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Abstract- An improved version of the Self-Organization by
Lateral Inhibition Model (SOLI) has been applied to two
synthetic data sets as well as the Breast Cancer and Liver data
sets, two well-known benchmark data sets. The methodology
developed combines the use of various validity indices with the
SOLI meodel to discover the proper cluster structure within the
data sets. In addition, the results explain why the Breast
Cancer data set tends to be clustered so accurately while the
Liver data set tends to be so difficult to cluster accurately.

I. INTRODUCTION

Clustering is a fundamental problem for most
computational intelligence tasks. Clustering may be used to
discover the statistical regularity of an underlying data set
for data mining applications, or it may be used together with
supervised leaming for feature detection, fuzzification and
removing noise [1, 2].

Clustering, however, is very complex and there are a
number of inter-related problems in discovering the clusters
in a data set. The challenge is to find a solution that
addresses all of these problems. In this paper, we present an
improved version of the Self-Organization by Lateral
Inhibition (SOLI) model, a new neural network model for
clustering, as well as a methodology that appears to address
a number of the inter-related problems.

The first problem of clustering is determining the proper
number of clusters to be discovered in a dataset. There i1s no
straight-forward solution.

The second problem is related to the clustering validity
index, which measures the quality of the discovered clusters.
There have been many validity indices proposed [3-11].
Unfortunately, none of them is perfect under all conditions
and these indices do not always agree with each other, thus
making their findings more inconclusive. A good validity
index should not be tied to any specific implementation of
clustering, rather it should be applicable universally.

The third problem is the robustness of the clustering
algorithm used. Given similar training parameters, there is
no guarantec that an algorithm will always converge to
similar results (same number of clusters with similar
locations).  For example, it is well known that the
performance of fuzzy c-means clustering depends not only
on the proper number of clusters, but also on the random
initialization of the clustering seeds [9].
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The fourth problem is the interplay between the number
of clusters discovered and the validity indices. These
measures rely on each other. Unfortunately, there is a
certain amount of uncertainty associated with both
measures, making the evaluation of the clustering quality
and determination of the proper number of clusters difficult;
where the latier relies on good validity indices.

A related aspect of clustering is the discovery of the
inherent hierarchical structure of a given data set. There are
two major types of hierarchical clustering algorithms;
agglomerative and divisive [12]. Agglomerative clustering
starts by merging single objects and then repeatedly merging
these lower level clusters into larger and higher level
clusters. The merging criteria are rather subjective and
heuristic and tend to be sensitive to outliers {13]. Divisive
clustering algorithms partition the data set into smaller
clusters. Divisive algorithms are usually efficient but the
clustering result does not always correspond to natural
clusters existing in the data [12]. The problem common to
both classes of algorithms is that the merging or partitioning
procedures are not guided by clustering quality measures
such as cluster validity indices.

There have been many neural network models proposed
for unsupervised learning tasks or clustering tasks. Among
them, Kohonen's Self-Organizing Maps (SOM) is one of the
most popular [14]. Inspired by SOM, a whole family of
SOM-like neural network models have been propoesed in
recent years, with the intension of improving on certain
aspects of the original SOM, as summarized in [15].

Recently, a new unsupervised neural network model for
clustering, the SOLI model [16], was proposed and the
potential of this model and its suitability for clustering tasks
demonstrated. In this paper, we report recent improvements
in the SOLI model and demonstrate the robusiness of the
enhanced SOLI model for clustering. We also present a
methodology that combines the SOLI model and the use of
various validity indices to discover the proper ciuster
structure within a data set.

In Secction H, the family of SOM-like models is
summarized while in Section [II the enhanced SOLI model
is described. The validity indices used in this research are
described in Section IV. Sections V and VI describe the
experiments and present the results, while Section VII
presents our conclusions and points to future research.



II. SUMMARY OF SOM-LIKE MODELS

Kohonen's SOM [i4] is a neural network model,
originally motivated by Hebbian learning, in which external
stimuli are the sources of neuron excitation, Due to different
degrees of excitation, neurons cooperate and compete
through lateral connections {excitation and inhibition). In the
standard SOM model, lateral connections are purely
excitatory, approximated by a Gaussian kernel, which acts
as a topology neighborhood function. This represents a very
popular model on account of its’ mathematical simplicity
and visualization ability and has been applied in wide range
of application areas.

