature in represent input values as x and output values as y. In supervised learning
we consider trainnig data that consist of example inputs and corresponding labels,
that is, pairs of values (x(i)y(i)), where the index i = 1,...,m labels each of m train-
ing example. An example is shown in Fig.10 that partially lists and plots all running
records of 30 employees who were regular members of a company’s health club
[13]. Specifically, the data show the relation between the weight of the persons and
their time in a one-mile run.

__ 5007 .
Weight Time of one-mile run 8 % * * %
(in pounds) (in seconds) 5 L
o 450 %
@
217 481 i3 * x
141 292 c | %
152 338 S 400 * F o
153 357 %’ * oy %
196 * ¥
180 396 T 350F £ %
. o * *
c
8 * %
- . © 300f
245 469 o) %
141 252 £ o *
177 338 25? E— . .)
00 150 200 250 300

weight (pounds)

Fig. 10 Health data.

Looking at the plot reveals that there seems to be a systematic relation between
the weights and running times, with a trend that heavier persons tend to be slower
in the runs, although this is not true for all individuals. Moreover, the trend seems
linear. This hypothesis can be quantified as a parameterized function,

h(x;@) =6+ 0;x. (13)

This notation means that the hypothesis /4 is a function of the quantity x, and the
hypothesis includes all possible straight lines, where each line can have a different
offset 6y (intercept with the y-axis), and slope ;. We typically collect parameters
in a parameter vector 8. We only considered one input feature x above, but we can
easily generalize this to higher dimensional problems where more input attributes
are given. For example, there might be the amount of exercise each week that might
impact the results of running times. If we make the hypothesis that this additional
variable has also a linear influence on the running time, independently of the other
attribute, we can write the hypothesis as

h(x;0) = 6y + 61x] + Orx5. (14)

A brief introduction to probabilistic machine learning with neuroscientific relations 15

A useful trick to enable a compact notation in higher dimensions with # attributes is
to introduce xop = 1. We can then write the linear equations as

h(x;0) = 6px0 + ... + Opxy = ¥ 6ix; = 6 x. (15)
i

The vector 07 is the transpose of the vector 6.

At this point it would be common to fit the unknown parameters 6 with methods
such as least mean square regression (LMS). However, I would like to frame this
problem right away in a more modern probabilistic framework. The data already
show that the relations between the weight and running time is not strictly linear, and
the main question is how we should interpret the differences. We could introduce a
more complicated nonlinear hypothesis that tries to fit the deviations from the linear
hypothesis. Such a hypothesis would be good news since increasing your weight
from 180 pounds to 200 pounds would predict that people can run faster. Thus,
instead of making the hypothesis function more complex, we should consider other
possible sources that influence these data. One is certainly that the ability to run
does not only depend on the weight of a person but also on other physiological
factors. However, these data do not include information of such other factors, and
the best we can other than collecting more information is to treat these deviations
as uncertainties. There are many possible source of uncertainties such as limitations
of measurements from either time constrains, laziness or sensor limitations, or true
noise in the data. At this point it is not important where these uncertainties originate
but only that we acknowledge the uncertain nature of data.

To model the uncertainties in these data we look at the deviations from the mean.
Fig.11 shows a histogram of the differences between the actual data and the hypoth-
esised regression line. This look a bit Gaussian, which is a frequent finding in data

Numbers in bin

2|

—‘POO -50 50 100

Remainder

Fig. 11 Histogram of the difference between the data points and the fitted hypothesis, (y; — 6; —
92)6,').

though not necessarily the only possible. With this additional conjecture, we should
revise our hypothesis. More precisely, we acknowledge that the data are noisy and
that we can only give a probability of finding certain values. Specifically, we assume
here that the data follow a certain trend h(x; 0) with additive noise, 1,

16 Thomas Trappenberg
p(ylx;0) =h(x;0)+n, (16)

where the random variable 7 is Gaussian distributed in the example above,
p(n) = X(u,0) (17)

We can then also write the probabilistic hypothesis in the above example as a Gaus-
sian model with a mean that depends on the variable x,

p(ylx;0) = X(u = h(x),0) (18)
1 —(y—0"x)?
- e (- (19)

This functions specifies the probability of values for y, given an input x and the
parameters . We have here treated here the variance sigma® as given, although this
can be part of the model parameters that need to be estimated.

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset
as fundamentally stochastic, that is, data can be different even in situations that we
deem identical. This randomness may come from irreducible indeterminacy, but
might also represent epistemological limitations such as the lack of knowledge of
hidden processes or limitations in observing states directly. The language of proba-
bility theory has helped to make large progress the machine learning area.

While we have made a parameterized hypothesis underlying the nature of data,
we need to estimate values for the parameters to make real predictions. We therefore
consider again the examples for the input-output pairs, our training set {(x(i) ,y(i))i=
1...m}. The important principle that we will now follow is to choose the parame-
ters so that the examples we have are most likely under the model. This is called
maximum likelihood estimation. To formalize this principle, we need to think about
how to combine probabilities for several observations. If the observations are in-
dependent, then the joined probability of several observations is the product of the
individual probabilities,

PYV1Y2, ooy Ym|X15X2,5 o X 0) = IT" p(yilxi5 6). (20)

Note that y; are still random variables in the above formula. We now use our training
examples as specific observations for each of these random variables, and introduce
the Likelihood function

L(6) = 11" p(6:y" x1). 1)

The p on the right hand side is now not a density function, but it is a regular function
(with the same form as our parameterized hypothesis) of the parameters 0 for the
given values y() and x(). Instead of evaluating this large product, it is common to
use the logarithm of the likelihood function, so that we can use the sum over the
training examples,

A brief introduction to probabilistic machine learning with neuroscientific relations 17
L . .
1(6) =logL(8) = } log(p(6:y" x)). (22)
i

Since the log function strictly monotonly rising, the maximum of L is also the maxi-
mum of /. The maximum (log-)likelihood can thus be calculated from the examples
as

OMLE — argmeaxl(e). (23)

We might be able to calculate this analytically or use a search algorithms to find a
minimum from this function.

Let us apply this to the regression of a linear function as discussed above. The
log-likelihood function for this example is

I (0 pTx)2
1(9) = logHi:I mexp (20_2 (24)
m 1 7()}(1’) _ QTX(i))Z
= 1 - 25
i=1 <Og w0 20° =
m m _(y(i) _ GTX(i))Z

i=1

Thus, the log was chosen so that we can use the sum in the estimate instead of
dealing with big numbers based on the product of the examples. Since the first term
in the expression (26), —% log2mo, is independent of 6, and since we considered
here a model with a constant ¢ for the variance of the data, maximizing the log-
likelihood function is equivalent to minimizing a quadratic error term

L (. (0= ((0)2
V2r 2

Thus, maximum likelihood estimation of a Gaussian data correspond to minimizing
a quadratic cost function as was commonly used in LMS regression. LMS regression
is thus well motivated for Gaussian data, but our deviation also show that data with
non-Gaussian noise should be fitted with different cost functions. For example, a
polynomial error function correspond more generally to a density model of the form

x;0) =

E= 50— h(((0)) <= pls . @)

1 1
E=—|ly=h((x;(8)||" <= p(y[x;0) = 5=~ exp(—|[y —h((x; 0]["). (28)
p 21°(1/p)
Later we will mention the €-insensitive error function, where errors less than a con-
stant € do not contribute to the error measure, only errors above this value,

E=|ly=h((x;(0)lle == p(yIx;6) = exp(—|ly—=h((x:6]le). (29)

p
2(l—¢)

18 Thomas Trappenberg

Since we already acknowledged that we do expect that data are noisy, it is somewhat
logical to not count some deviations form the expectation as errors. It also turns out
that this error function is much more robust than other error functions.

3.2 Classification as logistic regression

We have grounded supervised learning in probabilistic function regression and max-
imum likelihood estimation. An important special case of supervised learning is
classification, The simplest example is that of binary classification which are data
that have only two possible labels such as y = (0, 1). For example, let us consider a
one dimensional case where data tend to fall into one class when the feature value is
below a threshold 6, or into the other class when above. The most difficult situation
for such classification is around the threshold value since small changes in this value
might trigger one versus the other class. It is then appropriate to make a hypothesis
for the probability of p(y = 1|x) which is small for x (x <<), around 0.5 for x ~ 6,
and approaching one for large x (x >> 0).

