

Integrating Procedural Textures with Replicated Image Editing

Stephen Brooks*
Faculty of Computer Science

Dalhousie University
Halifax, Canada

Neil A. Dodgson†
Computer Laboratory

University of Cambridge
Cambridge, England

Abstract

Image editing software is often characterized by a seemingly
endless array of toolbars, filters, transformations and layers. But
recently, a counter trend has emerged in the field of image editing
which aims to reduce the user’s workload through semi-
automation. This alternate style of interaction has been made
possible through advances in directed texture synthesis and
computer vision. And it is in this context that we have developed
our texture editing system that allows complex operations to be
performed on images with minimal user interaction. This is
achieved by utilizing the inherent self-similarity of image textures
to replicate intended manipulations globally. In this paper, we
expand the capabilities of replicated image editing by integrating
procedural texture generation.

CR Categories: I.3.8 [Computer Graphics]: Applications; I.4.9
[Image Processing and Computer Vision]: Applications; I.3.6
[Computer Graphics]: Methodology and Techniques – Interaction
Techniques.

Keywords: interactive image editing, texture synthesis, input
amplification.

1 Introduction

Image editing remains a complex user-directed task, often
requiring proficiency in design, colour spaces, computer
interaction and file management. Furthermore, the demands of
this skill set are often exacerbated by an equally complex
collection of image manipulation commands. In general, this
approach has met with considerable success; however, the
complexity of these editing tools requires that the user possess a
correspondingly high level of expertise.

Recent research in computer graphics has attempted to semi-
automate the process of constructing and editing digital images.
Far from offering a massive array of image manipulation controls,
these semi-automated systems offer interaction at a higher
semantic level, consequently minimizing the amount of user
interaction.

Our system is a realization of this approach wherein the user
is able to minimally specify alterations to a digital texture image,

whilst relying on the system to perform repetitive, time-
consuming tasks. Our system is a visual analogue to text string
search and replace in that a single editing operation at a given
location causes global changes: the same operation is performed
on all similar areas of the texture image. Consequently, the style
of interaction lies between automation and complete user
manipulation.

The paper’s structure begins with a synopsis of related work
and of our previous work on replicated image editing. This is
followed by a discussion of the procedural texture extension to the
editing system. We conclude with a commentary on limitations
and future directions.

2 Related Work

We begin our overview of related work with constraint-based
graphics [Sutherland 1963], where the user places constraints on
the output of a graphical system. Another system which
manipulates vector based images is the search and replace method
of Kurlander and Bier [1998]. Conceptually, this system is most
similar to our own. However, both systems differ significantly
from ours as they operate on vector images unlike our raster
image editing tools.

The interactive evolution of textures using genetic algorithms
also lies between manual and automatic design methodologies
[Sims 1993]. Based on a Darwinian metaphor, the computer’s
primary role is to present candidate graphics to the user from the
design space. Alternatively, the goal of example-based texture
synthesis is to generate another texture image that appears to be
from the same source as a given input texture [Ashikhmin 2001;
Heeger and Bergen 1995; Wei and Levoy 2000]. And recently, a
new class of image editing tool has emerged which employs this
form of texture synthesis to perform sophisticated image editing
operations including Texture-By-Numbers [Barrett and Cheney
2002; Harrison 2001; Hertzmann et al. 2001]. Other tools use
texture synthesis to remove entire objects from scenes [Igehy and
Pereira 1997]. Yet another fruitful source of user assistance in
image editing has come from advances in the computer vision
community. Examples of which are intelligent image selection
[Mortensen and Barrett 1995] and snapping [Gleicher 1995] tools.

Perhaps the most extreme form of automation that still permits
some degree of user input is the image stylization system of
DeCarlo and Santella [2002], which using eye-tracking to assign
priority to details for a non-photorealistic rendering of the same
image. Another type of application that requires minimal
interaction are design gallery interfaces. In this approach, the user
makes aesthetic judgments over design alternatives that are pre-
computed prior to interaction [Marks et al. 1997].

