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Image-Based Stained Glass 
Stephen Brooks 

Abstract— We present a method of re-styling an image so that it approximates the visual appearance of a work of stained glass. To 
this end, we develop a novel approach which involves image warping, segmentation, querying, and colorization along with texture 
synthesis.  In our method, a given input image is first segmented.  Each segment is subsequently transformed to match real 
segments of stained glass queried from a database of image exemplars. By using real sources of stained glass, our method 
produces high quality results in this nascent area of non-photorealistic rendering. The generation of the stained glass requires only 
modest amounts of user interaction. This interaction is facilitated with a unique region-merging tool. 

Index Terms— Non-photorealistic rendering, stained glass, texture synthesis, image colorization, image querying.  
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1 INTRODUCTION 
ike all major art forms, stained glass offers insights into 
the aesthetic sensibilities of cultures over time. But 
unlike some forms, the basic methods of constructing 

stained glass have scarcely changed over the centuries.   
Then, as now, the full outline of the design, or cartoon, 

for a stained glass window is drawn prior to construction 
[1]. In the past these cartoons were sketched directly onto 
tabletops and are now drawn on paper. Within the cartoon 
the designer is able to indicate, not just the principal out-
lines of the work, but also the shape and color of the indi-
vidual pieces of glass to be used, along with the position of 
the lead strips (calmes) that hold the work together.  In 
time, a unique range of colors could be achieved using 
enamels of differing pigments, which allow rich details to 
be painted using clear glass as a canvas.   But even when 
painted, a stained glass window possesses a distinctive 
style partly due to the unique color ranges produced 
through the interaction of color enamels, glass   and   light 
(see figure 2).    The imposition of calmes further separates 
the appearance of stained glass from other mediums. 

In our paper we utilize centuries of stained glass artwork 
by basing our results on a database of real stained glass 
images, while the input image acts as the stained glass win-
dow’s cartoon. This is most easily demonstrated if we refer 
to the figure 1, wherein an image of two parrots (left) is re-
rendered (right) to match a given stained glass style (cen-
ter).   

The primary contribution of this paper is a coherent 
technique that transforms a given input image into a plau-
sible stained glass rendition. In addition, we have devel-
oped an efficient glass filter and a novel multi-scale inter-
face for image segmentation.  We also introduce new con-
cepts such as region-by-region colorization and regional 
querying within a single image. 

2 PREVIOUS WORK 
Our stained glass synthesis method requires image query-
ing, warping, colorization and segmentation, as well as tex-
ture synthesis. Many of these areas have enjoyed extensive 
activity recently, and so, we now review only a few cases 
with particular relevance to the present work.  

Texture synthesis is the process of generating a new in-
stance of a texture such that it appears to come from the 
same source as a given input image or set of images [2],     
[3], [4], [5], [6], [7]. Texture synthesis has a variety of appli-
cations including hole-filling, texture transfer, and texture-
by-numbers. Recently texture synthesis has also been ap-
plied to image colorization wherein one image’s color char-
acter is transferred to another [8].  Alternative approaches 
by Reinhard et al. [9] and Levin et al.  [10] perform coloriza-
tion through statistical transfer and optimization.  

Also related to the present work, in Carson et al.’s Blob-
world system [11] image segmentation and image querying 
are brought together for a common purpose. In their work, 
the system segments an image into regions, called blobs, 
according to user-defined parameters. The user selects one 
region of interest, which is then used to search for similar 
images in a structured database. Another method of image 
segmentation that we will return to at a later stage is the 
work of Deng and Manjunath [12] that is based on color 
quantization and spatial segmentation.   