More formally, let us consider a random number which takes the value of 1 with
probability ¢ and the value O with probability 1 — ¢ (the probability of being either
of the two choices has to be 1.) Such a random variable is called Bernoulli dis-
tributed. Tossing a coin is a good example of a process that generates a Bernoulli
random variable and we can use maximum likelihood estimation to estimate the pa-
rameter ¢ from such trials. That is, let us consider m tosses in which & heads have
been found. The log-likelihood of having 4 heads (y = 1) and 1 — A tails (y = 0) is

1(9) = log(¢"(1—¢9)"") (30)
= hlog(9) + (m — h)log(1—¢). 31)

To find the maximum with respect to ¢ we set the derivative of / to zero,

=

dh om-

- _ L _ =" 32
W60 10 G2

h m—h
_homzh 33
5 (33)
=0 (34)

h

5 g=1 (35)

As you might have expected, the maximum likelihood estimate of the parameter ¢
is the fraction of heads in m trials.

Now let us discuss the case when the probability of observing a head or tail, the
parameter ¢, depends on an attribute x, as usual in a stochastic (noisy) way. An
example is illustrated in Fig.12 with 100 examples plotted with star symbols. The
data suggest that it is far more likely that the class is y = 0 for small values of x and

A brief introduction to probabilistic machine learning with neuroscientific relations 19

that the class is y = 1 for large values of x, and the probabilities are more similar in-
between. We put forward the hypothesis that the transition between the low and high
probability region is smooth and qualify this hypothesis as parameterized density
function known as a logistic (sigmoidal) function

1

= Trexp(—07x)" (36)

py=1)
As before, we can then treat this density function as function of the parameters 6 for
the given data values (likelihood function), and use maximum likelihood estimation
to estimate values for the parameters so that the data are most likely.

1 Mo ok K kRO Mk k% *

0.81

0.61

>

0.4r

0.2r
0 ¥ e B C 2
-1 -0.5 0 0.5 1 1.5 2

Fig. 12 Binary random numbers (stars) drawn from the density p(y = 1)
line) with offset 8y = 2 and slope 6; =4 .

— 1 :
~ l+exp(—6;x—6)) (solid

How can we use the knowledge (estimate) of the density function to do classifi-
cation? The obvious choice is to predict the class with the higher probability, given
the input attribute. This bayesian decision point, x4, or dividing hyperplane in higher
dimensions, is give by

p(y=1lxg) = p(y =0Jx4) = 0.5 = x,60 x4 = 0. (37)

We have here considered binary classification with linear decision boundaries as
logistic regression, and we can also generalize this method to problems with non-
linear decision boundaries by considering hypothesis with different functional forms
of the decision boundary. However, coming up with specific functions for bound-
aries is often difficult in practice, and we will discuss much more practical methods
for binary classification later in this course.

3.3 Multivariate generative models and probabilistic reasoning

We have so far only considered very simple hypothesis appropriate for the low di-
mensional data given in the above examples. An important issues that has to be
considered in machine learning is that of generalizing to more complex non-linear

20 Thomas Trappenberg

data in high dimension, that is, when many factors interact in a complicated way.
This topic is probably one of the most important when applying ML to real world
data. This section discusses a useful way of formulating more complicated stochas-
tic models with causal relations and how to use such models to argue (inference).
Parameters of such models must often be learned with supervised techniques such
as maximum likelihood estimation.

Let us consider high dimensional data and the corresponding supervised learning.
In the probabilistic framework, this means making a hypothesis for joined density
function of the problem,

p(»x) = p(y,x1,%2,...|0). (38)

With this joined density function we could argue about every possible situation in
the environment. For example, we could again ask for classification or object recog-
nition by calculating the conditional density function

p[x) = p(ylx1,x2,..:0). (39)

Of course, the general joined density function and even this conditional density
function for high dimensional problems have typically many free parameters that
we need to estimate. It is then useful to make more careful assumptions of causal re-
lations that restrict the density functions. The object recognition formulation above
is sometimes called a discriminative approach to object recognition because it tries
to discriminate labels give the feature values. Another approach is to consider mod-
elling the inverse (we drop in the following the parameter vector in the notation)

p(X|y):p(x1,x2,...\y). (40)

This is called a generative model as it can generate examples from a class give a
label. To use generative models in classification or object recognition we can use
Bayes’ rule to calculate a discriminative model. That is, we use class priors (the
relative frequencies of the classes) to calculate the probability that an item with
features x belong to a class y,

p(xly;0)p(y) @1

p(y[x:0) = 200

While using generative models for classification seem to be much more elaborate,
there are several reasons that make generative models attractive for machine learn-
ing. For example, in many cases features might be conditionally independent given
a label, that is

p(x1,x2,...y) = p(xi]y) * p(xaly) *.... 42)
Even if this does not hold strictly, this naive Bayes assumption it is often useful and

drastically reduces the number of parameters that have to be estimates. This can be
seen from factorizing the full joined density function with the chain rule

A brief introduction to probabilistic machine learning with neuroscientific relations 21

p(xl7x27"'axn|y) = p(xn|y,x1,...x,ﬁl)p(xl,...,x,,fl|y) (43)
= p(-xnlyaxla~-~7xn—l) *"'*p(x2|y7x1) *p(.XI |y> (44)

n
= [Ip(ily.xict,.x1). (45)

i=1

But what if the naive Bayes assumption is not appropriate? Then we need to build
more elaborate models. Building and using such models have been greatly sim-
plified with graphical methods to build casual models that specify the conditional
dependencies between random variables [14]. A well known example of one of the
inventors of graphical models, Judea Pearl, is shown in Fig.13. In such graphical
models, the nodes represent random variables, and the links between them repre-
sent causal relations with conditional probabilities. In this case there are arrows on
the links. This is thus an example of a directed acyclic graph (DAG). The RBM
discussed above is a example of an undirected Bayesian network.

P(B) P(E)

001 Earthquake 002

Burglary

B E |P(AIBE)
t t 95

t f 94

f ot 29

f f 001

P(JIA) A [P(MIA)

t 90 70

Fig. 13 Example of causal model a two-dimensional probability density function (pdf) and some
examples of marginal pdfs.

In this specific example, each of the five nodes stands for a random binary vari-
able (Burglary B={yes,no}, Earthquake E={yes,no}, Alarm A={yes,no}, JohnCalls
J={yes,no}, MaryCalls M={yes,no}). The figure also include conditional probabil-
ity tables (CPTs) that specify the conditional probabilities represented by the links
between the nodes. The joined distribution of the five variables can be factories in
various ways following the chain rule mentioned before (equations 43), for example
as

P(B.E,A,J,M) = P(B|E,A,J,M)P(E|A,J,M)P(A|J,M)P(JIM)P(M) (46)

However, the causal model represents a specific factorization of the joined proba-
bility functions, namely

p(B,E,A,J,M) = P(B)P(E)P(A|B,E)P(J|A)P(M|A), (47)

22 Thomas Trappenberg

which is much easier to handle. If we do not know the conditional probability func-
tions, we need to run many more experiments to estimate the various conditions
(2% +23 +2%2 421 + 29 = 31) instead of the reduced conditions in the causal model
(14+1+422+2+2=10). It is also easy to use the casual model to do inference
(drawing conclusions), for specific questions. For example, say we want to know
the probability that there was no earthquake or burglary when the alarm rings and
both John and Mary call. This is given by

PB=fE=fA=t,J=t,M=1t)=
=P(B=f)P(E=f,)P(A=t|B=f,E=f)P(J=t]A=1)P(M=1]A=1)
=10.998%0.999 x0.001%x0.7x0.9
=0.00062

Although we have a casual model where parents variables influence the outcome
of child variables, we can also use a child evidence to infer some possible values
of parent variables. For example, let us calculate the probability that the alarm rings
given that John calls, P(A =¢t|J =t). For this we should first calculate the probability
that the alarm rings as we need this later. This is given by

PA=1)=PA=¢B=t,E=t)P(B=1)P(E=1)+...
P(A=t|B=1,E = f)P(B=1)P(E = f)+...
PA=t|B=f,E=1)P(B=f)P(E=1)+...