* sbrooks@cs.dal.ca
† nad@cl.cam.ac.uk

3 Replicated Image Editing

Our system replicates editing operations globally over a texture
image [Brooks and Dodgson 2002; Brooks et al. 2003]. Changes
made to a particular pixel by the user are made to affect all pixels
that exhibit similar local neighbourhoods to that selected pixel,
thereby relieving the user of the manual effort of repetition. This
allows the following concise texture editing operations:

1. Replicated Painting: altering the colour of similar
pixels.

2. Replicated Cloning: cloning of another image or texture
onto the texture being altered.

3. Replicated Warping: locally contracting or expanding
certain regions of the texture, based on similarity to the
current selected pixel.

Painting and cloning are similar operations which paint
colours onto the image being edited. In Figure 1 we have a simple
case of painting a solid red colour onto each pixel whose
neighbourhood is sufficiently similar to the pixel selected by the
user. The reader will note the directional control of the tool. By
this we refer to the ability to affect a particular side of all of the
texture elements at once. Figure 2 shows an example of the
replicated cloning of a moss texture (left) onto pixels in the bark
texture (right). Moss is cloned onto all pixels in the bark texture
that are similar to the user selected pixel. Moving from replicated
painting to replicated cloning requires positioning the cloning
texture and using the corresponding colour values from the cloned
texture instead of a solid colour value over the whole image.

Replicated warping is distinct from the other tools in that it
does not affect pixel colour; it instead modifies the shape of image
regions under the user’s guidance. Those pixels whose local
neighbourhoods are within a certain threshold of similarity to the
user selected point are expanded locally. Since the overall area
remains the same, some regions are compressed while others are
expanded. Figure 3 shows the application of replicated warping
to an image of leaves. The left image has been altered so that the
spaces between the leaves have been expanded, shrivelling the
leaves themselves. The right image shows the opposite effect with
the leaves expanded almost to the exclusion of the spaces in
between.

In order to determine which pixels in the image are
sufficiently similar to the pixel selected by the user, the local
circular neighbourhood of the chosen selection point is compared
against that of every other pixel's neighbourhood in the same
image. For replicated painting, the current painting colour is then
applied to the selected pixel but also to a subset of all pixels in the
image: those that have local neighbourhoods whose difference
from the selected pixel are within a certain threshold. The
selection point receives full paint opacity, as do all pixels with
neighbourhoods identical to it. The distance threshold is set by the
user and defines the maximum distance value beyond which the
opacity of the applied paint is zero. Between zero distance and the
distance threshold the opacity is scaled linearly, meaning that the
more similar a pixel is deemed to be to the selected pixel, the
greater is the applied opacity.

The original formulation [Brooks and Dodgson 2002] of the
distance measure between the two points, p1 and p2, using
Gaussian neighbourhoods is the L2 norm:

() () ()()∑∑∑
−=−==

++−++=
2/

2/

2
2211

2/

2/1
21 ,,,

k

ki
ll

k

kj

L

l
jyixGjyixGppd

where Gl is level l of the Gaussian pyramid, L is the number of
Gaussian levels used, k is the window size, p1 = (x1,y1) is the
centre of the neighbourhood around p1 and p2 = (x2,y2) is the
centre of the neighbourhood around p2.

This was subsequently augmented with local wavelet
responses, giving the user additional control over the sharpness of
the painting tools. With the wavelet responses added, the distance
metric becomes:

()
() ()()

() ()() ⎟
⎠

⎞
⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−++

=

∑∑

∑∑∑

=

−−−−

=

−=−==

π

θ
θθα

α

2

0

21
2

1
2,

1
1

1
1,

1

2/

2/

2
2211

2/

2/1
21

2/,2/2/,2/)1(

,,
,

ll
l

ll
l

L

l

k

ki
ll

k

kj

L

l

yxWyxW

jyixGjyixG
ppd

where α is a sharpness weighting value controlled by the user’s
slider, Wl,θ is orientation θ of level l of the wavelet pyramid and L
is the number of wavelet levels used.

