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Abstract 

Image editing software is often characterized by a seemingly 
endless array of toolbars, filters, transformations and layers.  But 
recently, a counter trend has emerged in the field of image editing 
which aims to reduce the user’s workload through semi-
automation. This alternate style of interaction has been made 
possible through advances in directed texture synthesis and 
computer vision. And it is in this context that we have developed 
our texture editing system that allows complex operations to be 
performed on images with minimal user interaction. This is 
achieved by utilizing the inherent self-similarity of image textures 
to replicate intended manipulations globally.  In this paper, we 
expand the capabilities of replicated image editing by integrating 
procedural texture generation.     

CR Categories: I.3.8 [Computer Graphics]: Applications; I.4.9 
[Image Processing and Computer Vision]: Applications; I.3.6 
[Computer Graphics]: Methodology and Techniques – Interaction 
Techniques. 

Keywords:  interactive image editing, texture synthesis, input 
amplification. 

 

1 Introduction 

Image editing remains a complex user-directed task, often 
requiring proficiency in design, colour spaces, computer 
interaction and file management.  Furthermore, the demands of 
this skill set are often exacerbated by an equally complex 
collection of image manipulation commands. In general, this 
approach has met with considerable success; however, the 
complexity of these editing tools requires that the user possess a 
correspondingly high level of expertise.    

Recent research in computer graphics has attempted to semi-
automate the process of constructing and editing digital images.  
Far from offering a massive array of image manipulation controls, 
these semi-automated systems offer interaction at a higher 
semantic level, consequently minimizing the amount of user 
interaction.   

Our system is a realization of this approach wherein the user 
is able to minimally specify alterations to a digital texture image, 

 

whilst relying on the system to perform repetitive, time-
consuming tasks.  Our system is a visual analogue to text string 
search and replace in that a single editing operation at a given 
location causes global changes: the same operation is performed 
on all similar areas of the texture image. Consequently, the style 
of interaction lies between automation and complete user 
manipulation.   

The paper’s structure begins with a synopsis of related work 
and of our previous work on replicated image editing. This is 
followed by a discussion of the procedural texture extension to the 
editing system. We conclude with a commentary on limitations 
and future directions. 

 

2 Related Work  

We begin our overview of related work with constraint-based 
graphics [Sutherland 1963], where the user places constraints on 
the output of a graphical system. Another system which 
manipulates vector based images is the search and replace method 
of Kurlander and Bier [1998]. Conceptually, this system is most 
similar to our own. However, both systems differ significantly 
from ours as they operate on vector images unlike our raster 
image editing tools. 

The interactive evolution of textures using genetic algorithms 
also lies between manual and automatic design methodologies 
[Sims 1993]. Based on a Darwinian metaphor, the computer’s 
primary role is to present candidate graphics to the user from the 
design space.  Alternatively, the goal of example-based texture 
synthesis is to generate another texture image that appears to be 
from the same source as a given input texture [Ashikhmin 2001; 
Heeger and Bergen 1995; Wei and Levoy 2000].  And recently, a 
new class of image editing tool has emerged which employs this 
form of texture synthesis to perform sophisticated image editing 
operations including Texture-By-Numbers [Barrett and Cheney 
2002; Harrison 2001; Hertzmann et al. 2001].  Other tools use 
texture synthesis to remove entire objects from scenes [Igehy and 
Pereira 1997].  Yet another fruitful source of user assistance in 
image editing has come from advances in the computer vision 
community. Examples of which are intelligent image selection 
[Mortensen and Barrett 1995] and snapping [Gleicher 1995] tools.   

Perhaps the most extreme form of automation that still permits 
some degree of user input is the image stylization system of 
DeCarlo and Santella [2002], which using eye-tracking to assign 
priority to details for a non-photorealistic rendering of the same 
image. Another type of application that requires minimal 
interaction are design gallery interfaces. In this approach, the user 
makes aesthetic judgments over design alternatives that are pre-
computed prior to interaction [Marks et al. 1997]. 
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3 Replicated Image Editing  

Our system replicates editing operations globally over a texture 
image [Brooks and Dodgson 2002; Brooks et al. 2003].  Changes 
made to a particular pixel by the user are made to affect all pixels 
that exhibit similar local neighbourhoods to that selected pixel, 
thereby relieving the user of the manual effort of repetition.  This 
allows the following concise texture editing operations:  

1. Replicated Painting: altering the colour of similar 
pixels.    

2. Replicated Cloning: cloning of another image or texture 
onto the texture being altered. 

3. Replicated Warping: locally contracting or expanding 
certain regions of the texture, based on similarity to the 
current selected pixel.   