P(A=1|B=f,E = [)P(B = f)P(E = f)

= 0.95%0.001 x0.0024-0.94 + 0.001 % 0.998 +- ...
0.29%0.999 ¥ 0.002 4 0.001 * 0.999 x 0.998

= 0.0025

We can then use Bayes’ rule to calculate the required probability,

P(J=tA=t)P(A=1)
(J=tl]A=t)P(A=1)+P(J=tl]A= f)P(A=f)
0.90.0025

~ 0.90.0025 +0.050.9975
= 0.0434

PA=tJ=1t) = P

We can similarly apply the rules of probability theory to calculate other quantities,
but these calculations can get cumbersome with larger graphs. It is therefore useful
to use numerical tools to perform such inference. For example, a useful Matlab tool-
box for Bayesian networks can be downloaded at http://code.google.com/p/bnt/.
The Matlab implementation of the model in Fig.13 is implemented with this toolbox
infilewww.cs.dal.ca/~tt/repository/MLintro2012/PearlBurglary.m
I mentioned already the importance of learning about temporal sequences (antic-
ipatory systems), and Bayesian Networks are easily extended to this domain. An im-

A brief introduction to probabilistic machine learning with neuroscientific relations 23

- = (Xt :Q - Xt+1 »{ Xt-2 --

&) ® ® ®

Fig. 14 A temporal Bayesian model called the Hidden Markov Model with hidden states x; obser-
vations z; and external influences u;.

portant example of such a Dynamic Bayesian Network (DBN) is a Hidden Markov
Model (HMM) as shown in Fig.14. In this model a state variable, x; is not directly
observed. This is therefore a hidden or latent random variable. The Markov condi-
tion in this model means that the states only depend on situations in the previous
state, which can include external influences such described here as u;. T typical ex-
ample is a robot localization where we drive the robot with some motor command u,
and want to know the new state of the robot. We can use some knowledge about the
influence of the motor command on the system to calculate a new expected location,
and we can also combine this in a Baysian optima way with sensor measurement de-
picted as z;. Such Bayesian models are essential in many robotics applications.

3.4 Non-linear regression and the bias-variance tradeoff

While graphical models are great to argue about situations (doing inference), the
role of supervised learning is to determine the parameters of the model. We have
only considered binary models where each Bernoulli variable is characterized by a
single parameter ¢. However, the density function can be much more complicated
and introduce many more parameters. A major problem in practice is thus to have
enough training examples with labels to restrict useful learning appropriately. This is
one important reason for unsupervised learning as we have usually many unlabelled
data that can be used to represent the problem appropriately. But we still need to
understand the relations between free parameters and the number of training data.

We already discuss the bias-variance tradeoff in the first section. Finding the right
function that describe nonlinear data is one of the most difficult tasks in modelling,
and there is not a simple algorithm that can give us the answer. This is why more
general learning machines, which we will discuss in the next section, are quite pop-
ular. To evaluate the generalization performance of a specific model it is useful to
split the training data into a training set, which is used to estimate the parameters
of the model, and a validation set, which is used to study the generalization perfor-
mance on data that have not been used during training the model.

A important question is then how many data we should keep to validate versus
train the model. If we use too many data for validation, than we might have too

24 Thomas Trappenberg

less data for accurate learning in the first place. On the other hand, if we have to
few data for validation than this might not be very representative. In practice we are
often using some cross-validation techniques to minimize the trade-off. That is, we
use the majority of the data for training, but we repeat the selection of the validation
data several times to make sure that the validation was not just a result of outliers.
The repeated division of the data into a training set and validation set can be done in
different ways. For example, in random subsampling we just use random subsample
for each set and repeat the procedure with other random samples. More common is
k-fold cross-validation. In this technique we divide the data set into k-subsamples
and use k — 1 subsamples for training and one subsample for validation. In the next
round we use another subsample for validating the training. A common choice for
the number of subsamples is k = 10. By combining the results for the different runs
we can often reduce the variance of our prediction while utilizing most data for
learning.

We can sometimes help the learning process further. In many learning exam-
ples it turns out that some data are easy to learn while others are much harder. In
some techniques called boosting, data which are hard to learn are over-sampled in
the learning set so that the learning machine has more opportunities to learn these
examples. A popular implementation of such an algorithm is AdaBoost (adaptive
Boosting).

Before proceeding to general non-linear learning machines, I would like to out-
line a point that was recently made very eloquently by Doug Tweet in a course mod-
ule that we shared last summer in a computational neuroscience course in Kingston,
Canada. As discussed above, supervised learning is best phrased in terms of regres-
sion and that many applications are nonlinear in nature. It is common to make a
nonlinear hypothesis in form of y = 7(87x), where 8 is a parameter vector and % is
a nonlinear hypothesis function. A common example of such a model is an artificial
perceptrons with a sigmoidal transfer function such as i(x) = tanh(6x). However,
as nicely stressed by Doug, there is no reason to make the functions nonlinear in the
parameters which then result in a non-linear optimization problem. Support vector
machines that are reviewed next are a good example where the optimization prob-
lem is only quadratic in the parameters. The corresponding convex optimization has
no local minima that plagued multilayer perceptrons. The different strategies might
be summarized with the following optimization functions:

Linear Perceptron E o (y — BTX)2 48)
Nonlinear Perceptron E o< (y— h(x; 0))* (49)
Linear in Parameter (LIP) E o (y —07¢ (X))2 (50)
Linear SVM E « o;Q;y;y ijx + constraints (G2))

nonlinear SVM E o 0;;y;y;¢(x)” ¢ (x) -+ constraints (52)

The LIP (linear in parameters) model is more general than a linear model in that it
considers functions of the form y = 87 ¢ (x) with some mapping function ¢ (x). In
light of this review, the transformation ¢ (x) can be seen as re-coding a sensory sig-

A brief introduction to probabilistic machine learning with neuroscientific relations 25

nal into a more appropriate form with unsupervised learning methods as discussed
above.

3.5 General Learning Machines

Before we leave this discussion of basic supervised learning, I would like to mention
some methods which are very popular and often used for machine learning appli-
cations. In the previous section we discussed the formulation of specific hypothesis
functions. However, finding an appropriate hypothesis function requires consider-
able domain knowledge. This is why universal learning machines have been popu-
lar with computer scientists and have a long history. A good example are artificial
neural networks, specifically multilayer perceptrons, which became popular in the
1980s although they have been introduced much earlier. The general idea behind
these general learning machines is to provide a very general functions with many
parameters that will be adjusted through learning. Of course, the real problem is
then not to over-fit the model by using appropriate restrictions and also to make
the learning efficient so that it can be used to large problem size. There has been
much progress in this area, specifically though the introduction of Support Vector
Machines (SVMs)that I will briefly describe in this section.

Fig. 15 Multilayer perceptron with one hidden layer. The parameters are called weights w.

Let us start with a multilayer perceptron as shown in Fig.15. Each node rep-
resents a simple calculation. The input layer simply relaying the inputs, while the
hidden and output layer multiplay each input channel with an associated weight w;,
sum this net input, and transfer it through a generally non-linear transfer function,
often chosen as a sigmoid function such as the logistic function. Such networks are
thus a graphical representation of a nested nonlinear functions with parameters w.
Applying an input results in a specific output y that can be compared to a desired
output ygs in supervised learning. The parameters can then be adjusted, as usual
in LMS regression, by minimizing the least square error E = (y — Y4es)?, typically
with gradient descent w < w + a%ﬁ, where « is a lerning rate. Since y is a nested

26 Thomas Trappenberg

function of the parameters, this requires the applivation of the chain rule. The result-
ing equations look like propagating back an error term y — y,.; from the output to
earlier layers, and this algorithm has thus been termed error-backpropagation [15].