Figure 1: A simple case of replicated painting.

Figure 2: Left: cloning image. Right: moss cloned onto bark.

Figure 3: Replicated warping. Leaves narrowed and expanded.

4 Integrating Procedural Textures

In this paper we expand the capabilities of replicated image
editing by integrating procedurally generated textures into the
cloning tool. Rather than cloning colour content from a second
image, we use the level of similarity of a given pixel (to the user
selected pixel) as an input parameter for procedural textures.

 When the user selected pixel is compared with all other pixels
in the same image, a “similarity-map” is generated. This can be
visualized with whiter colours for highly-similar pixels and
blacker colours for pixels that are not similar. Such a similarity-
map is shown to the left in Figure 4. In this example the user has
selected a location on the underside of a brick. Once the
similarity map, s(x, y), is computed, the values can be directly
input into a procedural texture.

 All of our procedural textures incorporate fractal noise which
introduces a certain degree of natural randomness [Ebert et al.
1994]. A 2D fractal noise function, f(x, y), can be briefly defined
as follows:

() ()()∑
=

××=
N

i

iii yxnoiseyxf
0

2/2,2,

where i is the current octave, N is the number of octaves, and
noise is a function that smoothly interpolates a grid of random
values with cosine or cubic interpolation.

With a fractal noise function in hand, we can now define a
number of procedural textures which take the similarity value,
s(x, y), at pixel m(x, y) along with the original x and y positional
values as input. The first is a moss texture shown in Figure 4 that
combines uses the similarity value to control the frequency of the
texture. Moss is defined in the following pseudo-code:

 function moss(x, y, s(x, y)) returns color {

// low-frequency green for the basic moss appearance
 amount = abs(sin(f (5 × x × s(x, y), 5 × y × s(x, y))));
 color = mixColor(green, black, amount);

// add small amount of mid-frequency orange
 amount = abs(0.2 × sin(f (25 × x × s(x, y), 25 × y × s(x, y))));
 color = mixColor(orange, color, amount);

// add high-frequency yellow speckling
 amount = abs(0.8 × sin(f (50 × x × s(x, y), 50 × y × s(x, y))));
 color = mixColor(yellow, color, amount);
 }

where mixColor(colorA, colorB, amount) returns amount of
colorA and (1 – amount) of colorB. Without the use of the
similarity levels, the moss texture would lack visual structure.

 The next procedural texture, rust, is similar in structure to
moss and is shown in Figure 5. Our rust texture is defined in the
following pseudo-code:

 function rust(x, y, s(x, y)) returns color {

// low-frequency red for the basic rust appearance
 amount = abs(sin(f (5 × x × s(x, y), 5 × y × s(x, y))));

Figure 4: Procedurally generated moss texture is cloned into the brick image. The similarity-image is shown to the left.

Figure 5: The left pair of images shows a procedurally generated rust texture cloned onto a metal image. The right pair of images shows a procedurally
generated fire texture cloned onto a shingle image.

 color = mixColor(red, black, amount);

// add high-frequency orange speckling
 amount = abs(0.5 × sin(f (50 × x × s(x, y), 50 × y × s(x, y))));
 color = mixColor(orange, color, amount);
 }

The final texture, fire, also shown in Figure 5 is a smoother
texture and is compressed in the horizontal direction:

function fire(x, y, s(x, y)) returns color {

// similarity level controls amount of fire
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y))));
 color = mixColor(red, black, amount);

// power of 10 used to narrow yellow areas
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^10;
 color = mixColor(yellow, color, amount);

// higher power of 20 used to narrow brightest areas
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^20;
 color = mixColor(white, color, amount);
 }

Once the procedural textures are computed we directly apply
them to the original image, using the similarity level as a
weighting value between the original texture colour t(x, y) and the
newly generated colour m(x, y). The final colour, c(x, y) is
computed as:

() () () ()yxmsyxtsyxc ,,1, ×+×−=

These procedural textures that have been defined by no means
exhaust the possibilities but do illustrate the usefulness of
integrating replicated editing with procedural textures.