But beyond algorithmic ties to prior work, there are also 
other systems that are relevant with respect to intent. 
Commercial software such as Adobe Photoshop® [13] offer 
Voronoi-based stained glass filters. However, these meth-
ods are simplistic, and do not adapt to the underlying con-
tent. Recent pioneering work on stained glass by Mould 
[14] improved upon this by considering image content, 
though one might argue that the results produced remain 
some distance from the appearance of real stained glass.  
We believe that our results exhibit a higher degree of real-
ism in terms of color, shape and textural qualities. The 
greater realism stems from our use of real stained glass ex-
emplars.  This allows us to borrow the color statistics of real 
glass via regional querying and the calmes appearance 
through directed texture synthesis. This differs from the 
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prior work of Mould [14] which simply replaces regions 
with uniform preset colors and generates unrefined calme 
edges as a linear gradient.  Our semi-automatic interface for 
image segmentation also offers a more robust solution to 
the generation of stained glass cartoons. The fully automatic 
approach of Mould [14] often segments images in ways that 
distort the original shapes in the image.  Moreover, our 
glass-like filtering adds further quality to the results.  

More generally, there is an array of NPR systems that at-
tempt to mimic a variety of artistic styles [15]. Of these, 
prior work on mosaics [16], [17], [18] relate to the present 
work most closely.   However, with these methods the ri-
gidity of the pre-defined tiles imposes quite different con-
straints on the rendering process and produces markedly 
dissimilar results. The work of DeCarlo and Santella [19] is 
also relevant as they employ image segmentation to pro-
duce a loose, artistic style of image rendering.  Other work 
by Bangham et al. [20] utilizes scale-space filtering for the 
selective removal of details for generating painterly images. 

The present work is also related to other semi-automatic 
systems such as the simple interface for image segmenta-
tion introduced by Barrett and Cheney [21]. Other work in 
object selection includes active contour models [22], intelli-
gent scissors [23], GrabCut [24], and photomontage [25]. 

3 MOTIVATION 
Considering this wealth of prior work, one might ask if, for 
example, texture transfer alone could be used to generate 
stained glass results directly. If we consider the left image 
of figure 3 where texture transfer has been applied to the 
problem, we can see that this is not the case. The image 
shows the unconvincing results of texture transferred from 
the religious stained glass image to the parrot input image. 
We believe this is because current methods of texture trans-
fer cannot generate the high-level structure of stained glass.  

Likewise, if we consider the application of image colori-
zation alone, the results produced are also inadequate. We 
see in the right image of figure 3 that simply adjusting the 
color statistics of the parrot image to match the stained 
glass image does not capture those aspects of stained glass 
that marks its unique character, namely, distinct regions 
separated by calmes. Therefore, given the state of the art, 
there remains considerable scope for new techniques that 
can mimic the historic art form of stained glass.  

4 METHOD OVERVIEW 
We present a method which transforms a given input im-
age, I, into a stained glass image using a real stained glass 
image, T, as a target. With this in mind, we now present an 
overview of our techniques.   

It is likely that any system that proposes to generate 
stained glass imagery would commence with a segmenta-
tion of the input image. Our approach begins by generating 
multiple segmentations of the input image, I, at a variety of 
segmentation scales from coarse to fine. These intermediary 
segmentation images are then used as a basis for a final 
user-guided segmentation of the input image into regions, 
Ir. The target stained glass image, T, is also segmented into 
regions, Tq, in a similar fashion.  

Once the input and target images are segmented, each 
region, Ir, from the input image is coerced to adopt the color 
statistics of an individual region, Tq, from the target image, 
on a segment-by-segment basis. The choice of which target 
region, Tq, is used for colorizing a given input region, Ir, is 
determined by comparing the color and texture statistics of 
the given Ir with all available Tq.   The Tq that most closely 
matches Ir is chosen as the target for the colorization of Ir.  

           
 

Fig. 1. A real image is converted into a stained glass style. The image of two parrots (left) is re-rendered (right) to match a given stained glass 
style (center).  

 

 
Fig. 2. A selection of real stained glass artwork.  