It is easy to see that such networks are universal approximators [16], that is, the
error of the training examples can be made as small as desired by increasing the
number of parameters. This can be achieved by adding hidden nodes. However, the
aim of supervised learning is to make predictions, that is to minimize the general-
ization error and not the training error. Thus, choosing a smaller number of hidden
nodes might be more appropriate for this. The bias-variance tradeoff reappears here
in this specific graphical model, and years of research have been investigated in
solving this puzzle. There have been some good practical methods and research di-
rections such as early stopping [17], weight decay [18] or Bayesian regularization
[19] to counter overfitting, and transfer learning [20, 21] can be seen as biasing
models beyond the current data set.

Most prominent are currently support vector machines (SVMs) that start by min-
imizing the estimated generalization (called the empirical error in this community).
The main idea behind support vector machines (SVM) for binary classification is
that the best linear classifier for a separable binary classification problem is the one
that maximizes the margin [22, 24]. That is, there are many lines that separate the
data as shown in Fig.16. The one that can be expected most robust is the one that
tries to be as far from any data as possible since we can expect new data to be more
likely close to the clusters of the training data if the training data are representative
of the general distribution. Also, the separating line (hyperplane in higher dimen-
sions) is determined only by a few close points that are called support vectors. And
Vapnik’s important contributions did not stop there. He also formulated the margin
maximization problem in a form so that the formulas are quadratic in the parameters
and only contain dot products of training vectors, x’ x by solving the dual problem
in a Lagrange formalism [22]. This has several important benefits. The problem be-
comes a convex optimization problem that avoids local minima which have crippled
MLPs. Furthermore, since only dot products between example vectors appear in
these formulations, it is possible to apply of Kernel trick to efficiently generalize
these approaches to non-linear functions.

Let me illustrate the idea behind using Kernel functions for dot products. To
do this it is important to distinguish attributes from features as follows. Attributes
are the raw measurements, whereas features can be made up by combining at-
tributes. For example, the attributes x; and x, could be combines in a feature vector
(x1,x2,x1%2,x7,x3)7. This is a bit like trying to guess a better representation of the
problem which should be useful as discussed above with structural learning. So let
us now write this transformation as function ¢ (x). The interesting part of Vapnik’s
formulation is that we actually do not even have to calculate this transformation
explicitly but can replace the corresponding dot products as a Kernel function

K(x,z) = ¢(x)"¢(2). (53)

A brief introduction to probabilistic machine learning with neuroscientific relations

X2 X

wix+b=0

Fig. 16 Illustration of linear support vector classification.

27

Such Kernel functions are sometimes much easier to calculate. For example, a Gaus-
sian Kernel function corresponds formally to an infinite dimensional feature trans-
formation ¢. There are some arguments from structural learning [22, 23] why SVMs
are less prone to overfitting, and extensions have also been made to problems with
overlapping data in form of soft margin classification [24] and to more general re-

gression problems [25]. We will not dwell more into the theory of Suport Vector

Machine but show instead an example using the popular LIBSVM [26] implemen-
tation. This implementation includes interfaces to many programming languages,
such as MATLAB and Python. SVM are probably currently the most successful

general learning machines.

Table 2 Using libsvm for classification

clear; close all; figure; hold on; axis square

)

%% training data and training SVM

r1=2+rand(300,1); al=2xpi*rand(300,1); polar(al,rl,’bo’);
r2=randn(300,1); a2=.5xpi*rand(300,1); polar(a2,r2,’'rx’);

x=[rl.xcos(al),rl.xsin(al);r2.xcos(a2),r2.+xsin(a2)];
y=[zeros (300,1);0ones (300,1)1;
model=svmtrain (y, x) ;

%% test data and SVM predicition

rl=2+rand(300,1); al=2%pixrand(300,1);
r2=randn(300,1); a2=.5xpi*rand(300,1);
x=[rl.xcos(al),rl.xsin(al);r2.xcos(a2),r2.+xsin(a2)1];
yp=svmpredict (y, x, model) ;

figure; hold on; axis square
[tmp, I]=sort (yp);
plot (x(1:600-sum(yp),1),x(1:600-sum(yp),2),'bo’);

plot (x(600-sum(yp)+1:600,1),x(600-sum(yp)+1:600,2)," rx");

28 Thomas Trappenberg

An example of using the LIBSVM library on data shown in Fig.17 is given in
Table 2. The left figure shows training data. These data are produced from sampling
two distributions. The data of the first class, shown as circles, are chosen within a
ring of radius 2 to 3, while the second class, shown as crosses, are Gaussian dis-
tributed in two quadrants. These data are given with their corresponding lables to
the training function svmtrain. The data on the right are test data. The corre-
sponding class labels are given to the function svmpredict only to calculate cross
validation error. For true predictions, this vector can be set to arbitrary values. The
performance of this classification is around 97% with the standard parameters of the
LIBSVM package. However, it is advisable to tune these parameters, for example
with some search methods ??.

Fig. 17 Example of using training data on the left to predict the labels of the test data on the right.

4 Reinforcement Learning

As discussed above, a basic form of supervised learning is function approximation,
relating input vectors to output vectors, or, more generally, finding density functions
p(y,x) from examples (X(i) ,y). However, in many applications we do not have this
kind of teacher that tells us exactly at any time the appropriate response for a specific
input. Rather, feedback from a teacher is often delayed in time and also often given
just in the form of general feedback such as ‘good’ or ‘bad’. Furthermore, we are
often interested in predicting a sequence of appropriate actions or an expectation of
future situations from the history of past events. Thus, in this section we will talk
about a more general form of temporal supervised learning, learning the temporal
density function

p(y(t+1)[x® x(=1 x(), (54)

We encountered such models already in the form of specific temporal Bayesian net-
works such as a Hidden Markov Process. We will now discuss this issue further

A brief introduction to probabilistic machine learning with neuroscientific relations 29

within the realm of reinforcement learning or learning from reward. While we con-
sider here mainly the prediction of a scalar utility function, most of this discussion
can be applied directly to generalized reinforcement learning.

4.1 Markov Decision Process

Reinforcement learning can be best illustrated in a Markovian world. As discussed
before, such a world! is characterized by transition probabilities between states,
T(s'|s,a), that only depend on the current state s € S and the action a € A taken
from this state. We now consider feedback from the environment in the form of
reward r(s) and ask what actions should be taken in each state to maximize future
reward. More formally, we define the value function or utility function,

0" (s,a) = E{r(s)+yr(s1) + Vr(s2) + ¥r(s3) + .. }x, (55)

as the expected future payoff (reward) when being in state s and then at s, s>, etc.
We introduced here the discount factor 0 < y < 1 so that we value immediate reward
more than later reward. This is a common treatment to keep the expected value
finite. An alternative scheme we would be to consider only finite action sequences.
The policy 7(als) describes what action to take in each state. In accordance with
our general probabilistic world view, we consider here probabilistic policies, that is,
we want to know with which probability an action should be chosen. If the policies
are deterministic, then taking a specific action is determined by the policy, and the
value function is then often written as V*(s).> Our goal is to find the optimal policy,
which is the policy that maximizes the expected future payoff,

7" (als) = argmax 0% (s,), (56)

where the argmax function picks the policy for which Q is maximal. Such a setting
is called a Markov Decision Process (MDP).

MDPs have been studied since the mid 1950s, and Richard Bellman noted that
it is possible to estimate the value function for each policy 7 from a self-consistent
equation now called Bellman equation. He called the corresponding algorithm dy-
namic programming. Specifically, we can separate the expected value of the imme-
diate reward from the expected value of the reward from visiting subsequent states,

0" (s,a) = E{r(s)}x +YE{r(s1) + yr(s2) + ¥*r(s3) + ...} x. (57)

! Most often we talk about Markov models where the model is a simplification or abstraction of
a real world. However, here we discuss a specific toy world in which state transitions fulfill the
Markov condition.

2 V*(s) is usually called the state value function and Q”(s,a) the state-action value function.
However, note that the value depends in both cases on the states and the actions taken.

