
Self-Similarity Based Texture Editing

Stephen Brooks

 Neil A. Dodgson
University of Cambridge

{Stephen.Brooks, Neil.Dodgson}@cl.cam.ac.uk

Abstract

Figure 1 Flowers expanded using self-similarity based texture warping.

We present a simple method of interactive texture editing that
utilizes self-similarity to replicate intended operations globally
over an image. Inspired by the recent successes of hierarchical
approaches to texture synthesis, this method also uses multi-scale
neighborhoods to assess the similarity of pixels within a texture.
However, neighborhood matching is not employed to generate
new instances of a texture. We instead locate similar
neighborhoods for the purpose of replicating editing operations on
the original texture itself, thereby creating a fundamentally new
texture. This general approach is applied to texture painting,
cloning and warping. These global operations are performed
interactively, most often directed with just a single mouse
movement.
Keywords: Texture editing, interactive, image cloning, texture
warping.

1. Introduction
The most broadly applied approach to modeling the complexity of
the natural world is to provide the scene designer with
sophisticated tools that permit a high degree of control over
geometric surfaces and their corresponding textures. This
approach has enjoyed considerable success, yet the sophistication
of the editing tools requires a comparable level of sophistication
from the user. Often, the user must be a highly skilled artist as
well as having considerable technical training and experience
with computers. These prerequisites are beyond many users.

Recently, attempts have been made to automate the process of
constructing graphical objects of sufficient realism. However, the
integration of automation with user preference remains an open
problem in the context of texture editing.

The primary contribution of this paper is a mechanism which
allows the user to perform replicated texture editing operations
with minimal input. A single editing operation at a given location
causes global changes, affecting all similar areas of the texture
(Figure 1). The style of interaction lies between automation and
complete user control.

For the sake of brevity, the following section reviews only the
principal related papers.

2. Previous Work
As multi-resolution approaches to texture synthesis provide the

inspiration for the present work it is appropriate to begin with the
pioneering work of Heeger and Bergen [1995]. In their system
they create a new instance of a texture through hierarchical
histogram matching. De Bonet [1997] later introduced a higher
quality variant of this general approach, though perhaps not as
compelling as the results of the simple neighborhood matching of
Wei and Levoy [2000].

But the distinction between texture synthesis and texture
editing has become blurred with the development of user-directed
texture transfer and synthesis methods [Ashikhmin 2001; Efros
and Freeman 2001; Hertzmann et al. 2001; Liang et al. 2001].
Directed synthesis thereby becomes a rearrangement form of
texture editing. And as we are introducing a modified texture
cloning tool there are other forms of texture mixing [Bar-Joseph
2001] and image compositing [Burt and Adelson 1983; Porter and
Duff 1984] that deserve mention.

Other semi-automated texture creation systems include Live
Paint [Perlin and Velho 1995], which uses the concept of a multi-
resolution painting system [Berman et al. 1994] to combine
procedural textures [Ebert et al. 1994]. Dischler et al. [1999]
describe a unique hybrid approach that combines texture analysis
and geometric modeling. Lewis� [1984] early paper presents an
interactive procedure for generating textures in the frequency
domain. Alternatively, the genetic algorithm methodology
presents candidate textures to users who implicitly provide fitness
functions based on subjective aesthetic judgments [Sims 1993].

Another fruitful source of user assistance in image editing has
come from advances in the computer vision community.
Examples of which are intelligent image selection [Mortensen and
Barrett 1995] and snapping [Gleicher 1995] tools. Elder and
Goldberg [1998] also offer a novel editing system that operates in
an invertible contour domain.

Although neighborhood-based texture synthesis methods are
algorithmically closest to the present work, conceptually, it is the
vector-object search and replace method of Kurlander and Bier
[1988] that bears closest resemblance to our own. But, their
system differs significantly as it operates strictly on vector images
that are composed of distinct geometrically defined objects unlike
our raster based editing tools.

 1

Figure 2 Similarity Painting: (leftmost) original texture, (center four) single point painting, and (rightmost) multiple paintings applied.

Strength = 100%, Distance = 800K, d = 9, Level 0.

Figure 3 Similarity Cloning: (left) original texture, (center) cloning texture, (right) single point cloning. Strength = 75%, Distance = 500K, d = 5, Levels 0,1.