   
Fig. 3. Attempted texture transfer (left) and color transfer (right). 
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The resulting colorized regions we label Jr.   
In addition, we can optionally replace individual re-

gions, Ir, from the input image with images of real stained 
glass, Si, rather than produce the colorized regions, Jr  (see 
figure 17 for example solid pieces). As will be described, 
our method is also able to replace all regions, Ir, that have 
low levels of texture content with matching solid glass 
pieces, Si, from a database of solid glass pieces. This means 
that uniform areas, Ir, which exhibit minimal texture prop-
erties, are optionally replaced with regions of real stained 
glass. The texture-threshold for replacing a given, Ir, is de-
termined by the user with simple controls. 

The next stage involves the synthesis of calmes – the 
strips between the glass pieces. This is itself a multi-stage 
process. The first stage smoothes the region edges, eliminat-
ing the high edge frequencies produced at the segmentation 
phase. This produces a smoothed cartoon of the calmes that 
is used to construct an Image Analogies mask for the final 
synthesis of the lead stripping.  Lastly, we apply a warping 
function on the image to better simulate a glass-like ap-
pearance.   

As our method of stained glass synthesis is comprised of 
many stages, for clarity we summarize the essential steps as 
follows: 

 
1. Segment the input image, I, at multiple scales 
2. User-assisted merging of segmented regions, form-

ing final segments, Ir 
3. Analyze each region, Ir, in the input image, I 
4. Segment target stained glass image, T, forming re-

gions Tq 
5. Analyze each region, Tq, in the target image 
6. Analyze the database of solid glass pieces 
7. For each region, Ir, in the input image:  

a. Find best matching region, Tq, in the target 
stained glass image 

b. Colorize the input region, Ir, to match target 
region, Tq, producing region, Jr 

c. Find best matching solid glass piece, Si, to 
the colorized region, Jr, in solid glass data-
base, S   

8. Replace a (possibly null) subset of the colorized re-
gions, Jr, segments with solid glass, Si, according to 
user preference 

9. Smooth the region edges 
10. Synthesize the calmes 
11. Application of the glass simulation function 

 
Each of these stages will be explained in detail in the sec-
tions that follow. 

5 IMAGE SEGMENTATION 
The initial stage for transforming the input image into a 
stained glass style involves segmenting the input image, I. 
Our method for image segmentation is semi-automatic.  We 
have taken this approach because we remain unconvinced 
that current fully automatic segmentation performs cor-
rectly in all cases.  Others have expressed much stronger 
views on the matter, with Carson et al. stating, “it is a com-

mon belief in the computer vision community that general 
purpose image segmentation is a hopeless goal” [11].  
While we do not speculate on the future of image segmen-
tation, this sentiment does suggest that the current state of 
general-purpose segmentation can rarely be used without 
significant user guidance.   

Often, for an arbitrary image, an automatic segmentation 
will be ‘mostly correct’ but will be unsatisfactory in at least 
a subset of the image. We argue that by relying on the 
user’s innate sense of object composition, we avoid the 
problems of under-segmentation, over-segmentation and 
non-intuitive parameter tweaking that limit the applicabil-
ity of many fully automated methods.  

Our approach is related to the simple interface for frag-
ment collection introduced by Barrett and Cheney [21]. In 
their system, the image is massively over-segmented into 
fragments called TRAPs. The user then manually collects 
the sub-object fragments, producing the final segmentation. 
By allowing the user to determine the segmentation of ob-
jects, their system ensures that the final region boundaries 
are correct for the intended purpose. However, forcing the 
user to collecting many tiny fragments could become tedi-
ous for non-trivial images.   

In our system we aim to retain the robust segmentation 
that is the inevitable product of manual fragment collection, 
while at the same time assisting the user in the fragment 
collection process to a much greater extent.  We also wish to 
retain the simplicity of the interface, and not introduce 
multiple tools for segmentation.  Indeed, one could argue 
that an existing image editing system such as Adobe Photo-
shop® [13] could be used to segment an image. However, 
this would force the user to begin the segmentation process 
without guidance and would likely require the application 
of multiple types of editing tools.  