30 Thomas Trappenberg

The second expected value on the right hand side is that of the value function for
state s;. However, state s; is related to state s since state s; is the state that can be
reached with a certain probability from s when taking action a; according to policy
7 (e.g., s = s +ay, or more generally s, = s,_1 + a,). We can incorporate this into
the equation by writing

0" (s,a +}/ZT |sa):n |SYE{r(s) +YR(s)) +VR(sh) + ...}z, (58)

where s’l is the next state after state s, etc. Thus, the expression on the right is
the state-value-function of state s'. If we substitute the corresponding expression of
equation (55) into the above formula, we get the Bellman equation for a specific
policy, namely

0" (s,a —H/ZT 'Is,a) Zﬂ "1s)O" (s',d). (59)

The action a is uniquely specified by the policy in the case of deterministic policies,
and the value function Q7 (s, a) reduces to V”(s). In this case the equation simplifies
to

V7(s) = r(s) + yZT(s’\s,a)V”(s’)- (60)

This formulation of the Bellman equation for the MDP [28, 29, 30] is slightly dif-
ferent to the formulation of Sutton and Barto in [31] since the later used a slightly
different definition of the value function as the cumulative reward from the next
state only and not the current state®. The corresponding Bellman equation is then

% (s) =ZT(s’ls,a>(r(s’)+W”(s’>)- (61)

The Bellman equation is a set of N linear equations in an environment with N states,
one equation for each unknown value function of each state. Given that the environ-
ment is known, that is, knowing functions » and 7', we can use well known methods
from linear algebra to solve for V*(s). This can be formulated compactly with Ma-
trix notation,

r=(1—-yT)V”", (62)

where r is the reward vector, 1l is the unit diagonal matrix, and T is the transition
matrix. To solve this equation we have to invert a matrix and multiply this with the
reward values,

Vi=(1-yT)"'r, (63)

where r' is the transpose of r. It is also common to use the Bellman equation directly
and calculate a state-value-function iteratively for each policy. We can start with a
guess V for the value of each state, and calculating from this a better estimate

3 This is just a matter of when we consider the prediction, just before getting the current reward of
after taking the next step.

A brief introduction to probabilistic machine learning with neuroscientific relations 31
V< r+ 9TV (64)

until this process converges. This then gives us a value function for a specific policy.
To find the best policy, the one that maximizes the expected payoff, we have to loop
through different policies to find the maximal value function. This can be done in
different ways. Most commonly it is to use Policy iteration, which starts with a guess
policy, iterates a few times the value function for this policy, and then chooses a new
policy that maximizes this approximate value function. This process is repeated until
convergence.
It is also possible to derive a version of Bellman’s equation for the optimal value
function itself,
V*(s) =r(s) +m3xyZT(s'|s,a)V*(s’). (65)
S’

The max function is a bit more difficult to implement in the analytic solution, but
we can again easily use an iterative method to solve for this optimal value function.
This algorithm is called Value Iteration. The optimal policy can always be calculated
from the optimal value function,

T (s) = argm(?xZT(s'|s,a)V*(s’). (66)

A policy tells an agents what action should be chosen, and the optimal policy is
hence related to optimal control as long as the reward reflects the desired perfor-
mance.

The previously discussed policy iteration has some advantages over value iter-
ations. In value iteration we have to try out all possible actions when evaluating
the value function, and this can be time consuming when there are many possible
actions. In policy iteration, we choose a specific policy, although we have then to
iterate over consecutive policies. In practice it turns out that policy iteration often
converges fairly rapidly so that it becomes a practical method. However, value iter-
ation is a little bit easier and has more similarities to the algorithms discussed below
that are also applicable to situations where we do not know the environment a priori.

4.2 Temporal Difference learning

In dynamic programming, the agent goes repeatedly to every possible state in the
system. This can be time consuming. It usually works if we have complete knowl-
edge of the system since we do not really perform the actions but can sit and cal-
culate the solution in a planning phase. However, we might not know the rewards
given in different states, or the transition probabilities, etc. One approach would be
to estimate these quantities from interacting with the environment before using dy-
namic programming. The following methods are more estimations of the state value
function that determines optimal actions. These online methods assume that we still

32 Thomas Trappenberg

know exactly in which state the agent is. We will consider observable situations
later.

A general strategy for estimating the value of states, called Monte Carlo meth-
ods, is to act in the environment and thereby to sample and memorize reward from
which the expected value can be calculated by simple averaging. Such ideas can
be combined with the bootstrapping ideas of dynamic programming. The resulting
algorithms are generally called temporal difference (TD) learning since they rely on
the difference between expected reward and actual reward.

We start again by estimating the value function for a specific policy before mov-
ing to schemas for estimating the optimal policy. Bellman’s equations require the
estimation of future reward

Y T(s'|s,a)VF(s") = V(). (67)

In this equation we introduced an approximation of this sum by the value of the
state that is reached by one Monte Carlo step. In other words, we replace the to-
tal sum that we could build when knowing the environment with a sampling step.
While this approach is only an estimation, the idea is that this will still result in
an improvement of the estimation of the value function, and that other trials have
the possibility to evaluate other states that have not been reached in this trial. The
value function should then be updated carefully, by considering the new estimate
only incrementally,

V() < VE(s) +afr(s) + W7 (s') —V"(s)}. (68)

This is called temporal difference or TD learning. The constant ¢ is a learning rate
and should be fairly small. This policy evaluation can then be combined with policy
iteration as discussed already in the section on dynamic programming.

state

Fig. 18 Example of using TD learning on a chain of rewarded states. The right graph shows the
estimated value function over 100 runs. The errorbars depict the standard deviations.

An example program is given in Table 3. The state space in this example consists
of a chain of 10 states as shown on the left in Fig.18. The 10th state is rewarded with

A brief introduction to probabilistic machine learning with neuroscientific relations 33

Table 3 TD learning with a chain state space

% Chain example: Policy iteration with TD learning
clear; N=10; P=0.8; gamma=0.9; % parameters
r=zeros(1l,N)-0.1; r(l)=-1; r(N)=1; % reward function

% transition probabilities; 1 (going left) and 2 (going right)
T=zeros (N,N,2); %T(1,1,:)=1; T(N,N,:)=1; %$Absorbing end states
for i=2:N-1;

T(i,i-1,1)=P; T(i,i+1,1)=1-P; T(i,1i-1,2)=1-P; T(i,1i+1,2)=P;
end

% initially random start policy and value function
policy=floor (2«rand(1,N))+1; Vpi=rand(N,1);

for iter=1:10 %$policy iteration
Vpi(1l)=0; Vpi(N)=0; %absorbing end states
$Transition matrix of choosen action
for s=2:N-1;
Tpi(s,s-1)=T(s,s-1,policy(s));
Tpi(s,s+1)=T(s,s+1l,policy(s));
end
% Estimate V for this policy using TD learning
for 1=1:100 %$loop over episodes
s=floor (9+rand)+1l; %$initial random position
while s>1 && s<N
a=policy(s); %choose action
sl=s+2«% (a-1)-1; %calculate next state

if rand>Tpi(s,sl); sl=s-2x(a-1)+1; end %$random execution
Vpi(s)=Vpi(s)+0.01l* (r(sl)+gammaxVpi (sl)-Vpi(s)); Supdate

s=sl;

end
end
Vpi(l)=r(l); Vpi(N)=r(N);
% Updating policy
policy (1)=0; policy (N)=0; %absorbing states
for s=2:N-1

[tmp,policy(s)] = max([Vpi(s-1),Vpi(s+1l)]);
end

end

r =1, while the first state receives a large negative reward, r = —1. The intermediate
states receive a small negative reward to account for movement costs. The estimated
value function after 10 policy iteration is shown on the right. This curve represents
the mean of 100 such simulations, and the standard deviation is shown as errorbar.
One of the greatest challenges in this approach is the potential conflict between
taking a step that provides a fairly large expected reward and exploring an unknown
territory to potentially find larger rewards. This exploration-exploitation dilemma
will now be addressed with stochastic policies and will thus return to the notation of

34 Thomas Trappenberg

the state-action value function.* To include exploration in the algorithm, we include
some randomness in the policy. For example, we could follow most of the time the
greedy policy and only choose another possible action in a small number € of times.
This probabilistic policy is called the €-greedy policy,

m(a =argmax Q(s,a)) =1 —¢. (69)

This policy is choosing the policy with the highest expected payoff most of the
time while treating all other actions the same. A more graded approach employs the
softmax policy which choses each action proportional to a Boltzmann distribution

o1 Qs,)

w(als) = (70)

Y et0d)

This policy choses most often the one with highest expected reward, followed by
the second highest, etc, and the temperature parameter 7 sets the relative probability
of these choices. Temporal difference learning for the optimal value function with
stochastic policies is

O(s,a) + Q(s,a) + a{r(s) +y0(s',a') — O(s,a)}, (71)

where the actions a’ is the action chosen according to the policy. This on-policy
TD algorithm is called Sarsa for state-action-reward-state-action [31]. A slightly
different approach is using only the action to the maximal valued state for the value
function update while still exploring the state space through the stochastic policy,

O(s,a) < O(s,a) + a{r(s) —&—rr:?x yO(s',d") — Q(s,a)}. (72)

Such an off-policy TD algorithm is called Q-leaning. These algorithms have been
instrumental in the success of reinforcement learning in many engineering applica-
tions.