Many SOM-like models have been proposed in recent
years [15]. These models were intended to improve on the
fixed map size, fixed dimensionality of the map and the
topology preservation property of Kohenen’s SOM. Some
models have fixed dimensionality, while other models are
incremental in nature. One of the fundamental differences
among these models is how the neighborhood function is
defined {details can be found in [15, 16]).

All of these models require a slow decrease of the
learning rate or of the size of the neighborhood or both to
guarantee convergence. Most of these models are of O(r?)
time complexity. Many of these models require a number of
training parameters (up to 7} to be specified by the user. To
choose an optimal set of parameter seitings for any given
data set can potentially be very difficult [16].

IlI. THE SOLIMODEL

Lateral inhibition, though not heavily used in the neural
network models for machine learning tasks, play an
important role in computer vision and brain-style computing
research [17-19]. Recent biological discoveries and artificial
simulations shed new light on the relative role of lateral
inhibition in the self-organization of biological neural
networks [20, 21]. Contrary to previous belief, there exist a
large number of short-ranged inhibitory lateral connections
and long-range excitatory lateral connections among
neurons. The local nature of inhibition contributes to the
specialization of responses in the inferotemporal cortical
neurons for complex stimulus [20]. In [21], the utilization of
inhibitory connections and excitatory connections together
provided for the modeling of advanced functionalities, such
as perceptual grouping. It has been noticed that balancing
between excitatory and inhibitory activation ensures a stable
development of the network [21].

In the SOLI model [16], we explicitly incorporated
inhibitory mechanisms. We have demonstrated that SOLI is
suitable for the clustering problem under many conditions;
data with arbitrary shape, arbitrary density distributions and
density levels, and arbitrary dimensionality.
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Comparing the SOLI model to SOM-like models, the
SOLI model features reduced model complexity in terms of
the training parameters and reduced time complexity, as
demonstrated empirically in [16].

In the current SOLI model, the lateral connections
among neurons are not implemented; thus, no neighborhood
function is implemented. Therefore, SOLI is functionally
related to vector quantization methods rather than to SOM-
like networks. It is in the form of the Mexican hat function,
implemented as DoGs (difference of Gaussians), and
formulated as:
hulx, u)=exp(-dist(x, u)*/206%)-exp(-dist(x, uy’/2(Ac)"))/ A
where Ae [1, o], ¢ is the given parameter relating to the
scale of the cluster and controls the sharpness of the
activation function in the shape of Mexican hat. and dis#{"}
denotes the Euclidian distance between pattern x and neuron
u;. Since hAy; is further coupled with anti-Hebbian learning,
the first part of this function dictates the local inhibition and
the second part global excitation, & controls the relative
strength between excitation and inhibition. A larger A value
will cause flattened low degree global excitation. Too small
a value will negate the influence of global excitation, A
typical Mexican hat function is depicted in Fig 1. From our
experience, A=2 is used as the default value. It can be easily
proven that the integration of this function over the range
[0,2¢] on distance, dis«(-), is 0. This property serves as an
internal balancing mechanism between excitation and
inhibition.

The previous version of the SOLI model used a fixed
neiwork size and random uniform initialization of the
network within the possible data range [16]. This
initialization strategy does not scale well with data of high
dimenston or very sparse distributions. Such initialization
for a high dimensional problem would require very high
computational resources to fully cover the sparse high
dimensional space. The enhanced SOLI model used in this
research addresses these limitations.

The training algorithm for the enhanced model is as
follows:

1.  Initialize the network with a% of data points from
the data set, aef 1, 100] and set epoch=1;

2. Set learning rate, n= epoch?, B € [0, -];

3. Present an input pattern x at random;

4, Calculate node activation using the activation
function Ay{x, ;) as defined above;

5.  Update weight vector wy; of node u;
as Awy;=-1x hydx, u)x(x-wez)

6. epocht++;

7. Merge any nodes that are close enough, i.e.,
distance(u;, u;} < (e%xa), £€(0, 100];

8.  Return to step 2 until converge.
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Fig. 1. The Mcxican hat function. o=2 for both graphs whilc for the graph on the left A=1.2 and for the graph on the right A=40.