Painting and cloning are similar operations which paint 
colours onto the image being edited.  In Figure 1 we have a simple 
case of painting a solid red colour onto each pixel whose 
neighbourhood is sufficiently similar to the pixel selected by the 
user.  The reader will note the directional control of the tool.  By 
this we refer to the ability to affect a particular side of all of the 
texture elements at once.  Figure 2 shows an example of the 
replicated cloning of a moss texture (left) onto pixels in the bark 
texture (right).  Moss is cloned onto all pixels in the bark texture 
that are similar to the user selected pixel. Moving from replicated 
painting to replicated cloning requires positioning the cloning 
texture and using the corresponding colour values from the cloned 
texture instead of a solid colour value over the whole image.  

Replicated warping is distinct from the other tools in that it 
does not affect pixel colour; it instead modifies the shape of image 
regions under the user’s guidance.  Those pixels whose local 
neighbourhoods are within a certain threshold of similarity to the 
user selected point are expanded locally. Since the overall area 
remains the same, some regions are compressed while others are 
expanded.  Figure 3 shows the application of replicated warping 
to an image of leaves. The left image has been altered so that the 
spaces between the leaves have been expanded, shrivelling the 
leaves themselves. The right image shows the opposite effect with 
the leaves expanded almost to the exclusion of the spaces in 
between.   

In order to determine which pixels in the image are 
sufficiently similar to the pixel selected by the user, the local 
circular neighbourhood of the chosen selection point is compared 
against that of every other pixel's neighbourhood in the same 
image.  For replicated painting, the current painting colour is then 
applied to the selected pixel but also to a subset of all pixels in the 
image: those that have local neighbourhoods whose difference 
from the selected pixel are within a certain threshold.  The 
selection point receives full paint opacity, as do all pixels with 
neighbourhoods identical to it. The distance threshold is set by the 
user and defines the maximum distance value beyond which the 
opacity of the applied paint is zero. Between zero distance and the 
distance threshold the opacity is scaled linearly, meaning that the 
more similar a pixel is deemed to be to the selected pixel, the 
greater is the applied opacity.     

The original formulation [Brooks and Dodgson 2002] of the 
distance measure between the two points, p1 and p2, using 
Gaussian neighbourhoods is the L2 norm: 
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where Gl is level l of the Gaussian pyramid, L is the number of 
Gaussian levels used, k is the window size, p1 = (x1,y1) is the 
centre of the neighbourhood around p1 and p2 = (x2,y2) is the 
centre of the neighbourhood around p2.  

This was subsequently augmented with local wavelet 
responses, giving the user additional control over the sharpness of 
the painting tools.  With the wavelet responses added, the distance 
metric becomes: 
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where α is a sharpness weighting value controlled by the user’s 
slider, Wl,θ is orientation θ of level l of the wavelet pyramid and L 
is the number of wavelet levels used. 

 

Figure 1:  A simple case of replicated painting. 

 

Figure 2:  Left: cloning image. Right: moss cloned onto bark.   

 

Figure 3:  Replicated warping. Leaves narrowed and expanded. 

 



 

 

4 Integrating Procedural Textures  

In this paper we expand the capabilities of replicated image 
editing by integrating procedurally generated textures into the 
cloning tool.  Rather than cloning colour content from a second 
image, we use the level of similarity of a given pixel (to the user 
selected pixel) as an input parameter for procedural textures.    

 When the user selected pixel is compared with all other pixels 
in the same image, a “similarity-map” is generated.  This can be 
visualized with whiter colours for highly-similar pixels and 
blacker colours for pixels that are not similar.   Such a similarity-
map is shown to the left in Figure 4.  In this example the user has 
selected a location on the underside of a brick.  Once the 
similarity map, s(x, y), is computed, the values can be directly 
input into a procedural texture.  

 All of our procedural textures incorporate fractal noise which 
introduces a certain degree of natural randomness [Ebert et al. 
1994].  A 2D fractal noise function, f(x, y), can be briefly defined 
as follows: 
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where i is the current octave, N is the number of octaves, and 
noise is a function that smoothly interpolates a grid of random 
values with cosine or cubic interpolation.  