4.3 Function approximation and TD(1.)

There are several challenges in reinforcement learning remaining. Specifically, the
large number of states in real world applications makes these algorithms unprac-
tical. This was already noted by Richard Bellman who coined the phrase curse of
dimensionally. Indeed, we have only considered so far discrete state spaces, while
many applications are in a continuous state space. While discretizing a continuous
state space is a common approach, increasing the resolution of the discretization
will increase the number of states exponentially. Another major problem in practice

4 We will drop the star in the notation for the optimal value function since we will now only
consider optimal value functions.

A brief introduction to probabilistic machine learning with neuroscientific relations 35

is that the environment is not fully or reliably observable. Thus, we might not even
know exactly in which state the agent is when considering the value update. A com-
mon approach to the partially observable Markov decision process (POMDP) is the
introduction of a probability map. In the update of the Bellman equation we need
then to consider all possible states that can be reached from the current state, which
will typically increase the number of calculations even further. We will thus not fol-
low this approach here and consider instead the use of function approximators to
overcome these problems.

The idea behind the following method is to make a hypothesis of the relation
between sensor data and expected values in form of a parameterized function as in
supervised learning,’

Vi=V(x) = V(x;0), (73)

and estimate the parameters by maximum likelihood as before. We used thereby a
time index to distinguish the sequences of states. In principle, one could build very
specific temporal Bayesian models for specific problems as discussed above, but I
will outline here again the use of general learning machines in this circumstance. In
particular, let us consider adjusting the weights of a neural network using gradient-
descent methods on a mean square error (MSE) function

BURCYNAY:1/
40=a Y- V) 5y (74)

We considered here the total change of the weights for a whole episode of m time
steps by summing the errors for each time step. One specific difference of this situ-
ation to the supervised learning examples before is that the reward is only received
after several time steps in the future at the end of an episode. One possible approach
for this situation is to keep a history of our predictions and make the changes for the
whole episode only after the reward is received at the end of the episode. Another
approach is to make incremental (online) updates by following the approach of tem-
poral difference learning and replacing the supervision signal for a particular time
step by the prediction of the value of the next time step. Specifically, we can write
the difference between the reward and the prediction at the end of the sequence at
time ¢+ when reward is received, V; | =, as

m

r=Vi=Y Viyr1 =) (75)
k=t

since the intermediate terms chancel out. Using this in equation (74) gives

m m aV
40 =a} Y (Ve =V o (76)
t k=

~

5 The same function name is used on both sides of the equation but these are distinguished by
inclusion of parameters. The value functions below refer all to the parametric model, which should
be clear from the context.

36 Thomas Trappenberg

L oV,
(V+17V)§ ;
t tk 89

=1

=

ngE

(77)

t=1

which can be verified by writing out the sums and reordering the terms. Of course,
this is just rewriting the original equation 74. We still have to keep a memory of
all the gradients from the previous time steps, or at least a running sum of these
gradients.

While the rules (74) and (77) are equivalent, we also introduce here some mod-
ified rules suggested by Richard Sutton [32]. In particular, we can weight recent
gradients more heavily than gradients in the more remote past by introducing a de-
cay factor 0 < A < 1. The rule above correspond to A = 1 and is thus called the
TD(1) rule. The more general TD(A) rule is given by

! av,
A =a(Vigr — V) Y ATHE 78
t (t+1 t)]; 00 ()
It is interesting to look at the extreme of A = 0. The TD(0) rule is given by
av,
AO=0(Vig1 —Vi) = (79)

20"
While this rule gives gives in principle different results with respect to the original
supervised learning problem described by TD(1), it has the advantage that it is local
in time, does not require any memory, and often still works very well. TD(A) algo-
rithm can be implemented with a multilayer perceptron when back-propagating the
error term to hidden layers. A generalization to stochastic networks has been made
in the free-energy formalism [33].

4.4 An example of TD learning

5 Some biological analogies

The brain seems to be a very successful learning machine, and it is therefore not
surprising that human capabilities have motivated much research in artificial intel-
ligence. But also, insights from learning theory are important for our understanding
of brain processes. In this final section I want to mention some interesting relations
of neuroscientific issues with learning theory. I already remarked on the close rela-
tion between unsupervised learning and receptive fields in the early sensory areas
of the cortex that I believe is a wonderful example of underlying mechanisms be-
hind physiological findings. In the following I would like to add remarks on two
further subjects related to supervised learning and to reinforcement learning. The
first is about synaptic plasticity which seems to be an important mechanisms for the
physical implementation of learning rules. The second is about the close relation of

A brief introduction to probabilistic machine learning with neuroscientific relations 37

reinforcement learning with classical conditioning and the Basal Ganglia. Classical
conditioning has been a major area in animal learning, and recent recordings in the
Basal Ganglia has helped relating these areas on a behavioural, physiological and
learning theoretical level.

5.1 Synaptic Plasticity

As speculated by the Canadian Donald Hebb [34], the leading theory of the physical
implementation of learning is that of synaptic changes where the synaptic efficacy
changes in response to causally related pre- and post synaptic firings. Such correla-
tion rules have first been made concrete by Eduardo Caianello [35] ad have recently
been made more specific in terms of spike-timing-dependent-platicity (STDP; see
for example [36]). The principle idea is that when a driving neuron participates
in firing a subsequent neuron, then the connection strength between these neurons
will increase and decrease otherwise. All the learning rules in this chapter have fol-
lowed this main association rule with terms that are proportional to pre- and post-
synaptic firing. Synaptic plasticity is not only a fascinating area in neuroscience but
has also important medical implications since neurodegenerative deceases such as
Alzheimer’s decease and dementia have synaptic implications and several drugs act
on synaptic receptors.

There are many mysteries left that need to be understood if we want to make
progress in helping with neurological conditions. One basic fact that seems puzzling
is that synapses are not long lasting compared to the time scale of human memories®.
Synapses consist of proteins that have to be actively maintained by protein synthesis.
Thus, it is puzzling how this maintenance can survive years and aiding memories
such as when returning to a place of birth after many years of absence or meeting
friends that we have not seen for years? These are very basic questions that have, to
my knowledge, not been addressed sufficiently.