This enhanced model has the following features:

1. The random initialization of the network in step 1
alleviates, to certain extend, the scaling problem in
the case of data with high dimensionality or
sparseness. The parameter o does not affect the
final convergence of the network in terms of the
final convergence epoch.

2.  The learning rate {n) is decreased as the epoch
increases, and P controls the rate of the decrease.
This provides the convergence of the network.

3. Neurons may merge during training so that we do

not need to pre-specify the network size and we can
automatically represent the cluster centers with
neurons at the convergence stage. £ controls the
rale of merge.
In the current SOLI, we have four training parameters, o,
f. € and ¢, among which only ¢ plays a decisive role in the
final clustering result. o controls the initial network size and
influences the quality of random initialization. 3 and &
together affect the speed of training. These two values
should be compatible, i.e., the more negative {3 value should
be companied by bigger £ value. B = -0.5, and & = 50 are
recommended as default values and used in this research.
The recommended default values for these parameters are
usually sufficient for many applications.

[V. VALIDITY INDICES

In general, there are three types of validity indices (VIs).
The first type is based on statistical measures that test the
degree of match between data and the discovered structures
[10]. The second type is entropy based, in which case a
good clustering should maximize the clustering entropy [5,
8). The third type 1s based on heuristics, which include the
DB index [6], Dunn's index and its variants [3, 10], Xie-
Beni index [7], and the most recent VI in [11]. These
heuristic-based VIs are biased towards those clustering
algorithms that minimize intra-cluster scatter and at the same
time maximize inter-cluster scatters.

Upon examination of these indices, the general
conclusion is that there is no VI appropriate for all situations
[9-11). This may be caused by the complexity of clustering
problem, i.e., the size, shape, density, degree of overlap of
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clusters, and the geometric arrangements among clusters
[11]. The best strategy is to use many well-known indices
together to have more confidence in the general results,
obtained by a majority vote from different VIs [10].

In this research, four representative Vis were used,
including three heuristic-based and one entropy-based VI.
The heuristic-based VIs are the Xie-Beni index [7], VI, the
DB index in [6], V1, and the index proposed in [11], V.
The enropy-based VI was the Beni-Liu index [8], VI,;. No
statistical-based VIs were used as it has been found that the
determination of the best value of the statistical-based
indices tends to be subjective [10].

The proper number of clusters is found at the local
minimum points on VI, and VI, and at the local maximum
points on VI, and VI;. For this research, all the VI values
were normalized to [0, 1]. The VI, and VI, values were
further inverted to 1-VIl, and 1-Vlg respectively.
Therefore, on the VI curve plots for this research, we are
looking for the maxtmum values for all VIs,

V. [DATA SETS AND EXPERIMENTAL DESIGN

Two synthetic data sets, DATA] and DATAZ, and two
benchmark data sets, the Breast Cancer data set {BR) and the
Liver data set (LV) [22], were used to illustrate the efficacy
of the SOLI model. DATAL is designed to have significant
overlap among data clusters. It is composed of four
identical Gaussians, located at the three points of an
equilateral triangle with the fourth at its center. DATAZ 1s
designed to have two distinct levels of cluster structure. It is
composed of four Gaussians with two well-separated
subgroups, each of which is composed of two overlapping
Gaussians. It is designed to test the ability of SOLI to
discover the inherent structures at different levels (scale or
size of clusters). Both DATA and DATA2 have 2000 data
points with two attributes. Table [ shows the means and the
standard deviations of the original clusters for DATA1 and
DATAZ,

The BR data set has 699 data points with nine attributes
and is known to be an easy data set in terms of classification
accuracy [2]. The LV data set has 345 data points with six
attributes but i1s known as a notoriously difficult data set to
clustering accurately. The known best accuracy for the LV
data set is not more than 70%. This rescarch also



investigated the fundamental differences between these two

data sets.
TABEL I
DESCRIPTION OF DATA! AND DATA2

DATA1 DATA2
Mx Hy Ox Gy Hx Hy Ox Oy
-2.928 -0.037 1.035 1.013 -0.732 0.009 0502 0.490
3.072 0037 1035 1.013 0768 0.009 0502 0490
0.072 5159 1.035 1.013 0.018 6.009 0502 0480
0.072 1695 1.035 1.013 0018 7.509 0502 0490
For DATA] and DATA2, o was set to 10, which is

sufficient to prove our point. For BR and LV, a was set to
25 and 30 respectively. Since BR is an easy data set, we
intentionally chose « to be smaller than that of LV data. We
chose a=50 for LV to randomly initialize the network in the
hope of covering most of the complexity within the LV data.
For each data set, SOL1 was run with different o values,
{o1. ©a}, with the other parameters fixed. For each
clustering result at o;, we calculate the values of the four
different VIs.

