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Abstract. Automatic target recognition (ATR) of objects in side scan
sonar imagery typically employs image processing techniques (e.g. seg-
mentation, Fourier transform) to extract features describing the objects.
The features are used to discriminate between sea floor clutter and tar-
gets (e.g. sea mines). These methods are typically developed for a specific
sonar, and are computationally intensive. The present work® used the Re-
stricted Boltzmann Machine (RBM) to discriminate between images of
targets and clutter, achieving a 90% probability of detection and a 15%
probability of false alarm, which is comparable to the performance of a
Support Vector Machine (SVM) and other state-of-the-art methods on
the data. The RBM method uses raw image pixels and thus avoids the
issue of manually selecting good representations (features) of the data.

1 Introduction

Naval mine detection is a resource intensive task. Recent research has focused
on development of automated tools for detection and classification of sea floor
objects. The detection and classification phases of the process have been imple-
mented using a set of image processing or statistical methods (Z-test, matched
filter), feature extraction, and a template-based classification [1,2,3]. These tech-
niques are effective, but sensitive to the environment under test, the extracted
features, and the tuning of algorithm parameters. Success with learning algo-
rithms like Artificial Neural Networks has been limited partly because training
sets must be statistically representative of the environment of the actual test
data. Using an RBM avoids the explicit feature extraction step, using the raw
image pixels. Although not explored here, RBMs can also be trained with unla-
beled data which poses promise for future improvement.

Side scan sonar imagery (e.g. Figure 1a) depicts sea floor objects by a strong
bright region (highlight) where it is insonified by sound waves, followed by a
dark region (shadow) cast behind it. The dataset used here consists of 49x113
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pixel images collected with a 455kHz Klein 5500 side scan sonar during the
CITADEL trial, conducted in October, 2005 [5]. Acoustic and electronic noise
in the system led to pixel-value scaling (Figure 1b). Also, as Figure lc shows,
RBMs can generate realistic imagery after training.

(a) Example cone (b) CITADEL cone (c) Generated cone

Fig. 1. Side scan images of mines showing (a) a typical image, (b) the data from the
CITADEL trial, and (c) an image generated from a trained RBM.

2 Employing the Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) [6,7] is a generative model that can
learn to represent the distribution of training data. The lower the energy of an
RBM, the more familiar it is with the associated input configuration. Hinton et
al. [4] showed that RBMs can be stacked, creating a deep belief network (DBN).
In this work a DBN of three RBMs was chosen. The first two layers of hidden
nodes (H; and Hs) have the same number of nodes and the top layer (H3) has
twice as many nodes.

ATR results are quantified in receiver operator characteristic (ROC) curves,
comparing the probability of detection (P(d)) with the probability of false alarms
(P(fa)). The goal is to maximize P(d) while minimizing P(fa), both of which need
to fall within a certain range for a system to be useful. The ROC curve is com-
puted by sliding a decision boundary through a feature space, which shows the
trade-off between increasing P(fa) with P(d). Here, the ROC curve is computed
in terms of the free energy in the top RBM module. First, images are propagated
up through the lower two RBM modules to provide input to the top RBM. Sec-
ond, the free energy of the top RBM is computed, which is its energy minus its
entropy or,
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where S(p) is the entropy of the system, expressed by
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where p, s, and w, represent the hidden unit probabilities, visible unit states,
and connection weights respectively. Also, b and ¢ are the biases for the hidden
and visible layers respectively.

3 RBM Classification Results

The sliding RBM decision boundary was varied between p + 20 and p + 100,
where pu is the mean and o is the standard deviation of the free energies of the
training data in the top RBM module. Results for evenly balanced training and
test data are plotted in Figure 3a. The best RBM had 500 nodes in H; and
Hjy and 1000 nodes in Hs and was trained on both target and clutter images,
achieving results of P(d) = 0.90 and P(fa) = 0.15 (Figure 3b shows its free energy
distribution). New results from using SVM and previous results from previous
ATR methods [5] are also included in Figure 3a. The SVM was trained on the
raw image pixels giving P(d) = 0.93 and P(fa) = 0.12, performing slightly better
than the RBM. The SVM maintained this result regardless of significant changes
to its parameters and use of several different kernel functions, including a Gaus-
sian (radial basis) kernel. The results show that the RBM can give comparable
results while providing additional future possibilities such as the use of unlabeled
training data.
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Fig. 2. (a) Classification results and (b) the free energy distribution of target (test
set), clutter (test set), and noise imagery.

4 Discussion

The RBM results are very encouraging. For an initial attempt at using RBMs
for ATR, the best results are in the same league as the SVM and state-of-
the-art traditional methods (which use features selected with problem-specific
knowledge).



In the most effective scenario, the RBM is trained on targets and negatively
on clutter (via weight and bias negation), which helps to separate the free ener-
gies more than training on targets alone. Looking at the free energy distributions
in this scenario (Figure 3b) reveals what we expect: the RBM has lowest energies
for targets, followed by clutter, followed by random input. In another effective
scenario, the RBM is trained with targets and clutter together. We hypothe-
size that the additional training data (clutter) helps the RBM focus less on the
background noise and focus more on modeling notable features of objects in the
image, which target images consistently possess and clutter images do not.

Both lowering and raising the number of nodes in the RBMs worsens the
results, presumably because either there are not enough nodes to model all of
the important features of targets, or because there are too many nodes such
that the noise gets modeled. Also, because the images are real-valued (instead of
binary), the learning rate of the input RBM stage was set lower (by an order of
magnitude) than for the other RBMs, to lead to convergence and good results.

After training, the RBM does not require considerable processing power or
memory to be employed. This allows for the system to be implemented on low
power computers, therefore making the system ideal to be embedded into a
minehunting platform or autonomous underwater vehicle.

Which is more effective for ATR, RBMs or SVMs? Both use raw pixels as
input and give similar results for this dataset. Both may achieve better results
with more investigation. This could include a) augmenting the training data to
give a more complete range of possible target orientations, b) varying the number
of RBM modules, and c¢) using the RBM with unlabeled data to name a few.
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