There are other aspects in synaptic plasticity that seems well represented in many
models. In particular, I would like to point the findings of my friend Alan Fine and
his colleagues that fits nicely with the probabilistic theme that I have tried to stress
in this chapter. Fine and colleagues have performed classical LTP/LTD experiments
that use high or low frequency stimulations of hippocampal slices of rodents to
induce LTP and LTD, respectably. Some of their results are summarized in Fig.19.
To test the strength of the synapses, they stimulated with two pulses as paired pulses
facilitate synaptic responses (the second pulse makes it easier to elicit a postsynaptic
spike). The slices are then activated with high frequency stimulations in-between
these test. As shown in Fig.19A, the electric response of the postsynaptic neuron
as measure by the excitatory post-synaptic potential (EPSP) is higher after the high
frequency stimulation. This corresponds to the classical findings by Bliss and Lomo
[37]. Fine and colleagues also imaged the calcium-related optical luminance signal

6 Julian Miller made this point nicely at the workshop

38 Thomas Trappenberg

High-frequency stimulation

A L %
E 3 —[\/\
[«
5 | |-
&0
— 100 -
B. 2 Time [ms]
[A
v
$100
5 0
z 100 g
% Time [ms]
C. 1507 , ,
5 + + *
s + + *a
+ ** Al R° +
g 100 . . e ey | ahe ,’.n’. .‘,“
g ¢ :
o 50 P=04 P=0.76 P=0.96
o
= N [R
Dooqewte TN L e *
+
0 5 45 50 90 95
Time [min]

Fig. 19 Plasticity experiment in hippocampal slices in which not only EPSPs were measured,
but in which, additionally, postsynaptic calcium-dependent fluorescence signals at single synapses
were imaged. [Data courtesy of Alan Fine and Ryosuke Enoki].

from individual synapses, shown in Fig.19B, and found that this luminance did not
change despite the fact the calcium-dependent mechanisms are generally associated
with plasticity. Instead, they found that the probability of eliciting a postsynaptic
spike varied nicely along the lines of experimental conditions classically related to
LTP/LTD since a low frequency stimulus also lead to a decrease in EPSP and a
decrease in the probability of synaptic response (not shown in the figure).

A manipulation of the probability of transmitter release could explain the in-
creased EPSP in such experiments. If there is a population of synapses that drive
that neuron, than a population of synapses with higher likelihood of transmitter re-
lease would result in a larger EPSP than a population with smaller likelihood of
transmitter release. In this sense, the findings are still consistent with some of the
consequences of synaptic plasticity. But these findings also point to additional pos-
sibilities which are consistent with the view that brain processing might be based
on probabilistic calculus rather than dealing with point estimates. Thus, the com-
mon view of a noisy nervous system with noisy synapses might be misleading. If
this is noise in the sense of limitation of biological implementations, why could the
probability of synaptic responses be modulated reliably?

A brief introduction to probabilistic machine learning with neuroscientific relations 39

0.3
[0}
£0.2
S 3
i 8
72} -
3 0.1
5760 5780 5800 5820 5840 % 05 1
time CV signal

Fig. 20 Demonstration of the relation between variability in signal versus variability in spike tim-
ing response.

From a theoretical perspective it is rather difficult that noise survives thresholding
processes. For example, consider a biased random walk to a threshold with unbiased
Gaussian noise as illustrated on the left in Fig.20. The noise in the process leads to
different times of threshold crossings and the variation of the threshold crossing
time is related to the variations in the signal as shown on the right in Fig.20 where
C, = 0/ is the coefficient of variation. While there is a positive slope between them
(higher noise leads to higher variations in firing times), the proportionality factor is
only around 1/ \/47. Thus, if noise is an issue, then one could use thresholding
mechanisms to reduce it, and, with repeated stages as in the brain the noise, should
become smaller. In other words, if noise is the problem then filter it out early and
higher processes should be less noisy. Thus, it is likely that the variations in the
brain are not all noise but could have important information processing roles such as
representing the likelihood of sensory signals or the confidence in possible actions.
This is consistence with the probabilistic approaches to machine learning.

5.2 Classical Conditioning and the Basal Ganglia

One of the important roles of computational neuroscience is bridging the gap be-
tween behavioural and physiological findings [38]. The following discussion is a
good example. Classical conditioning has been studied intensely in the psychologi-
cal discipline of animal learning at least since the studies by Pavlov. One of the most
basic findings of Pavlov is that it is possible to learn that a stimulus is predicting re-
ward and that this prediction elicits the same behaviour as the primary reward signal
like salivation following a tone when the tone predicts food reward. Many similar
predictions have been summarized very successfully by the Rescorla-Wagner theory
[40]. In terms of learning theories as discussed above, this theory relates the change
in the value of a state AV; to the reward prediction error A —V;,

AV = o (A =V;), (80)

40 Thomas Trappenberg

where o; and 8 describe the saliencies of the conditioned stimulus and the uncondi-
tioned stimulus, receptively, and A corresponds to reward. This model correspond to
temporal difference learning in a one step prediction task where the reward follows
immediately the stimulus.

p L
hlw .
/4 ‘ Stimulus A No reward

Stimulus A Reward

Fig. 21 Recordings by Schultz et al. [39] in a classical conditioning experiment. I these experi-
ments a stimulus was presented followed by a reward. Early in the trials the SN neurons responded
after the animal received a reward (top left), while the neurons responded to the predictor of the
reward in later trials (bottom left). The neurons even seem to indicate a absence of an expected
reward after learning (right).

The Rescola-Wagner theory with its essential reliance on the reward prediction
error is very successful in explaining behaviour, and was very exciting when Wol-
fram Schultz [39] and colleagues discovered neural signatures of reward predic-
tion errors. Schultz found these signals in the Substantia Nigra, which is part of
a complex of different nuclei in the midbrain called the Basal Ganglia. The name
‘Substantia Nigra’ means ‘black substance’, and the blackness of this area is appar-
ently due to chemical compound related to dopamine since these neurons transmit
dopamine to the input area of the Basal Ganglia and to the cortex, and Dopamine
has been implicated with modulating learning. Some examples of the response of
these neurons are shown in Fig.21.

We can integrate the Rescorla-Wagner theory with these physiological findings
in a neural network model as shown in Fig.22. The reward prediction error, 7 is
conveyed by the nigra neurons to the striatum to mediate the plasticity of cortical-
striatal synapses. The synapses are thereby assumed to contain an eligibility trace
since the learning rule requires the association with the previous state. Many psy-
chological experiments can be modelled by a one-step prediction task where the
actual reward follows a specific condition. The learning rule then simplifies to a
temporal learning rule where the term with ¥ can be neglected, which corresponds
to the model in Fig.22A. The implementation of the full TD rule would then require

A brief introduction to probabilistic machine learning with neuroscientific relations 41

a fast side loop as shown in Fig.22B, which has been speculated to be associated
with the subthalamus [42].

A.Temporal delta rule B. Temporal difference rule C. SLIM model

X0 Xo(0 X3 X, (0 X0 Xo(X3 X, (0

Tr(t) Tr(t)

Fig. 22 Implementation of reinforcement learning models with analogies to the Basal Ganglia. (A)
Single state of one-step reinforcement learning model (temporal delta rule) with cortical input, a
Striatal neuron (Str), and a neuron in the substantia nigra (SN) that conveys the reward prediction
error to striatal spines. (B) Implementation of the temporal difference (TD) learning with a fast
subthalamic side loop. (C) Basic version of the Striatal-with-lateral-inhibtion (SLIM) model.

Of course, the anatomy of the Basal ganglia is more elaborate. My student Patrick
Connor and I have suggested a model with lateral interactions in the striatum [43],
that has some physiological grounding [41] and can explain a variety of behavioral
that are not covered by the Rescorla Wagner model [44]. Also, there are two main
pathways through the Basal Ganglia, a direct pathway and an indirect one, with in-
termediate stages in distinct subregions of the Basal Ganglia (not shown in Fig.22).
The direct pathway has a facilitory effect on the output neurons of the Basal Ganglia,
and the indirect has an inhibitory effect. Since the effect of the output of the Basal
Ganglia is itself inhibiting motor areas, it has been speculated that the direct pathway
could learn to inhibit non-rewarding actions, whereas the indirect pathway could
learn to support learning of facilitating rewarding actions. Different alterations of
specific pathways has been suggested to relate to different neurological conditions
that are known to have relations to the Basal Ganglia such as Parkinson decease,
Tourette syndrome, ADHD, schizophrenia and others [45]. Thus, modelling and
understanding this learning system has the potential to guide refined intervention
strategies.

6 Outlook

Learning is an exciting field that has made considerable progress in the last few
years, specifically though statistical learning theory and its probabilistic embedding.

42 Thomas Trappenberg

These theories have at least clarified what could be expected with ideal learning
systems such as their ability to generalize. Much progress has also been made with
unsupervised and to start tackling temporal learning problems. Most excitingly, the
progress in this area enabled machine learning to find its way out of the research labs
and into commercial products that revolutionize technologies. Statistical learning
theory has clarified general learning principles such as the optimal generalizability
and optimal (Bayesian) decision making in the face of uncertainties.