3. Similarity-Based Editing
Our editing system uses neighborhood self-similarity within a
texture to edit the original texture itself. Changes made to a
particular pixel by the user are made to affect all pixels that
exhibit similar local neighborhoods at multiple scales.

Self-similarity based painting alters the color or brightness of
similar pixels to that which the user selects (Figure 2). To perform
a replicated painting operation, the user moves what we will refer
to as the selection point onto a pixel within the original image.
The local circular neighborhood of the chosen selection point is
then compared against that of every other pixel's neighborhood in
the image. The current painting color is then applied to the
selected pixel but also to a subset of all pixels in the image: those
that have local neighborhoods whose difference from the selected
pixel are within a certain threshold.

The definitions of neighborhood, threshold and neighborhood
similarity require clarification. For small textures, where
efficiency is not a serious constraint, the neighborhood is simply
defined as those pixels bounded by an immediate circle of pixel
diameter d. The distance metric is then the L2 norm, i.e. the sum
of square differences between each corresponding neighborhood
pixel. For example, in Figure 2 the diameter d = 9, yielding a
circular neighborhood of 69 pixels. This then requires summing
69 squared R, G and B differences, producing a number in the
range of 0 to 2562*3*69 ≈ 13.5M.

 2

The selection point receives full paint opacity, as do all pixels
with neighborhoods identical to it. The distance threshold is set by
the user and defines the maximum distance value beyond which
the opacity of the applied paint is zero. Between zero distance and
the distance threshold the opacity is scaled linearly. The user is
also provided with a global opacity multiplier, which reduces or
increases the opacity for all affected pixels.

The green texture in Figure 2 succinctly conveys the way in
which self-similarity based editing operates from the user�s
perspective. With the original texture leftmost, the four center
images show four consecutive positions that the user has selected
within the texture. The reader will note two significant visual
properties. The first is the soft gradient of each painted region.
The second is the directional control of the tool. By directional
control we refer to the ability of the user to successively select the
�top�, �right�, �bottom� then �left� areas of the texture elements.

These aspects would not be present if only the pixels themselves
were compared without the neighborhood metric. And although
this texture was chosen as a strong example of these behaviors for
the purpose of illustration, both of these properties are exploitable
to a greater or lesser extent in most textures.

The left graph in Figure 4 depicts the altering of the global
opacity multiplier (Strength) while maintaining a constant
threshold (Distance) of 1.5 million. Conversely, the right graph
holds the Strength at 75% with the Distance ranging from 0.5 to
2.0 million. This indicates that the final opacity levels are a
function of both the global opacity multiplier and the current
threshold. Together the two controls can be used to control the
number of pixels that are affected as well as applied opacity.

Moving from replicated painting to replicated cloning is
plainly a matter of positioning the cloning texture and using the
corresponding color values from the cloned texture instead of a
solid RGB value. Figure 3 shows an example of cloning a

Figure 4 Altering global strength (left) or distance threshold (right).

Figure 5 Multi-resolution neighborhood comparisons. Level n (left)
and level n+1 (right). User selected pixel shown in red.

Figure 6 Similarity Based Warping: Middle row contains original textures. Rows above and below show warped textures. The selection point is indicated
with a white circle. Those areas that are similar to the selected pixel are expanded. Strength = 85%, Distance = 1.2M(bricks); 800K(rest), d = 5, Levels 1,2.

structured sign onto a brick texture. But, since the brick image is
a much larger texture, interactivity is jeopardized if we use the
neighborhood metric as previously defined.

To avoid sluggish response times with large textures, we
amend the neighborhood to be multi-scaled. As in [Ashikhmin
2001; Hertzmann et al. 2001; Wei and Levoy 2000], we first
construct a Gaussian pyramid from the original texture where
level 0 of the pyramid is the original texture itself and level n+1
is a filtered, down-sampled version of level n. An illustration of
two successive levels of an image pyramid is shown in Figure 5.
The neighborhood of the selection point is now a concatenation of
two circular areas (two red neighborhoods in Figure 5) both of
diameter d. But we note that the circular area of level n+1
represents a larger portion of the original texture. For example,
in Figure 3 the diameter d = 5, yielding two neighborhoods of 21
pixels each. This requires summing 42 squared R, G and B
differences, a number in the range of 0 to 2562*3*42 ≈ 8.2M. By
incorporating higher-level neighborhoods into the similarity
metric we take into account a wider area at a lower cost, while the
lower level neighborhoods retain priority for nearer pixels.