Since an under-segmentation has excessive fragment col-
lection and an over-segmentation is a chore to collect, we 
generate a multi-level segmentation in a similar fashion to 
DeCarlo and Santella [19].  The top row of figure 4 shows a 
simple example of multi-level image segmentation. This 
example image has been artificially constructed for the 
purpose of illustration and is composed of four textured 

 

Fig. 4. Top row: a hierarchy of segmentations from fine, Lo, to coarse, 
L3 for an artificially constructed image composed of four texture re-
gions.  Black edges representing segmentations boundaries at the
given level are superimposed over the image.  Bottom row: user-
collected segmentation shown as four colored regions.  
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regions.  A hierarchy of segmentations are shown superim-
posed on the image and are labeled from the finest at L0 to 
the coarsest at Ln. We use the notation of j

iL  to refer to 
fragment i at level j in the segmentation hierarchy. Higher 
segmentation levels contain fragments (shown as black 
edges) of larger and larger sizes. Note how in this artificial 
example there is no individual segmentation level that of-
fers a correct segmentation of the image.  L0 oversegments 
the image and level L3 undersegments the image.  Levels L1 
and L2 are more accurate but not completely correct. Fur-
thermore, when dealing with more subtle images, one 
user’s notion of ‘correct’ may differ from those of others for 
a given application.  We will return to the construction of 
this multi-level segmentation hierarchy shortly; first we 
will discuss its use from the user’s perspective.  

In our interface we allow the user to start with a given 
segmentation level and subsequently combine or split re-
gions as necessary to form the desired final segmentation.  
When forming the final segmentation image, the user is 
able to collect fragments at any level in the segmentation 
hierarchy to form regions, Ir which are shown as colored 
areas in the bottom row of figure 4.  For example, the user 
can begin the process at a higher (coarser) level such as L2, 
and proceed to lower (finer) levels to fine-tune the region 
boundaries. Collection at the lowest level of segmentation 
(produced via the watershed transform) acts as a catchall in 
that the user can fall back on small fragment collection, 
should the segmentation perform poorly in a subset of the 
image. This mode of interaction requires us to differentiate 
between the fragments, j

iL , that are automatically gener-
ated in the segmentation hierarchy from the regions, Ir, that 
the user has collected.  It is the regions, Ir, which together 
comprise the final segmentation.  

The relationship between fragments in the original seg-
mentation hierarchy and the user-collected regions can be 
seen in the bottom row of figure 4. The final user-collected 
regions are shown underneath the computer-segmented 
fragments. For example, at level L2 we see six computer-
segmented fragments (indicated with their black edges) 
and four user-collected regions (colored purple, light green, 
yellow and dark green). At any point in time the user oper-
ates at one level, j, of the hierarchy only, seeing the frag-
ments of level j overlaid onto the current user-collected 
regions. The user is able to move up or down the fragmen-
tation hierarchy with a simple two-button interface. 

For further clarity a screen capture of the region collec-
tion interface is shown in figure 5. The original image is 

shown to the left and the current state of region collection is 
shown to the right. The user can work in either the left or 
right image areas. A single level of the segmentation hierar-
chy is superimposed over both the right and left image ar-
eas. The level j is controlled with the more and less buttons, 
referring to more or less segmentation.  

The superimposed segmentation edges are shown in red 
and since we do not wish the user-collected regions to con-
flict with the edge overlay, the user regions are assigned 
colors strictly within the blue and green channels.  How-
ever, the user has the option to change the edge overlay to 
green or blue, which will automatically recolor the user-
collected regions into the remaining color channels.   

In this multi-scale “fragment and collect” approach, the 
user moves between the multiple levels and performs two 
simple operations: join fragments to an existing region and 
form a new region. The two operations are controlled with 
the left and right mouse buttons, respectively. For adding 
fragments to an existing region, the user begins by holding 
down the left button while positioned over the region that 
s/he wishes to add further fragments to. All subsequent 
fragments that the mouse moves across are added to the 
existing region. In our chosen notation, the user selects re-
gion Ir with the initial click of the mouse. The mouse then 
passes over a subset, m, of all fragments jL  at level j.  Ir is 
then updated to: 

UU r
Lm

j
mr ILI

j∈

=                                                            (1) 
 

 
A typical use of this function is to add small fragments to a 
large existing region in order to fine-tune the boundary of 
that region.    