With a fractal noise function in hand, we can now define a 
number of procedural textures which take the similarity value,  
s(x, y), at pixel m(x, y) along with the original x and y positional 
values as input.  The first is a moss texture shown in Figure 4 that 
combines uses the similarity value to control the frequency of the 
texture.  Moss is defined in the following pseudo-code: 

   function moss(x, y, s(x, y)) returns color { 
 

// low-frequency green for the basic moss appearance  
     amount = abs(sin(f ( 5 × x × s(x, y),  5 × y × s(x, y)))); 
      color    = mixColor(green, black, amount); 
    

// add small amount of mid-frequency orange 
     amount = abs(0.2 × sin(f (25 × x × s(x, y), 25 × y × s(x, y)))); 
        color = mixColor(orange, color, amount); 
    

// add high-frequency yellow speckling 
     amount = abs(0.8 × sin(f (50 × x × s(x, y), 50 × y × s(x, y)))); 
     color = mixColor(yellow, color, amount); 
   } 

where mixColor(colorA, colorB, amount) returns amount of 
colorA and (1 – amount) of colorB.  Without the use of the 
similarity levels, the moss texture would lack visual structure.  

 The next procedural texture, rust, is similar in structure to 
moss and is shown in Figure 5.  Our rust texture is defined in the 
following pseudo-code:   

   function rust(x, y, s(x, y)) returns color { 
 

// low-frequency red for the basic rust appearance  
     amount = abs(sin(f ( 5 × x × s(x, y),  5 × y × s(x, y)))); 

     

Figure 4:  Procedurally generated moss texture is cloned into the brick image.  The similarity-image is shown to the left.  

       

Figure 5:  The left pair of images shows a procedurally generated rust texture cloned onto a metal image. The right pair of images shows a procedurally 
generated fire texture cloned onto a shingle image.    



 
      color    = mixColor(red, black, amount); 
      

// add high-frequency orange speckling 
     amount = abs(0.5 × sin(f (50 × x × s(x, y), 50 × y × s(x, y)))); 
     color = mixColor(orange, color, amount); 
   } 

The final texture, fire, also shown in Figure 5 is a smoother 
texture and is compressed in the horizontal direction: 

function fire(x, y, s(x, y)) returns color { 
 

// similarity level controls amount of fire  
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))); 
      color    = mixColor(red, black, amount); 
      

// power of 10 used to narrow yellow areas  
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^10; 
      color    = mixColor(yellow, color, amount); 
      

// higher power of 20 used to narrow brightest areas 
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^20; 
     color = mixColor(white, color, amount); 
   } 

Once the procedural textures are computed we directly apply 
them to the original image, using the similarity level as a 
weighting value between the original texture colour t(x, y)  and the 
newly generated colour m(x, y).  The final colour, c(x, y) is 
computed as: 

( ) ( ) ( ) ( )yxmsyxtsyxc ,,1, ×+×−=  

These procedural textures that have been defined by no means 
exhaust the possibilities but do illustrate the usefulness of 
integrating replicated editing with procedural textures.   

 

5 Conclusion and Future Directions 

Our system amplifies the user’s input by replicating painting, 
cloning and warping operations over a texture.  In this paper we 
have made replicated editing more flexible and efficient by 
incorporating procedural texturing into the replicated cloning 
operation.   

An advantage over the prior work on replicated cloning is that 
we no longer require the user to locate (and possibly mask) an 
appropriate cloning texture.  More importantly, procedural 
textures are controllable and can now be computed in real-time as 
hardware accelerated pixel shaders.  And, while designing 
textures does require effort, procedural textures are sufficiently 
mature and widespread that existing sets of procedural textures 
can be employed. 

Although these replicated editing techniques are not generally 
suitable for non-texture images, we believe that this can be partly 
overcome by combining our system with a system of object 
segmentation.  An initial stage would segment an image into 
separate areas of uniform texture. Once segmented, the effects of 
our replicated editing system would then be constrained to operate 
only within the current selected area.  

Replicated editing might also be extended to geometric and 
texture editing operations on a 3D object based on the similarity 

of local surface curvature instead of, or in concert with, texture 
similarity.  It would need to be determined if the user interface 
techniques which work for 2D will work equally well for the 3D 
analogue.      
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