Unsupervised clustering was performed for the BR and
LV data sets. The classification accuracy (CA) is calculated
as follows:

Within each cluster, the class ID of the majority of
the members is assigned to each member of this
cluster.

If there is a tie in the majority vote, the class ID is
assigned as ND (non-determined).

The newly assigned class 1Ds are compared to their
original class IDs and any mismatch is counted as
one error, including the mismatch with ND.

*

VI. RESULTS AND ANALYSIS

Experiment results for all four data sets are presented in
Table II. In Table I, '¢' denotes the number of clusters
discovered by our clustering method, and CA denotes the
classification accuracy for the BR and LV data sets.

Fig. 2 and Fig. 3 present the result of clustering DATA1
and DATAZ2. In each figure, graph (a) is a plot of the
clustering results (the cluster centers) and the original data
used (in light grey), and graph (b) shows the VIs for that
data set. The VI values plotted on part (b) of Fig 1, 2 are
transformed values as mentioned in the previous section, in
order to be plotted in a similar scale on the same plot.

For DATAL, the maximum plateaus are found on all VI
curves, indicating c=4 to be the proper number of clusters
for o € [0.18, 0.43]. An abnormal point is found at g=0.225,
c=6, where there is a sudden drop or “bulge” on the VI
curves, This abnormality may be caused by the random
initialization. Such dependency can be repressed or
eliminated by repeated trials with an initialization at a given
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o. The clusters discovered correspond correctly to the four
Gaussians in DATAL. It is important to notice that the high
degree of overlap among the clusters does not prevent SOLI
from discovering the Gaussian centers correctly. Another
relatively stable clustering structure is found at o € [0.5,
0.8] with c=1, in which case the found cluster center
approximates the geometric center of DATAIL. At 0=0.45,
SOLI found 3 clusters, an unstable structure as indicated by
the Vls.

For DATAZ2, the most stable cluster structure is found at
o e [0.23,0.75] with c=2. A less stable cluster structure is
found at o = [0.1, 0.15] with four clusters as indicated by
the VIs. The stableness of the discovered cluster structure is
indicated by VI values and the smaller relative range of o
and c. When ¢=2, the discovered cluster centers
approximate the middle point between the two Gaussians
within the same subgroup, while at c=4, cluster centers
approximate the four Gaussian centers.

All of the VIs reach a consensus, with VI being more
sengitive to minor change in clustering results. The use of
multiple VIs is also demonstrated to be an effective strategy
ag suggested in [10]. Experimental results on DATA1 and
DATA?2 demonstrate that SOLI is able to discover the
correct clustering structure given a wide range of training
parameters. SOLI] is also able to discover cluster structures
at different scales when used in combination with many VIs.

ransformed Via

I L 1 1 1 1 | L]
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s

Fig. 2. DATAI1 a. Data plot. Square denotes clusters centers at ¢=4, +
denotes clusters centers found at c=1. b. Validity Indices piot.