The second function involves the same interaction except 
that the user holds down the right mouse button, and in 
this case all selected fragments are collected into a new re-
gion, s: 

U
jLm

j
ms LI

∈

=                                                                 (2) 
 

 
This is useful when a portion of the image has been under-
segmented and the user wishes to form new, smaller re-
gions.   

We now briefly address the construction of the segmen-
tation hierarchy itself and for this we use two methods of 
segmentation. The first is a standard watershed transform 
which generates L0 of the hierarchy. The second method is 
the color image segmentation method of Deng and Man-
junath [12]. This second method of unsupervised segmenta-
tion is used to generate all higher levels of segmentation.  
We choose this method for two reasons. The first is that 
color quantization plays a key role in the segmentation 
process. This is important since real stained glass tends to 
segment imagery into coherent regions of color. The second 
reason is that the segmentation process involves the merg-
ing of smaller regions into larger regions, which is precisely 
what is required to construct the segmentation hierarchy.   
The extent of region merging is controlled with a threshold 
parameter, t. Our segmentation hierarchy uses 5 levels 
above the watershed level, L0, with t set to 0.0, 0.2, 0.4, 0.6 
and 0.8, respectively. 

Fig. 5. Screen capture of the semi-automatic region collection inter-
face. The original image is shown left and the current state of region
collection is shown right with a single level of the segmentation hierar-
chy superimposed over both. Pressing the ‘more’ or ‘less’ buttons will
increase or decrease the amount of overlaid fragmentation.   
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The segmentation process is performed on both the in-
put image, I, and the target stained glass image, T. In gen-
eral, the segmentation of the target stained glass image is 
trivial due to the existing calmes and can be pre-computed 
for repeated use with many input images.   

6 REGION ANALYSIS 
In section 7 we will discuss the region-by-region coloriza-
tion of the input image using the color statistics of individ-
ual regions, Tq, selected from the target stained glass image. 
But before doing so, we need to determine which region of 
stained glass, Tq, we will use to colorize a given region, Ir, of 
the input image. Our criterion is to select the region Tq 
which is most similar to Ir. This introduces the familiar 
problem of image querying but in an unfamiliar form. In-
stead of querying for whole images in a large database, we 
query for the closest matching region of stained glass, Tq, 
within a single image, T. 

Finding the closest match between two regions requires 
the computation of region feature vectors and a metric to 
compute distances between two vectors. For the computa-

tion of feature vectors we adapt the analysis method of 
Carson et al. [11], which reduces our regions to concise sets 
of color, Cr, and texture, Dr, descriptors.   

The color feature vector, Cr, is computed for a region, Ir, 
as a color histogram with a bin width of 20, in the percep-
tually-based L*a*b* space. This yields 5 bins in the L* di-
mension and 10 bins in each of the a* and b* dimensions. 
This totals 500 bins, though only 218 bins fall within the 
gamut corresponding to 0 ≤ (R, G, B) ≤ 1. The distance met-
ric between any two color feature vectors Cr and Cq is com-
puted as: 

( ) ( ) ( )qr
T

qrqrhist CCACCCCd −−=,2                             (3) 
 

where A = [aij] is a symmetric matrix of weights between 0 
and 1 representing the similarity between bins i and j based 
on the distance between bin centers. Neighboring bins are 
given weight of 0.5 and bins that are two units away are 
assigned a weight of 0.25.  All other weightings are set to 0. 
This weighting makes the distance calculation more robust 
as it allows us to match similar colors that do not exactly 
fall in the same bins. This is critical since we know in ad-
vance that exact matches will not be found.  

