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あらまし 本研究の目的は学習システムの内部的な位相構造と学習能力の関係性を調べることである。この研究は成
体の哺乳類の脳に見られる位相構造マップの学習能力と汎用性における重要性を示した神経生理学的な実験に動機付
けられたものである。外部情報の組織化と学習の関連性を検証するために、自己組織化マップを中間層にもつ階層型
ニューラルネットワークを用いる計算機実験を通し、情報の組織化の学習と再学習における重要性を確認した。
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Abstract The objective of this study is to investigate the correlation between the internal topological organiza-

tion in neural network and the learning ability of the neural network. This study is motivated by the interesting

neurophysiological examination that shows the significance of topographic map of adult mammals’brains to their

learning ability and plasticity. In this study we propose a model of a layered neural network with Self-Organizing

Map in its hidden layer which is connected to Perceptron as a learning part. We run several simulations to show

the significant of the topological order in helping the learning process and relearning process.

Key words Self-Organizing map (SOM), Perceptron, Topological Representation, Cortical Plasticity, Unsuper-

vised Learning, Supervised Learning

1. Introduction

Self-Organizing map has been a principle model for ex-

plaining experience-driven development and leaning in the

brain ( [1], [2], [3], [4], [5], and [6]). This paper provides initial

experiments on the relation between the topological repre-

sentations the external stimuli and the learning ability of a

learning system.

This work is partly motivated by the existence of a biolog-

ical experiment in investigating the significance of the topo-

graphic map of adult mammals’brain for learning ( [7], [8],

and [9]).

For investigating the correlation between topological order

and the learning ability of a leaning system, we modified a

layered neural network model called Map Initialized Percep-

tron (MIP) ( [11] and [12]). This layered model includes a

topological map in its hidden layer to internally represent

and organize the external stimuli, and a feed forward layer

(Perceptron layer). We are aware that there are several mod-

els that inherently combined self-organization and learning

as in [13] and [14]. However, learning in these models is in-

herently included in the self-organization process, hence it

will be difficult to utilize this model for our study, which re-

quires the investigation on the relation between the fidelity
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図 1 Sound frequency maps in rat A1 that was developed in noisy

environments. (A) shows a map after the rat grew up. The

diagonally hatched areas were not tuned. (B) shows a map

after the rat was trained. The rat did tasks to distinguish

sound frequency to get food. ( [10])

of topological organization with the learning ability.

This paper is organized as follows. Section 2 explains

about the dynamics and learning process of MIP. In Section

3 we run experiments to investigate the significance of topo-

logical organization to the learning ability of the model. We

also argued about the importance of the topological fidelity

by gradually distant the representation of the topological

layer through the deletion of its hidden neurons. Here, plas-

ticly and the relearning ability of the model is also explained.

Final Section is for discussion and future works.

2. Map-Intialized Perceptron

For the purpose of investigating the correlation between

the fidelity of topological representation and the learning

ability of neural networks, we utilize a three-layered neu-

ral network model called Map initialized Perceptron [10], [11].

Similar to MLP [15], MIP consists of input, hidden and out-

put layers. The input layer receives external sensory inputs,

which are then topological mapped into the hidden layer.

The neurons in the hidden layer generate outputs which re-

flects the topological characteristics inherent in that layer

and forward the information to be processed by the output

layer.

The structure of MIP is illustrated in Fig. 2, where the

hidden layer is one dimensional topographic map.

The training process of MIP consists of two stages, un-

supervised training for the formation of topographical map

in the hidden layer and the supervised training for generat-

ing external outputs. There is no limitation on the training

problems, but for clarity and simplicity, in this report we

provide the model with a basic task of coding analog signals

observed in the input layer, into their digital representations

in the output layer.

2. 1 Dynamics of MIP

Here the task of MIP is to decode continuous value between

0 and 2π given as input into their digital representation in

the output layer. For this task we set the number of hidden

図 2 Overview of MIP

neurons to 150 and the output neurons to 100, respectively.

The hidden neurons are evenly intervals in one dimensional

grid to form a one dimensional topographic map. To avoid

distortions in topological representations of the edges of the

input signal, we use a cyclic (periodic) map in the hidden

layer, where the distance between the first hidden neuron

and the last one is assumed to be 1.

When MIP observes an input rin(t), it measures the dis-

tance between the input and the reference vector ci(t) en-

coded by the i-th hidden neuron, di(t) as follows.

The winner is chosen followed Eq. 2. R is the max value

of input range.

di(t) = min(| ci(t)− rin(t) |, R− | ci(t)− rin(t) |)) (1)

win = argmax
i

(exp(−di(t)
2)) (2)

The reference ci is then modified according to Eq. 3.

ci(t+ 1) = ci(t) + αsomΛ(dwin(t))difi(t) (3)

Where difi is the modification value defined in Eq. 4.

difi(t) =

{
−(I − (rin(t)− ci(t))) (rin(t) > ci(t) ∧ rin(t)− ci(t) > I

2 )

+(I + (rin(t)− ci(t))) (rin(t) < ci(t) ∧ ci(t)− rin(t) > I
2 )

(4)

After the formation of organization map, the second stage

of the learning process is executed. In this stage, the con-

nections between the hidden layer and the output layers are

trained in a supervised manner.