TABLEII

EXPERIMENT RESULTS
DATAl DATA2 BR Data LV Daia
c G c a c g CA [+ T CA
55 0100 70 0.050 37 040 0857 111 0.020 0670
23 0125 13 0075 28 011 0959 71 0.025 0.606
10 0150 4 Q100 12 042 0867 41  003¢ 0617
4 0175 4 " 0425 7 013 0966 26 0.035 0.600
4 0200 4 015 3 014 0964 24 0.040 0.591
6 0225 4 0175 2 0.15 0.963 12 0.045 0.542
4 0250 3 0200 2 0.16  0.900 10  0.050 0.591
4 0275 2 0225 1 0.17 0.655 9 0.055 0.586
4 0300 2 0280 1 0.18 0.655 7 0.060 0.583
4 0325 2 0.275 2 0.065 0.580
4 0350 2 0.300 2 0.070 0.580
4 0375 2 0325 4 0.075 0.583
4 0400 2 0350 2 0.080 0.580
4 0425 2 0.375 2 0.085 0.580
3 0450 2 0.400 2 0.090 0.580
1 0500 2 0425 2 0.095 0580
1 0550 2 0.450 1 0.100  0.580
1 0600 2 0475 1 Q.105  (0.580
a Dl
>
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Fig. 3. DATA2. a Dataplot. Square denotes clusters centers at =4, +
denotes clusters centers found at c=2. b. Validity Indices plot.
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In Fig. 4, we compiled the VI curves and CA curves for
the BR and L.V data. For BR data, in Fig 4a, a stable cluster
structure of two clusters is found at ¢ € [0.15, 0.16], and
validated by the VIs. The classification accuracy at c=2
reaches 96% accuracy in Fig 4c. A detailed check on the
clustering result at ¢=0.14, ¢=3, (a less stable clustering
result), indicates that BR is composed of two major clusters.
One large cluster is composed of 461 points, while the
second cluster consists of two smalier clusters composed of
84 and 154 points, respectively. Reducing the size of o
(increasing the number of clusters) has no noticeable effect
on CA. This leads us to believe that BR naturally has 2
major clusters, which are quite homogeneocus in terms of
their class IDs.
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Fig. 4. a. VI plot for BR. b. VI plot for LV ¢. Classification accuracy
plot of BR and LV.

For the LV data set, in Fig 4b, a stable cluster structure of
two clusters is found at o € [0.065, 0.095] and validated by
the VIs, with the exception of an abnormal point at 6=0.075,
¢=4, The two clusters correspond fo the two classes with
relatively low CA values. Notice that CA remains constant
across a wide range of ¢ and . Only when the number of
clusters is 111, i.e., the average cluster size is near three,
does the CA reach 67% in Fig. 4c, This indicates that LV
has two natural clusters but that within each natural cluster,
the class boundaries are very complex. Only when the sub-



level cluster size is reduced to around three members on
average, do the sub-level clusters become slightly more
homogeneous in terms of their class IDs. This very complex
class boundary may be the major factor for the L'V data set
being so notoriously difficult to classify.

Through all the experiments over all the data sets, it is
noticeable that most of the VI curves are consistent and
show very stable behaviors (a maximum plateau instead of a
maximum point over all the VI curves). This is rather a
reflection that the clustering result is stable and robust,
considering the fact that such clustering results are obtained
over a wide range of training parameters with random
initialization of the network, This observation further points
out the importance of a robust clustering algorithm over the
choice of a V1 for the clustering problem in general.

Using DATA1 and DATA?2, we have demonstrated that
SOL1 is able to discover the hierarchical clustering structure
that is inherent for the given data set. Such hierarchy
recognition is robust even when the underlying data clusters
have serious overlap. The discovery of such a hierarchy is
guided and verified by the Vs, rather than formed by
imposing some heuristic rules on the clustering algorithm:

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This research has shown that recent enhancements of the
SOLI model results in a robust clustering method such that
stable cluster structures can be discovered over a wide range
of training parameters, even when there is serious overlap
among the clusters. When combined with various validity
indices, SOLI is able to discover stable clustering structures
under different scales. This methodology can be used to
discover the natural hierarchy of a given data set with an
understanding of the scale of structure in each layer of the
hierarchy. Using SOLI, we have discovered the
homogeneous nature of the BR data set, and the highly
heterogeneous nature of the L.V data set. Such information is
essential for some neural network designs that require this
information to establish the number of neurons in the hidden
layer, the proper number of hidden layers [1], and the proper
number of experts in the Mixture of Experts model [2].

In SOLI, the network size is monotonically decreasing as
nodes are allowed to merge during training. For a more
dynamic environment, an incremental version of SOLI
should be implemented. The random initialization scheme
used in the current SOLI cannot guard against a bad
initialization, even with a relatively large value of a. The
potential for a bad initialization would be further reduced in
an incremental version of SOLI. Future research also
includes the application of SOLI to text mining in large text
data sets.
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