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Abstract:

A new model based on self-organization by lateral inhibition
(SOLI) is proposed for self-organizing networks. This model
combines many of the good features of previous models while
overcoming many of the drawbacks. Experiments on this new
model indicate that SOLI is well suited for unsupervised
learning tasks, such clustering, has the potential to preserve
topology, and can be used for novelty detection. It is
computationally efficient with O (n) time complexity and is not
sensitive to the initial network parameters,
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1 Introduction

Many computational models have been proposed to
simulate the topological ordering property of the cortical
area of the human brain " > *. These models have all
demonstrated that global topographic ordering can be
achieved by local cooperation and competition among
neurons in the network. Perhaps the most popular such
model is Kohonen's self-organizing feature map (SOM).
The SOM is particularly popular when applied to real life
applications. A more complete review of its technical
applications can be found in [4]. .

Kohonen's SOM was motivated originally by, Hebbian
learning. In Hebbian learning, the external stimuli are the
major sources of excitation of the neurons. Due to different
degrees of excitation, neurons cooperate and compete
through lateral connections. In standard SOM, !lateral
connections are approximated by a Gaussian shaped
topological neighborhood function, which causes the
excitation to decrease monotonically with the distance from
the most excited neuron. Lateral inhibition is not explicitly
implemented in the standard SOM.

SOM is one of the best unsupervised neural network
models. It is a powerful visualization tool that can project

complex relationships in a high dimensional input space .

onto a 2D grid* while “preserving” ‘thg. topological
relationship to the best degree. The self-organization
process of SOM is fully input driven in -an automatic
fashion. After training, the reurons (usually set on 1D or
2D grids) are topologically ordered, such that neurons that
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are close in neighborhood on the grids are close in the input
space.

But SOM does have its own drawbacks. The topology
preserving property is questionable when applied to high
dimensional data. It cannot guarantee that a neighborhood
relationship in the input space will be maintained on the
final map. This topology preserving property of SOM has
been rigorously investigated ™ ®'. To apply SOM properly,
many network parameters have to be predetermined, such
as, the size and shape of the network, the total number of
trainindg epochs and the initial learning rate. The initial
values for such parameters will affect the quality of the
final map, but optimal values may not be known in advance.
Topological defects (kinks) may occasionally form by some
random initialization of the network, which may not be
unwrapped during the limited training time . Another
criticism of SOM is the- long training time, which is
required to warrantee the final convergence and topological
ordering. Though there have been many techniques
invented to speed up the training !, fundamentally, the
slow cooling procedure has to stay for the final
convergence.

To overcome these problems, many models have been
proposed & % 1011213 14 "gome models do not require
that the predetermined mapping space be 1D or 2D. Some
models have a fixed number of nodes while others allow
the number of nodes to grow. Some " ¥ model the lateral
connections (including lateral inhibition) more faithfully to
the biological reality than does the original SOM. Though
not very heavily used within the machine learning and data
mining -communities, lateral inhibition mechanisms are
indispensable in understanding the complexity of our visual
cortex and simulating its functionality artificially "> 13,

This research explores the potential of explicitly applying
lateral inhibition to form a self-organizing network. We
demonstrate that our model, which is part of a more
comprehensive architecture, has the potential to overcome
many drawbacks of other related models. In this paper, we
concentrate only on the training of receptive fields of the
neurons in the network using a more biologically plausible
neighborhood function, Different from models presented in
0% M our model can be applied to arbitrarily high
dimensions. To test the efficacy of cur algorithm, we have
applied it to clustering problem using specially designed
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artificial data sets. Section 2 briefly reviews the
computational models previously used for self-organizing
networks, and identifies their common features. This
raturally leads to the understanding of our model described
in Section 3. In section 4, we describe the éxperiments.
Section 5 presents the experimental results and discusses
the implications. In Section 6, we conclude and discuss
fumre work.

2 Review of other models

There have been many self-organizing network models
proposed. Most of the models belong to the soft
competitive learning class of models (a.k.a. “winner take
most”) "¢, During learning, they allow the winning neuron
to cooperate with its local neighbor mneurons while
competing with non-neighbors. These models can be
categorized into networks with or without fixed
dimensionality ", Networks with fixed dimensionality
usually allocate neurons on a 1D or 2D grid. These gnds
can be different shapes, such as rectangular or triangular.
Examples of such networks are Kohonen's SOM map,
growing grids, and growing cell structures (GCS) ", The
training of these networks, whose neighborhoods have a
preset topology, involves only the receptive fields of the
neurons. Thus, they all share the common problem of
topology preservation with high dimensionality data.

For networks without fixed dimensionality, the
neighborhood of each neuron is formed dynamically during
the training process. Topology preservation is a natural
property of this type of network . Examples of such
networks are neural gas (NG) and topology re;nresenting
network (TRN) and growing neural gas (GNG) % '3 The
training of such networks includes training both the
receptive fields of the neurons and the strength of the lateral
connections between neurons. The lateral connections are
used to dynamically determine the neighborhood for each
neuron,

Comparing all these models, we notice that the
fundamental difference among these models is how the
neighborhood function is defined. In the following, we
summarize the models while ignoring some finer. details,
which can be found elsewhere '*°.