Unlike color, texture is a local neighborhood property 
and the texture descriptor for a region must provide a de-
scription of the texture features computed over a neighbor-
hood size appropriate to the local structure. Our texture 
descriptor, Dr, for region, Ir, is comprised of the mean tex-
ture contrast, c, computed with automatic scale selection. 
The texture contrast is derived from the second moment 
matrix of gradient vectors within a Gaussian window of 
size σ. The second moment matrix is calculated at pixel     
(x, y) as: 

( ) ( ) ( )( )TIIyxGyxM ∇∇= *,, σσ                                  (4) 
 

where Gσ(x, y) is a Gaussian kernel with variance σ2 and ∇I 
is the gradient of image intensity. The window scale, σ(x, 
y), itself varies across the image and this scaling is auto-
matically determined (see [11] for details on automatic scale 
selection).  Texture with a repeat period of up to 10 pixels is 
recognized. 

At each location, Mσ(x, y) is a 2×2 symmetric positive 
semi-definite matrix and we compute the eigenvalues of 
Mσ(x, y) as λ1(x, y) and λ2(x, y). From the eigenvalues λ1 and 
λ2  the texture contrast is computed as: 

 
( ) ( ) ( )yxyxyxc ,,2, 21 λλ −=                                    (5) 

 
 

  
Fig. 7. Texture contrast (right) computed for a butterfly image (left). 
The contrast is computed with automatic scale selection.   

  

 

 
Fig. 6. Color statistics from target stained glass image Tq (middle) are 
transferred to input image Ir (top) on a region-by-region basis.  Results
shown with synthesized calmes (bottom).   
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An example of c(x, y) is shown in figure 7 for a butterfly 
image.  Note that because automatic scale selection has 
been used, the texture contrast function responds to texture 
contrast at a variety of scales up to a 10 pixel period. The 
texture descriptor, Dr, for region Ir is simply defined as 

( )rr cD = , being the average texture contrast over all pixels 
in the region. The distance metric between any two texture 
descriptors Dr and Dq is simply: 

 
( ) ( )22 , qrqrtext DDDDd −=                                              (6) 

 
The combined distance metric between two regions, Ir 

and Tq, for both color and texture descriptors becomes: 
 

( ) ( ) ( )qrtextqrhistqr DDdCCdTId ,,, 222 ×+= α                      (7) 
 

Where α is a constant weighting of the texture distance. In 
all our examples, we use an α value of 10, which addresses 
the difference of magnitude between the color and texture 
distance measures while retaining a greater emphasis on 
color matching.  

Similar to standard approaches to image querying, we 
have included the texture descriptors for our regions so as 
to more broadly capture each region’s appearance.  We ar-
gue that this is important from the user’s perspective since 
the perception of image regions is influenced by both color 
and texture [26].  However, for further user control we have 
added a simple binary option that determines whether the 
matching is performed using the default (color+texture) 
descriptors or with color alone.  Offering this choice has a 
positive side effect in that it makes the matching criteria 
more explicit and transparent, though it is important to 
note that all of the examples shown in this paper use the 
default (color+texture) descriptors. 

With the region descriptors computed for all Ir in the in-
put image and all Tq in the target stained glass image, we 
select the region Tq with the smallest distance, d2(Ir, Tq).  

7 REGIONAL COLORIZATION 
Color transfer allows one image to adopt the color charac-
teristics of another. Recently, there have been significant 
advances in the area of color transfer, some based on tex-
ture synthesis [8] and others on the direct manipulation of 
color statistics. We now introduce the concept of region-by-
region colorization wherein image regions Ir are colorized 
independently, and for this, an unsupervised statistical ap-
proach such as those described by Reinhard et al. [9] and 
Hertzmann et al. [5] is most appropriate.   