As currently implemented the system performs painting and
cloning operations on 512×512 textures at 5 fps, using two
neighborhood levels each with a diameter d = 5, running on an
off-the-shelf 1.2 GHz Athlon PC. In our experience this frame
rate is sufficient for the few, simple actions that the user must
perform, though this is strictly a subjective claim requiring an
appropriate HCI study for confirmation.

3.1 Similarity-based warping
In addition to published research [Glasbey and Mardia 1998]
there are a number of commercially available image warping
tools, many of which focus on morphing one image into another
[Beier and Neely 1992] but others operate strictly as an image
editing tool [Keahey et al. 1997]. Similarity-based texture
warping belongs to the latter category and uses neighborhood
similarity as a measure of local area expansion (Figure 6). The
question becomes how to convert scalar similarity values derived
from neighborhood distances into 2D area expansions (Figure 7).

To accomplish this we borrow the interactive image-warping
scheme of Keahey et al. [1997]. In their notation, the grid of
similarity values defines a magnification function, M, from which
a 2D grid displacement function, T, must be derived. The
magnification function, M, is essentially the derivative of the
desired T, and a numerical algorithm is used to approximate the
integration of M, yielding an estimate, TC, at each iteration. The
corresponding approximate magnification function, MC, can be
directly computed from TC, allowing the resultant error, ME = M -
MC, to be calculated. TC is then further modified on a vertex-by-
vertex basis. Effectively, the neighboring vertices are moved
outwards in TC where ME > 0, and drawn inwards where ME < 0,
yielding a better approximation. From this, a 2D transformation
is produced that is both symmetric and centered around
magnification maxima. The algorithm benefits from various
optimizations detailed by Keahey and our implementation
converges in less than 0.1s.

 3

Figure 7 From scalar similarity values (left) to 2D texture warp (right).

Self-similarity scalar values are directly used to interactively
drive area magnification. If in painting mode the pixel would
have received 75% opacity, the local area instead increases by
75%. An example of its use can be seen in the fourth column of
Figure 6, where yellow chrysanthemums have been contracted
(top) and expanded (bottom).

But, depending on the texture and on the amount of expansion
the warped texture can suffer a loss of high frequency detail. We
overcome this by re-synthesizing detail into expanded areas, using
the newly warped texture as a constraining image for super-
resolution synthesis as described in Hertzmann et al. [2001]. A
final result of which can be seen in Figure 1. The reader may,
however, speculate that a yellow and green constraining image
could be manually painted in any image editor and used directly
for super-resolution synthesis. Although this is indeed the case,
our technique again provides a more concise form of interaction
for this task, as all flowers are altered interactively with a single
mouse movement.

For warping, 256×256 textures are hardware textured over a
warped 2D mesh (Figure 7, right). We find that the mesh itself
need only be 128×128 for quality results and with these
parameters a frame rate of 6 fps is achieved.

4. Conclusion and Future Work
We have presented an editing system that replicates painting,
cloning and warping operations over a texture. The significance
of this is that it allows the user to perform complex tasks in real-
time with minimal effort. There remain however significant
opportunities to extend the capabilities of this system.

Currently our approach works best for textures which are
uniformly lit. Non-uniform lighting leads to poorer results. For
texture cloning, it is also required that the two textures be roughly
coplanar for convincing results. We believe that these restrictions
might be addressed by integrating similarity based editing with a
photo editing system such as that of Oh et al. [2001] which
permits both distortion free cloning and texture illumination
correction.

Further replicated editing operations might be explored such
as similarity based filtering or texture-transfer. Moreover, a
variation of texture cloning is being considered that would
synthesize the cloning texture directly into areas of similarity.
This introduces the potential for further control of how the
cloning texture is generated into areas that have greater and lesser
degrees of similarity to the user-selected point.