1. Initialize the set Nodes containing N neurons u;,
Nodes={ uy, u,, ..., uy,}. Each u; is represented by a
receptive field weight vector wieR", wyy; has the
same dimension as the input space. wy; is initialized
with some small random value,’

2.  Present an input pattern x at random according to
its probability distribution p(x) to the network.

3.  Find the best matching unit (BMU) uy, such that it
satisfy b(X)=argmin y. noges dist(x, wy).

4, Determine the proper form of neighborhood
function, hygw(x, t),
¢ Casel, For conventional SOM and growing

grids M hyu(x, O=exp(-disty (u;-u,)/267),
disty;(.) is the Manhattan distance function. The

span of .the neighborhood, ©, is siowly shrinking
with time, :

e. Case 2. For NG and TRN ®° an ascending
rank of Buclidean distance from input x to all
units u; is -determined. Each unit is -associated
with a unique rank k;(x, t) for input x at time t.
hyim(x, =exp(-(ki-kp)/G), ky is the ranking of
BMU which is 1 in this case. ¢ is slowly
shrinking with time.

s Case 3. For GCS and GNG models ! '3, the
neighberhoed is determined by the existence of
lateral connections between units. hyp(x, t) is 1
if u; is the second nearest unit to x, otherwise 0.

5. Weight update-of wy; by Awy=Ir* hygm(x, t)*(x-
wy). The leaming rate; Ir, usually decreases
monotonically * with - time. For case®3 of above,
authors differentiaté ‘v for BMU and its direct

“neighbors, i.e., allowing BMU to have larger Ir than
those of its direct neighbors, -

6. The data set is presented repeatedly to the network
until maximum epoch is reached.

For all these models, they all require a slow decreasing of
Ir or ¢ or both, Their time complexities can be estimated as |
Ofepochs)*O(n), n is the size of the data. Often
0(e}2)ochs)=0(n), therefore the overall time complexity is
O, ‘

Ideally, the neighborhood function, H, should be defined
dynamically through lateral connections, and its shape
should be a Mexican hat ', In case 3, H is constructed
dynamically but in discrete form (O or 1}, which is not ideal.

3 The SOLI model

Our model adopts the strategy of non-fixed dimension
similar to TRN and GNG for topology preserving purposes.
We define our neighborhood function to be a Mexican hat
function. A Mexican hat function can be implemented in
many ways 07 In the computer vision community, the
Mexican hat function is implemented by difference-of-
Gaussians (DoGs) and has been used intensively for feature
extraction, forming topographic maps * ',

In our implementation, we define the neighborhood
function to"be, hy(x, )=exp(-dist(x, v)"/26%)-exp(-dist(x,
w200 A A is a scalar factor, together with o
controlling the range between excitation and inhibition: &
€R, and A >1. With A approaching 1, the inhibition is
concentrated tightly around. the excitation area. When A
takes a larger vazlue, the inhibition is spread out more
globally, For extremely large values of A, the global
inhibition is approximately uniform outside the excitation
area. Figure 1 shows the general effects of A.

The first two steps for training of the SOLI model are
the same as in other models, as describe above. Training of
our model takes the following steps:

1. Initialize the set Nodes.containing N neurons u;

Nodes={ u;, u, ..., un, }. Each u; is represented by a
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receptive field weight vector wyeR", wy; has the
same dimension as the input space. Wui is initialized
- with some small random value.
2. Present an input pattern x at-random according to its
probability distribution'p(x) to the network. :
3. For each unit, calculate its distance to x in Buclidean
norm. T
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4. Calculate the neighborhood function, hy(x, u;) as
above,

5. Weight update of wy; by A wy=Ir* hu(x, w)*(x-wyy),
O«lr<l.

Continue training the network until converge, i.e, relative
weight changes compare to-those in previous epoch is
reduced to very small. No predetermined maximum epochs
is required.
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Fig.1, The Mexican hat funcuon o is taken as 2 for both graphs while for the graph onthe left 4 is 1.2 and for the graph on
the right A is 40.:

4 Experimental setup

In this paper, we concentrate only on a.clustering
problem using artificial data. Any robust clustering
algorithm should be able to handle data sets with different-
shapes and different density distributions. Therefore, for

these experiments, we designed artificial data sets with
different shapes. We also designed data clusters with
different density distributions and density levels. For these
experiments, we constrained ourselves to at most 3D data.
Table | tabulates the feature of the data set and the
network parameters used for training.

Table 1. Data description and network traininig parameters

Setl : Set2 Set3 Setd Sets Set6 Set7
idatal 3500 © 4200 3534 3534 4000 6000 4000
Nodest 300 300 © 225 225 400 400 250
ir 0.5 05 - 05 0.5 0.5 0.5 0.5
G 025 015 005 005 015 015 05
A 2 272 2 2 2 2

5 Results and discussion

We presented each data set to the network for training.
After network convergence, we expect a well-
differentiated activation behavior among neurons. We
expect the most activated neurons to be located in the data
dense areas and those neurons having the lowest
activations to be in data sparse areas. In the following
figures, the original data is plotted as grey area. The
neutons are plotted as +' (plus), 'o' (circle),.! ' (square),
and "' (star) in the order of ascending aqiivation level.