To perform the color transfer we coerce the pixel data of 
the input region, Ir, so that the mean and standard deviation 
values of the three color channels of Ir are made equal to 
those of the best matching region, Tq, from the target 
stained glass image. In order to affect the statistics of indi-
vidual color channels we must take care to operate in a 
color space with de-correlated color channels. Otherwise, 
unwanted cross-channel artifacts would occur.  The lαβ 
color space introduced by Ruderman et al. [27] has been 
shown by Reinhard et al. [9] as having sufficient channel 
de-correlation for the purpose of statistical color transfer. 

This lαβ space is an opponent-color model where l repre-
sents an achromatic channel, while α and β are chromatic 
yellow-blue and red-green opponent channels, respectively. 

With the pixel data represented in lαβ space the transfer 
of color statistics from stained glass region Tq to the input 
region Ir proceeds. The mean, µ, and standard deviations, σ, 
of the each of the three lαβ color channels are indirectly 
transferred to Ir by manipulating the lαβ pixel values of Ir. 
To this end, the channel means from Ir are first subtracted: 

 
βββααα −=−=−= ∗∗∗ ,,lll                                 (8) 

 
Next, the data is scaled by the ratio of standard deviations 
from Ir and Tq, with channel means from Tq  added: 
 
 

β
β

β
α

α

α

µβ
σ
σ

βµα
σ
σ

αµ
σ
σ

q
r

q
q

r

ql
ql

r

l
q ll +=′+=′+=′ ∗∗∗ ,,    (9) 

 
 
where ( z

rµ , z
rσ ) and ( z

qµ , z
qσ ) are the means and standard 

deviations of regions Ir and Tq respectively, over some 
channel z. 

With the most similar region, Tq, found for each region 
Ir in the input image, the color statistics are transferred on a 
region-by-region basis, producing new regions, Jr. Figure 6 
shows the results of this process. The presence of lead 
stripping, shown between each region of the output image, 
will be discussed in the following section. 

8 SYNTHESIS OF CALMES 
A unique feature of stained glass is that it is held together 
with lead, zinc, brass or copper strips called calmes. The 
calmes are not always visible in photographs taken of 
stained glass artwork due to the typically high dynamic 
range caused by natural light passing through the glass.  
But they are there nonetheless. To increase the realism of 
the produced stained glass we have developed an auto-
matic method of synthesizing calmes based on recent ad-
vances in pixel-based texture synthesis. In particular, we 
adapt the Image Analogies framework of Hertzmann et al. 
[5], though any method of directed texture synthesis might 
serve.  

Before the synthesis can begin, some pre-processing of 
the region boundaries is required to mitigate their exces-
sively high frequencies by fitting each edge to a cubic 
smoothing spline [28]. Figure 8 provides a comparison of 
region boundaries shown before (left) and after (right) be-
ing fitted with smoothing curves.   

 

  
Fig. 8. Region boundaries before smoothing (left) and calmes mask
after smoothing (right). 
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The reader may have noticed that the smoothed set of 
curves shown to the right in figure 8 already forms an Im-
age Analogies [5] mask, which is needed for the directed 
synthesis of the calmes. In the notation of Image Analogies, 
the texture-by-numbers re-synthesis of an image is ex-
pressed as a filtering operation. Given a set of three images 
A, A′ and B where A is the unfiltered source, A′ is the fil-
tered source and B is the unfiltered target image, we wish 
to synthesize the new filtered target image B′ such that: 

':::': BBAA                                                          (10) 
 

By this we mean that we wish to find the analogous image 
B′ that relates B′ to B as A′ relates to A.    

The Image Analogies algorithm synthesizes each new 
pixel in the output image, in scan-line order, by finding 
pixels with matching local neighborhoods in the original 
texture. Where the Image Analogies algorithm differs from 
regular texture synthesis is with the treatment of the analo-
gous relation of B:B′ to A:A′. When selecting the next syn-
thesized pixel, the local neighborhood comparison uses a 
concatenation of the neighborhood in the input texture, A′, 
with the corresponding neighborhood in the input mask, A. 