Additional possibilities include the use of higher order
similarity statistics, such as Bayesian measures. The technique
might be extended to geometric and texture editing operations on
a 3D object based on the similarity of local surface curvature

instead of, or in concert with, texture similarity. Lastly, an
alternative to replicated operations over similar areas would be to
duplicate editing operations along texture contours. An instance
of which would be direct texture synthesis along a chosen
contour.

5. Acknowledgements
We thank Marc Cardle and all those in our lab who provided
valuable feedback. This work was supported by the Cambridge
Commonwealth Trust and an Overseas Research Scholarship.

6. References
ASHIKHMIN, M. 2001. Synthesizing Natural Textures. ACM Symposium on

Interactive 3D Graphics, 217�226.
BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M. 2001.

Texture Mixing and Texture Movie Synthesis Using Statistical
Learning. IEEE Transactions on Visualization and Computer
Graphics, 7, 2, 120-135.

BEIER, T., AND NEELY, S. 1992. Feature-Based Image Metamorphosis. In
Computer Graphics (Proceedings of ACM SIGGRAPH 92), 26(2),
ACM, 35-42.

BERMAN, D., BARTELL, J., AND SALESIN, D. 1994. Multiresolution
Painting and Compositing. ACM SIGGRAPH 94, 85-90.

BURT, P., AND ADELSON, E. 1983. A Multiresolution Spline with
Application to Image Mosaics. ACM Transactions on Graphics, 2, 4,
217-236.

DE BONET, J. S. 1997. Multiresolution Sampling Procedure for Analysis
and Synthesis of Texture Images. ACM SIGGRAPH 97, 361-368.

DISCHLER, J., AND GHAZANFARPOUR, D. 1999. Interactive Image-Based
Modeling of Macrostructured Textures. IEEE Computer Graphics and
Applications, 19, 1, 66-74.

EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K., AND WORLEY, S.
1994. Texturing and Modeling: A Procedural Approach. AP
Professional.

EFROS, A., AND FREEMAN, W. 2001. Image Quilting For Texture Synthesis
and Transfer. ACM SIGGRAPH 2001, 341�346.

ELDER, J., AND GOLDBERG, R. 1998. Image Editing In the Contour
Domain. IEEE Computer Vision and Pattern Recognition, 374-381.

GLASBEY, C., AND MARDIA, K. 1998. A Review of Image-Warping
Methods. Journal of Applied Statistics, 25, 2, 155-172.

GLEICHER, M. 1995. Image Snapping. ACM SIGGRAPH 95, 183-190.
HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-Based Texture Analysis/

Synthesis. ACM SIGGRAPH 95, 229-238.
HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D.

H. 2001. Image Analogies. ACM SIGGRAPH 2001, 327-340.
KEAHEY, A., AND ROBERTSON, E. 1997. Nonlinear Magnification Fields.

IEEE Symposium on Information Visualization, 51-58.
KURLANDER, D., AND BIER, E. 1988. Graphical Search and Replace. In

Computer Graphics (Proceedings of ACM SIGGRAPH 88), 22(4),
ACM, 113-120.

LEWIS, J. P. 1984. Texture Synthesis for Digital Painting. Computer
Graphics, 18, 3, 245-252.

LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H. 2001. Real-Time
Texture Synthesis by Patch-Based Sampling. ACM Transactions on
Graphics. 20, 3, 127�150.

MORTENSEN, E., AND BARRETT, W. 1995. Intelligent Scissors for Image
Composition. ACM SIGGRAPH 95, 191-198.

OH, B., CHEN, M., DORSEY, J., AND DURAND, F. 2001. Image-Based
Modeling and Photo Editing. ACM SIGGRAPH 2001, 433-442.

PERLIN, K., AND VELHO, L. 1995. Live Paint: Painting With Procedural
Multiscale Textures. ACM SIGGRAPH 95, 153-160.

PORTER, T., AND DUFF, T. 1984. Compositing Digital Images. Computer
Graphics, 18, 3, 253-259.

SIMS, K. 1993. Interactive Evolution of Equations for Procedural Models.
The Visual Computer, 9, 8, 466-476.

WEI, L., AND LEVOY, M. 2000. Fast Texture Synthesis Using Tree-
Structured Vector Quantization. ACM SIGGRAPH 2000, 479-488.

 4

	Similarity-Based Editing
	Similarity-based warping

	Conclusion and Future Work
	Acknowledgements
	References

