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Abstract 

 
Figure 1  Flowers expanded using self-similarity based texture warping. 

We present a simple method of interactive texture editing that 
utilizes self-similarity to replicate intended operations globally 
over an image. Inspired by the recent successes of hierarchical 
approaches to texture synthesis, this method also uses multi-scale 
neighborhoods to assess the similarity of pixels within a texture. 
However, neighborhood matching is not employed to generate 
new instances of a texture. We instead locate similar 
neighborhoods for the purpose of replicating editing operations on 
the original texture itself, thereby creating a fundamentally new 
texture. This general approach is applied to texture painting, 
cloning and warping. These global operations are performed 
interactively, most often directed with just a single mouse 
movement.  
Keywords: Texture editing, interactive, image cloning, texture 
warping. 

1. Introduction 
The most broadly applied approach to modeling the complexity of 
the natural world is to provide the scene designer with 
sophisticated tools that permit a high degree of control over 
geometric surfaces and their corresponding textures.  This 
approach has enjoyed considerable success, yet the sophistication 
of the editing tools requires a comparable level of sophistication 
from the user.  Often, the user must be a highly skilled artist as 
well as having considerable technical training and experience 
with computers.  These prerequisites are beyond many users.  

Recently, attempts have been made to automate the process of 
constructing graphical objects of sufficient realism.  However, the 
integration of automation with user preference remains an open 
problem in the context of texture editing. 

The primary contribution of this paper is a mechanism which 
allows the user to perform replicated texture editing operations 
with minimal input.  A single editing operation at a given location 
causes global changes, affecting all similar areas of the texture 
(Figure 1). The style of interaction lies between automation and 
complete user control.   

For the sake of brevity, the following section reviews only the 
principal related papers. 
 

2. Previous Work 
As multi-resolution approaches to texture synthesis provide the 

inspiration for the present work it is appropriate to begin with the 
pioneering work of Heeger and Bergen [1995].  In their system 
they create a new instance of a texture through hierarchical 
histogram matching. De Bonet [1997] later introduced a higher 
quality variant of this general approach, though perhaps not as 
compelling as the results of the simple neighborhood matching of 
Wei and Levoy [2000].   

But the distinction between texture synthesis and texture 
editing has become blurred with the development of user-directed 
texture transfer and synthesis methods [Ashikhmin 2001; Efros 
and Freeman 2001; Hertzmann et al. 2001; Liang et al. 2001]. 
Directed synthesis thereby becomes a rearrangement form of 
texture editing.  And as we are introducing a modified texture 
cloning tool there are other forms of texture mixing [Bar-Joseph 
2001] and image compositing [Burt and Adelson 1983; Porter and 
Duff 1984] that deserve mention.  

Other semi-automated texture creation systems include Live 
Paint [Perlin and Velho 1995], which uses the concept of a multi-
resolution painting system [Berman et al. 1994] to combine 
procedural textures [Ebert et al. 1994].  Dischler et al. [1999] 
describe a unique hybrid approach that combines texture analysis 
and geometric modeling.  Lewis� [1984] early paper presents an 
interactive procedure for generating textures in the frequency 
domain.  Alternatively, the genetic algorithm methodology 
presents candidate textures to users who implicitly provide fitness 
functions based on subjective aesthetic judgments [Sims 1993].  

Another fruitful source of user assistance in image editing has 
come from advances in the computer vision community. 
Examples of which are intelligent image selection [Mortensen and 
Barrett 1995] and snapping [Gleicher 1995] tools.  Elder and 
Goldberg [1998] also offer a novel editing system that operates in 
an invertible contour domain. 

 
 

Although neighborhood-based texture synthesis methods are 
algorithmically closest to the present work, conceptually, it is the 
vector-object search and replace method of Kurlander and Bier 
[1988] that bears closest resemblance to our own. But, their 
system differs significantly as it operates strictly on vector images 
that are composed of distinct geometrically defined objects unlike 
our raster based editing tools. 
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Figure 2 Similarity Painting:  (leftmost) original texture, (center four) single point painting, and (rightmost) multiple paintings applied.  

Strength = 100%, Distance = 800K, d = 9, Level 0. 

 
Figure 3 Similarity Cloning: (left) original texture, (center) cloning texture, (right) single point cloning. Strength = 75%, Distance = 500K, d = 5, Levels 0,1. 

3. Similarity-Based Editing 
Our editing system uses neighborhood self-similarity within a 
texture to edit the original texture itself.  Changes made to a 
particular pixel by the user are made to affect all pixels that 
exhibit similar local neighborhoods at multiple scales.   