The value of the j -th output at time t, oj is calculated

according to Eq. 5. Here, R is the maximum value of the

input.

oj(t) =

N∑

i=1

(routi (t) · wij(t)) (5)
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routi (t) = exp(
−di(t)

2

2(η)2
) (6)

The object of the learning is to minimize the error, E,

defined as follows.

E(t) =
∑

j

(ooutj (t)− Tj(t))
2 (7)

Tj is the teacher signal for the j -th output neuron defined

in Eq. 8 and Eq. 9.

dtj(t) = min(| j · R
M

− rin(t) |, R− | j · R
M

− rin(t) |) (8)

Tj(t) = exp(
−dtj(t)

2

2(η)2
) (9)

The modification of the connection weights is executed ac-

cording to Eq. 10.

wij(t+1)=wij(t)+α · (Tj(t)−oj(t)) · routi (t) (10)

Here, η is he learning rate which is empirically set as 0.1.

3. Experiments

3. 1 Effect of topological order to the learning

ability

For analyzing the effect of the topological order to the

learning ability, we run three experiments. In the first one,

we executed the Perceptron learning in MIP without orga-

nizing a topological map in the hidden layer. In this case, the

external input are not topological represented in the hidden

layer. In the second experiment, the topographic map was to

some extent trained prior to the execution of the Perceptron

learning, while in the final case, the topographic map was

exhaustively trained prior to the Perceptron leaning.

Fig. 3 shows the learning curve of Perceptron training. We

can clearly observe that the Perceptron layer can be rapidly

trained when the fidelity of the topological organization is

high. We can learn that topological order in the hidden layer

significantly helps the training process.
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図 3 Topological Order and Learning Ability

3. 2 Reorganization and Retraining

In this experiment we analyzed the fidelity of MIP, when

the topological order in the hidden layered is disturbed. We

simulate the disturbance by randomly removing a certain

number of hidden neurons. This has a coarse biological anal-

ogy with a partially damaged brain. The objective is to

observe how the reorganization and relearning can help to

recover the function of the learning system.

In these experiments, we removed 5-95% of hidden neurons

in a consecutive manner, and executes two types of relearn-

ing. In the first case, the map in the hidden layer is reorga-

nized to capture alternative topological order using the rest

of the neurons, prior to the retraining of Perceptron. The

first case is denoted as“SOM and Perceptron”in Fig. 4. In

the second case, Perceptron is retrained without reorganizing

the topographic map in the hidden layer.

The experiments results are given in Fig. 4, where we can

observe that when the percentage of the damaged neurons

exceeds 15 %, the training quality of the Perceptron gradu-

ally deteriorates if the topographic map is not reorganized.

This result is understandable, in that, the topographic map

does not have sufficient ability to represent the underlaying

topological characteristics of the external inputs. We can

also observe that reorganization in the hidden layer helps

to support the retraining process until the number of the

damaged neurons reaches a level where the hidden layer lost

its ability to topologically represent the input. ”Error of the

Center of Mass” in Fig. 4 refers to the diffraction between the

output neurons and their teacher signals, talking the cyclic

characteristics into account.

These experiments shows that topological order is crucial

in supporting not only the supervised learning process but

also the relearning process.

図 4 Disturbance in Topological Representation

Fig. 5 shows the learning curve of Perceptron with re-

gards to various percentages of the damaged neurons. These

graphs show that the neural network can sustain its function-

ality although it lost 80% of the hidden neurons as long as
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the topographic map in the hidden layer is reorganized using

the rest of the neurons. It is also clear that rellearning of

Perceptron without reorganization fails when the percentage

of the damaged neurons exceeds 50%.

図 5 Topological Disturbance and Learning Ability

Fig. 6 shows the errors of the output neurons with respect

to the teacher signals, in the case of various percentages of

damaged neurons.

図 6 Topological Disturbance and External Output

Fig. 7 shows the reference value, ci of the respective hid-

den neurons. It is obvious that after the number of damaged

neurons reached a critical threshed, the neural network does

not have sufficient power to represent the input, and conse-

quently lost its ability to function properly.

図 7 Lost and Hidden Neurons and Topological Representation

4. Conclusion and Future Work

In this study, utilizing a modified MIP we run several sim-

ulations for arguing the importance of topological represen-

tation and the learning ability of a learning system. Our

experiments showed that the quality of the topological rep-

resentation helps the neural network in forwarding the super-

vised learning process. The results also show the plasticity

of the topological representation and the learning system,

where relearning of a partially damaged representation is

possible as long as the internal topological organization is

not excessively damaged.

Our immediate future works is to implement a physiolog-

ical topological map model in the middle layer of MIP. We

plan to utilize Dynamic Neural Field (DNF) [2], which, un-

like conventional SOM which only works with one input, can

work with multiple inputs. We are interested in investigating

the quality of the self-organization in the existence of top-

down attention and also noise, and its relation with leaning

ability.
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