What then are the outstanding questions? While machine learning has enabled
interesting applications, many of these applications are very focused in scope. The
complexity of the environments that faces humans seems still far beyond our reach.
Scaling up these methods even further is important to enable even more applications.
Many believe that for this we require truly hierarchical systems [46], and specifically
such systems that processes temporal data [47]. While there is exciting progress in
this field, learning to map simple features, such as pixels from an image, to high
level concepts, such as objects in a scene, is still challenging.

While Bayesian inference has been instrumental the maturation of machine learn-
ing, there are also many limitations of such methods. Specifically, truly Bayesian
methods have an seemingly unbounded requirement for knowledge as we typically
have to sum over all possible outcomes with their likelihood of such events. This
seems not only excessive in it’s required knowledge and processing demands, but
also faces practical limitations for many applications.

An alternative approach is bounded rationality that might underly a lot hove hu-
man decision making [48]. Critical for the success of such methods are fast and
frugal heuristics that depend on the environment. Thus, there is a major role for
learning in this domain on many different scales, including developmental and ge-
netic domains. Indeed, there is now an increased realization of environmental mech-
anisms that influence genetic decoding. This field of epigenetic is very promising in
discovering new mechanisms of environmental responsive systems.

References

1. G. Hinton (2002) Training products of experts by minimizing contrastive divergence. Neural
Computation, 14, 1711-1800.

2. A. Graps, An Introduction to Wavelets, http://www.amara.com/[EEEwave/[EEEwavelet.html.
3. N. Huang et al. (1998) The empirical mode decomposition and the Hilbert spectrum for non-
linear and non-stationary time series analysis. Proc. R. Soc. Lond. A (1998) 454, 903995.

4. P. Smolensky (1986) Information processing in dynamical systems: Foundations of harmony
theory. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing:
Volume 1: Foundations, pages 194-281. MIT Press, Cambridge, MA.

5. G. Hinton (2010). A Practical Guide to Training Restricted Boltzmann Machines. U. of
Toronto Technical Report UTML TR 2010-003.

6. H. Barlow (1961) Possible principles underlying the transformation of sensory messages.
Sensory Communication, pp. 217-234, 1961.

7. P. Fldik (1990), Forming sparse representations by local anti-Hebbian learning, Biological
Cybernetics, vol. 64, pp. 165-170.

8. P. Fldik and D. Endres (2008) Sparse coding. Scholarpedia, 3, 2984.

A brief introduction to probabilistic machine learning with neuroscientific relations 43

9.

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

217.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

B. Olshausen and D. Field (1996) Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images, Nature, 381: 607-609.

H. Lee, E. Chaitanya and A. Ng (2007) Sparse deep belief net model for visual area V2,
NIPS*2007

T. Kohonen (1994). Self-Organizing Maps, Springer.

P. Hollensen, P. Hartono and T. Trappenberg (2011) Topographic RBM as Robot Controller,
JNNS 2011.

S. Chatterjee and A. Hadi (1988) Sensitivity Analysis in Linear Regression. John Wiley &
Sons: New York.

Judea Pearl (2009) Causality: Models, Reasoning and Inference, Cambridge University Press.
D. Rumelhart, G. Hinton and R. Williams (1986) Learning representations by back-
propagating errors, Nature 323(6088): 533536.

K. Hornik (1991) Approximation Capabilities of Multilayer Feedforward Networks, Neural
Networks, 4(2): 251257.

A. Weigend, D. Rumelhart (1991) Generalization through Minimal Networks with Applica-
tion to Forecasting, In: Computing Science and Statistics (23rd Symposium INTERFACE’91,
Seattle, WA), edited by E. M. Keramidas, 362-370.

R. Caruana, S. Lawrence and C. Lee Giles (2000) Overfitting in Neural Nets: Backprop-
agation, Conjugate Gradient, and Early Stopping, in Proc. Neural Information Processing
Systems Conference, 402—408.

D.J.C. MacKay (1992), A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation, Vol. 4(3): 448-472.

D. Silver and K. Bennett (2008) Guest editor’s introduction: special issue on inductive transfer
learning. Machine Learning 73(3): 215-220.

S. Pan, Q. Yang (2010) A Survey on Transfer Learning, IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE), 22(10):1345-1359.

V. Vapnik (1995), The Nature of Statistical Learning Theory, Springer.

C. Burges (1998) A tutorial on support vector machines for pattern recognition, Data Mining
and Knowledge Discovery, 2(2), 121167.

C. Cortes and V. Vapnik (1995) Support-Vector Networks, Machine Learning 20: 273-297
A. Smola and B. Scholkopf (2004) A tutorial on support vector regression, Statistics and
Computing 14(3).

C.-C. Chang and C.-J. Lin (2001) LIBSVM: a library for support vector machines, Software
available at http://www.csie.ntu.edu.tw/?cjlin/libsvm

M. Boardman, T. Trappenberg (2006) A Heuristic for Free Parameter Optimiza-
tion with Support Vector Machines, WCCI 2006, 1337-1344. Source code at
http://www.cs.dal.ca/~boardman/wcci.

Ethem Alpaydim (2010) Introduction to Machine Learning, 2e, MIT Press.

S. Thrun, W. Burgard, and D. Fox (2005) Probabilistic Robotics. MIT Press.

S. Russel and P. Norvig (2010) Artificial Intelligence: A Modern Approach, Third Edition,
Prentice Hall.

Richard S. Sutton and Andrew G. Barto (1998) Reinforcement Learning: An Introduction,
MIT Press.

R. Sutton (1988) Learning to predict by the methods of temporal differences. Machine Learn-
ing 3: 9-44, erratum p. 377.

B. Sallans G. Hinton (2004), Reinforcement Learning with Factored States and Actions, Jour-
nal of Machine Learning Research 5: 1063—1088.

D.O. Hebb (1949) The Organization of Behaviour, John Wiley & Sons.

E.R.Caianiello (1961) Outline of a theory of thought-processes and thinking machines, J.
Theor. Biol. 1: 204-235

T. Trappenberg (2010) Fundamentals of Computational Neuroscience, 2nd edition, Oxford
University Press

T. Bliss and T. Lomo (1973) Long-lasting potentiation of synaptic transmission in the dentate
area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232(2):
331-56. .

44

38.

39.

40.

41.

42.

43.

44,
45.
46.

47.
48.

Thomas Trappenberg

D. Heinke and E. Mavritsaki (eds.) (2008) Computational Modelling in Behavioural Neuro-
science: Closing the gap between neurophysiology and behaviour, Psychology Press, London
W. Schultz (1998) Predictive Reward Signal of Dopamine Neurons, J. Neurophysiol. 80(1):1—
217.

R. Rescorla and A. Wagner (1972) A theory of pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. In P. W. Black AH (Ed.), Classical
conditioning ii: Current research and theory (pp. 6499). New York: Appleton Century Crofts.
J. Reynolds and J. Wickens (2002) Dopamine-dependent plasticity of corticostriatal synapses.
Neural Networks, 15(4-6), 507521.

J. Houk, J. Adams and A. Barto (1995) A model of how the Basal Ganglia generate and use
neural signals that predict reinforcement, in Models of information processing in the Basal
Ganglia, Hauk, Davis and Breiser (eds.), MIT Press.

P. Connor and T. Trappenberg (2011), Characterizing a Brain-Based Value-Function Approx-
imator, in Advances in Artificial Intelligence LNAI 2056, Eleni Stroulia and Stan Matwin
(eds), Springer 2011, 92-103.

P. Connor, V. LoLordo, and T. Trappenberg (2012) A Striatal Model of Pavlovian Condition-
ing, submitted.

T. Maia and M. Frank (2011) From reinforcement learning models to psychiatric and neuro-
logical disorders, Nature Neuroscience 14:154 - 162

Y. Bengio (2009) Learning Deep Architectures for AL. Found. Trends Mach. Learn. 2:1-127.
J. Hawkins (2004) On intelligence, Times Books.

G. Gigerenzer, P. Todd and the ABC Research Group (1999) SImple Heuristics that make us
smart, Oxford University Press.