Self-similarity based painting alters the color or brightness of 
similar pixels to that which the user selects (Figure 2). To perform 
a replicated painting operation, the user moves what we will refer 
to as the selection point onto a pixel within the original image.  
The local circular neighborhood of the chosen selection point is 
then compared against that of every other pixel's neighborhood in 
the image.  The current painting color is then applied to the 
selected pixel but also to a subset of all pixels in the image: those 
that have local neighborhoods whose difference from the selected 
pixel are within a certain threshold.  

The definitions of neighborhood, threshold and neighborhood 
similarity require clarification. For small textures, where 
efficiency is not a serious constraint, the neighborhood is simply 
defined as those pixels bounded by an immediate circle of pixel 
diameter d.  The distance metric is then the L2 norm, i.e. the sum 
of square differences between each corresponding neighborhood 
pixel. For example, in Figure 2 the diameter d = 9, yielding a 
circular neighborhood of 69 pixels. This then requires summing 
69 squared R, G and B differences, producing a number in the 
range of 0 to 2562*3*69 ≈ 13.5M.  
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The selection point receives full paint opacity, as do all pixels 
with neighborhoods identical to it. The distance threshold is set by 
the user and defines the maximum distance value beyond which 
the opacity of the applied paint is zero. Between zero distance and 
the distance threshold the opacity is scaled linearly.  The user is 
also provided with a global opacity multiplier, which reduces or 
increases the opacity for all affected pixels. 

The green texture in Figure 2 succinctly conveys the way in 
which self-similarity based editing operates from the user�s 
perspective.  With the original texture leftmost, the four center 
images show four consecutive positions that the user has selected 
within the texture.  The reader will note two significant visual 
properties. The first is the soft gradient of each painted region. 
The second is the directional control of the tool. By directional 
control we refer to the ability of the user to successively select the 
�top�, �right�, �bottom� then �left� areas of the texture elements. 

These aspects would not be present if only the pixels themselves 
were compared without the neighborhood metric.  And although 
this texture was chosen as a strong example of these behaviors for 
the purpose of illustration, both of these properties are exploitable 
to a greater or lesser extent in most textures. 

The left graph in Figure 4 depicts the altering of the global 
opacity multiplier (Strength) while maintaining a constant 
threshold (Distance) of 1.5 million. Conversely, the right graph 
holds the Strength at 75% with the Distance ranging from 0.5 to 
2.0 million.  This indicates that the final opacity levels are a 
function of both the global opacity multiplier and the current 
threshold. Together the two controls can be used to control the 
number of pixels that are affected as well as applied opacity.  

Moving from replicated painting to replicated cloning is 
plainly a matter of positioning the cloning texture and using the 
corresponding color values from the cloned texture instead of a 
solid RGB value.  Figure 3 shows an example of cloning a 

Figure 4  Altering global strength (left) or distance threshold (right). 

 
Figure 5  Multi-resolution neighborhood comparisons.  Level n (left) 
and level n+1 (right). User selected pixel shown in red. 



 
Figure 6  Similarity Based Warping: Middle row contains original textures.  Rows above and below show warped textures. The selection point is indicated 
with a white circle. Those areas that are similar to the selected pixel are expanded.  Strength = 85%, Distance = 1.2M(bricks); 800K(rest), d = 5, Levels 1,2. 

structured sign onto a brick texture.  But, since the brick image is 
a much larger texture, interactivity is jeopardized if we use the 
neighborhood metric as previously defined.   

To avoid sluggish response times with large textures, we 
amend the neighborhood to be multi-scaled.  As in [Ashikhmin 
2001; Hertzmann et al. 2001; Wei and Levoy 2000], we first 
construct a Gaussian pyramid from the original texture where 
level 0 of the pyramid is the original texture itself and level n+1 
is a filtered, down-sampled version of level n.  An illustration of 
two successive levels of an image pyramid is shown in Figure 5. 
The neighborhood of the selection point is now a concatenation of 
two circular areas (two red neighborhoods in Figure 5) both of 
diameter d. But we note that the circular area of level n+1 
represents a larger portion of the original texture.   For example, 
in Figure 3 the diameter d = 5, yielding two neighborhoods of 21 
pixels each. This requires summing 42 squared R, G and B 
differences, a number in the range of 0 to 2562*3*42 ≈ 8.2M.  By 
incorporating higher-level neighborhoods into the similarity 
metric we take into account a wider area at a lower cost, while the 
lower level neighborhoods retain priority for nearer pixels. 