5.1 Analysis of Results

All of the resulting maps-are in Figures 2 through 8 in
the Appendix to this paper. Data sets 1 and 2 (Figures 2
and 3) are designed to test the applicability of the
algorithm to data with arbitrarily complex shapes. It is
obvious that the most activated neurons are located in the

data dense areas. Their physical locations naturally follow
the data distribution, thus the arbitrary orientations and
shapes.

Data sets 3 .and 4 are designed to demonstrate the
sensitivity of the SOLI algorithm to different density
distributions. For set 3 (Figure 4), the neurons are more or
less uniformly distributed in the data area, following the
uniform distribution of the original data set. Set 4 data
follows a Gaussian distribution and shows that the neuron
activations declined with the distance further away from
the Gaussian- center (Figure 3). Neurons with
distinguishably high actlvatlons are located in the
Gaussian center.

Data sets 5 and 6 were designed to test the sensitivity of
SOLI to different density levels. Set 5 is composed of two
identical Gaussians with the same density. Figure 6 shows
that the most activated neurons- converge to the two
Gaussian centers with the same activation level. Set 6 is
composed of 2 Gaussians with a density ratio 1:5. Figure 7
shows 3 distinguished levels of neuronal activation. The
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two highest activated levels of neurons are located at the
centers of the two Gaussians, with activation ratio
approximating 1:5. Clearly, the new algorithm is able to
identify different density levels.

We tested our algorithm on a higher dimensional data

set, set 7, a 3D ring band. Figure 8 illustrates that our

algorithin can be easily extended to higher dimensional
data set with its full capability. -

From Table 2, we see that convergence of our algorithm
is linear in the number of epochs. Thus, the time
complexity of our algorithm can be estimated as O(n),
where n is the size of the data. This is an improvement
over other models.

Table 2, Network training results

| Setl Set2 Setd Sets Set6 Set7
[Epochs| - 50 5 50 15 25 5
CpuTime(s) 2999 322 307.8- 163.3 3395 47.0
Effective Nodes 109 160 162 354 260 178

We notice that our network often starts with a large
number of nodes but, after training, only some of the nodes
have been used to represent the data distribution. Among
these remaining nodes, many converge onte even fewer
nodes (i.e., onto a few physical locations in the input
space). This is generally true for all our data sets, as can be
seen by comparing the number of nodes in Table 1 and the
number of effective nodes of Table 2 for each data set
respectively. This implies that, by afléwing neurons to
merge during training, the size of the network can be
reduced dynamically, resulting in less computation. This
also indicates that the initial size of the network is not a
crucial factor for the quality of the final network, as long
as the initial network has enough nodes.

Similar to TRN and GNG, our network has no fixed
dimensionality. Though at this moment, we have not yet
included the training of the strength of lateral connections,

cour network naturally shares the topology preserving

property of these networks.

We observe that, after training, there is an activation
dead zone (a “white” rim on the figures around the data
dense area), which clearly separates activated neurons
from those non-activated ones. This “dead zone” (an
activation gap) draws a natural boundary between data
dense areas and data sparse areas. This property of the new
algorithm can be applied for novelty detection purposes.

6 Conclusions and future work

By combining promising properties of different models
of self-organizing networks, our SOLI mode} is able to
overcome many drawbacks of other models. As illustrated
on the clustering problem, SOLI is well suited for
unsupervised learning applications. Our model is
computationally efficient With time complexity of O(n), a
great improvement over previous models with time
complexities of O(n®). SOLI belongs to the class of
networks without fixed dimension, and thus has the
potential to preserve topology. Our model can be extended
easily to a more dynamic version with network size
evolving during the training process. Our model can also
be used for novelty detection.

Unlike similar models, the performance of our model is
not heavily affected by the initial network parameter

settings, with the exception o. For our model, the only
parameter that is influential is ¢ and has to be chosen with
care. In the future, we will try to automatically configure
its value in a self-correcting manner. We will conduct
more experiments on some benchmark data, and compare
its performance with those of other models. We will add
training of lateral connections to the current model. The
carrelation and de-correlation of neuron activity will be
explored in searching for more abstract forms of
knowledge representation. Eventually, the whole model
will be applied to text mining tasks.

While these are only initial results, we are very
encouraged by the performance of the SOLI model.
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Lateral Inhibition and Synaptic  Resource
Appendix
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Fig.2. Set 1 — arbitrary shapes. .

Fig.4._Set 3 - 2D circle area with uniform distribution,
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Fig.3. Set2- 3rings with different radii.

s
PO et

-
s
Tty
T+ -
T,

—1s| -+ +e

T

Fig.5. Set 4 - circle with Gaussian distribution.
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. -5 —10 ~16 =10
Fig.8. Set 7. Left - side view of 3D ring data, Right - Neuron plot with same view angle. Neurons are located along the
: " ring, o :

1940



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