5 Conclusion and Future Directions

Our system amplifies the user’s input by replicating painting,
cloning and warping operations over a texture. In this paper we
have made replicated editing more flexible and efficient by
incorporating procedural texturing into the replicated cloning
operation.

An advantage over the prior work on replicated cloning is that
we no longer require the user to locate (and possibly mask) an
appropriate cloning texture. More importantly, procedural
textures are controllable and can now be computed in real-time as
hardware accelerated pixel shaders. And, while designing
textures does require effort, procedural textures are sufficiently
mature and widespread that existing sets of procedural textures
can be employed.

Although these replicated editing techniques are not generally
suitable for non-texture images, we believe that this can be partly
overcome by combining our system with a system of object
segmentation. An initial stage would segment an image into
separate areas of uniform texture. Once segmented, the effects of
our replicated editing system would then be constrained to operate
only within the current selected area.

Replicated editing might also be extended to geometric and
texture editing operations on a 3D object based on the similarity

of local surface curvature instead of, or in concert with, texture
similarity. It would need to be determined if the user interface
techniques which work for 2D will work equally well for the 3D
analogue.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures, in ACM
Symposium on Interactive 3D Graphics, 217–226.
BARRETT, W. AND CHENEY, A. 2002. Object-Based Image
Editing. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2002), 21(3), 777-784.
BROOKS, S. AND DODGSON, N. A. 2002. Self-Similarity Based
Texture Editing. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH 2002), 21(3), 653-656.
BROOKS, S., CARDLE, M. AND DODGSON, N. A. 2003. Enhanced
Texture Editing using Self-Similarity. Vision, Video and
Graphics, Bath, 231-238.
DECARLO, D. AND SANTELLA, A. 2002. Stylization and
Abstraction of Photographs. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2002), 21(3), 769-776.
EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K. AND WORLEY,
S. 1994. Texturing and Modeling: A Procedural Approach. AP
Professional, Cambridge, MA.
GLEICHER, M. Image snapping. 1995. In Computer Graphics
(SIGGRAPH '95 Proceedings), 183-190.
HARRISON, P. 2001. A Non-Hierarchical Procedure for Re-
Synthesis of Complex Textures. WSCG'2001.
HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-Based Texture
Analysis/Synthesis. In Computer Graphics (SIGGRAPH '95
Proceedings), 229-238.
HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B. AND
SALESIN, D. H. 2001. Image analogies. In Computer Graphics
(SIGGRAPH ’01 Proceedings), 327-340.
IGEHY, H. AND PEREIRA, L. 1997. Image Replacement Through
Texture Synthesis. In International Conference on Image
Processing, volume 3, 186-189.
KURLANDER, D. AND BIER, E. 1988. Graphical search and replace.
In Computer Graphics (SIGGRAPH '88 Proceedings), 113-120.
MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J., KANG, T., MIRTICH, B., PSTER, H., RUML,
W., RYALL, K., SEIMS, J., AND SHIEBER, S. 1997. Design galleries:
A general approach to setting parameters for computer graphics
and animation. In Computer Graphics (SIGGRAPH '97
Proceedings), 389-400.
MORTENSEN, E. AND BARRETT, W. 1995. Intelligent scissors for
image composition. In Computer Graphics (SIGGRAPH '95
Proceedings), 191-198.
SIMS, K. 1993. Interactive evolution of equations for procedural
models. The Visual Computer, 9(8), 466-476.
SUTHERLAND, I. 1963. Sketchpad--a man-machine graphical
communication system. Technical Report 296, Lincoln
Laboratory, Massachusetts Institute of Technology.
WEI, L. AND LEVOY, M. 2000. Fast Texture Synthesis using Tree-
Structured Vector Quantization, In Computer Graphics
(SIGGRAPH '00 Proceedings), 479-488.