As currently implemented the system performs painting and 
cloning operations on 512×512 textures at 5 fps, using two 
neighborhood levels each with a diameter d = 5, running on an 
off-the-shelf 1.2 GHz Athlon PC.  In our experience this frame 
rate is sufficient for the few, simple actions that the user must 
perform, though this is strictly a subjective claim requiring an 
appropriate HCI study for confirmation.  

3.1 Similarity-based warping 
In addition to published research [Glasbey and Mardia 1998] 
there are a number of commercially available image warping 
tools, many of which focus on morphing one image into another 
[Beier and Neely 1992] but others operate strictly as an image 
editing tool [Keahey et al. 1997]. Similarity-based texture 
warping belongs to the latter category and uses neighborhood 
similarity as a measure of local area expansion (Figure 6). The 
question becomes how to convert scalar similarity values derived 
from neighborhood distances into 2D area expansions (Figure 7).   

To accomplish this we borrow the interactive image-warping 
scheme of Keahey et al. [1997].  In their notation, the grid of 
similarity values defines a magnification function, M, from which 
a 2D grid displacement function, T, must be derived.  The 
magnification function, M, is essentially the derivative of the 
desired T, and a numerical algorithm is used to approximate the 
integration of M, yielding an estimate, TC, at each iteration. The 
corresponding approximate magnification function, MC, can be 
directly computed from TC, allowing the resultant error, ME = M - 
MC, to be calculated. TC is then further modified on a vertex-by-
vertex basis. Effectively, the neighboring vertices are moved 
outwards in TC where ME > 0, and drawn inwards where ME < 0, 
yielding a better approximation.  From this, a 2D transformation 
is produced that is both symmetric and centered around 
magnification maxima. The algorithm benefits from various 
optimizations detailed by Keahey and our implementation 
converges in less than 0.1s.  
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Figure 7  From scalar similarity values (left) to 2D texture warp (right).  

Self-similarity scalar values are directly used to interactively 
drive area magnification.  If in painting mode the pixel would 
have received 75% opacity, the local area instead increases by 
75%.  An example of its use can be seen in the fourth column of 
Figure 6, where yellow chrysanthemums have been contracted 
(top) and expanded (bottom).   

But, depending on the texture and on the amount of expansion 
the warped texture can suffer a loss of high frequency detail.  We 
overcome this by re-synthesizing detail into expanded areas, using 
the newly warped texture as a constraining image for super-
resolution synthesis as described in Hertzmann et al. [2001].  A 
final result of which can be seen in Figure 1.  The reader may, 
however, speculate that a yellow and green constraining image 
could be manually painted in any image editor and used directly 
for super-resolution synthesis.  Although this is indeed the case, 
our technique again provides a more concise form of interaction 
for this task, as all flowers are altered interactively with a single 
mouse movement.     

For warping, 256×256 textures are hardware textured over a 
warped 2D mesh (Figure 7, right).   We find that the mesh itself 
need only be 128×128 for quality results and with these 
parameters a frame rate of 6 fps is achieved. 

4. Conclusion and Future Work 
We have presented an editing system that replicates painting, 
cloning and warping operations over a texture. The significance 
of this is that it allows the user to perform complex tasks in real-
time with minimal effort. There remain however significant 
opportunities to extend the capabilities of this system.  

Currently our approach works best for textures which are 
uniformly lit.  Non-uniform lighting leads to poorer results.  For 
texture cloning, it is also required that the two textures be roughly 
coplanar for convincing results.  We believe that these restrictions 
might be addressed by integrating similarity based editing with a 
photo editing system such as that of Oh et al. [2001] which 
permits both distortion free cloning and texture illumination 
correction.   

Further replicated editing operations might be explored such 
as similarity based filtering or texture-transfer.  Moreover, a 
variation of texture cloning is being considered that would 
synthesize the cloning texture directly into areas of similarity.  
This introduces the potential for further control of how the 
cloning texture is generated into areas that have greater and lesser 
degrees of similarity to the user-selected point. 

Additional possibilities include the use of higher order 
similarity statistics, such as Bayesian measures. The technique 
might be extended to geometric and texture editing operations on 
a 3D object based on the similarity of local surface curvature 

instead of, or in concert with, texture similarity. Lastly, an 
alternative to replicated operations over similar areas would be to 
duplicate editing operations along texture contours. An instance 
of which would be direct texture synthesis along a chosen 
contour.  
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