Figure 9 shows two pairs of Image Analogy images with 
the original lead calmes image, A′, (top-right), its mask, A, 
(top-left), the target mask, B, (bottom-left) and the final syn-
thesis, B′, (bottom-right). The analogy therefore specifies 
that the input calmes relate to the input mask as the output 
calmes must relate to the automatically constructed output 
mask. The output mask for the synthesis process is com-
prised of the set of smoothed region-edge curves drawn in 
white with a radial width of 10 pixels. The input calmes are 
taken from a real image of stained glass and its associated 
mask is easily created with our segmentation interface. We 
note that the same interface could be used more generally 

for constructing image analogies masks.  
There are a number of important points concerning the 

synthesis process. In order to achieve the best possible syn-
thesis, both the input and output masks are structured with 
linear feathering. This can be seen in figure 10, which 
shows a zoomed-in portion of the Image Analogies target 
mask, B. The left image shows the curves that are generated 
from the cubic-spline fitting process. The right image shows 
the same curves but with feathering applied. The feathering 
is applied to both the source mask, A, and the target mask, 
B, which better structures the synthesis process. The syn-
thesized calmes can be further enhanced if they are synthe-
sized 50% larger than what is required. Afterwards, the 
output is scaled down to the needed size, which has the 
effect of removing high frequency discontinuities that can 
result from pixel-based texture synthesis. However, this 
super-sampling of calmes does not significantly affect the 
overall processing time, as only a small percentage of the 
image area need be synthesized (i.e. the region boundaries).  

It is also worth noting that the calmes input image and 
its mask can be prepared in advance and used repeatedly. 
In this way the calmes synthesis process can be made fully 
automatic, requiring no user intervention. Moreover, mul-
tiple calmes styles can be prepared in advance. The bottom 
row of figure 15 shows features copper stripping, which 
has been sourced from an alternate calmes input image. 

After synthesis is complete, a final post process is ap-
plied to better integrate the synthesized calmes with the 
colorized regions. Here we again apply a feathering opera-
tion but this time to the colorized image. Pixels in the color-
ized regions are made increasingly darker (at an exponen-
tial rate) as they approach neighboring calmes. This subtle 
improvement makes it appear that the colorized regions are 
directly fitted to the calmes as can be seen in figure 11. 

9 SIMULATED GLASS FILTER 
Even with colorization applied and lead stripping in place, 
images may still require further filtering to match the ap-
pearance of real stained glass.  In particular, if there is too 
much texture detail in the original image, the final result 
may look too photorealistic to achieve a convincing stained 
glass-like appearance.  For these images, a simulated glass 
filter is applied in two phases: 
 

1. Add Perlin noise [29], [30] to the input image Ir 
prior to colorization. 

2. Apply discontinuity-sensitive warping to generate 
many small facets of color in each region.  

 
The application of this filter results in a loss of high-

 

 
 Fig. 9. Two pairs of Image Analogy images.  Top row: source mask
(left) and source image (right).  Bottom row: target mask (left) and final
synthesis (right). 

 
Fig. 10. Target mask with (right) and without (left) linear feathering. 

 

 

   
Fig. 11. Colorized regions before (left) and after (right) exponential
feathering.   



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 

 

frequency details in favor of glass-like facets.  Within each 
facet, changes are made more smooth and gradual with 
discontinuities pushed to facet boundaries.   

The addition of Perlin noise introduces the appearance 
of imperfections in the glass when colorized. For this we 
use a standard noise function generated over the four high-
est frequencies, with all four octaves having the same am-
plitude of 3/255 (a small percentage of the RGB range). By 
using only the highest frequencies we introduce fairly uni-
form and mild imperfections.  

The addition of Perlin noise is often sufficient in itself, as 
is the case with the parrot example in figure 1.  But, other 
images may require stronger approach: facet warping. This 
new filter is related to the concepts introduced by Arad and 
Gotsman [31].  In their work they propose an adaptive 
warping scheme for sharpening and scaling images. The 
technique operates by “squashing” pixels in edge areas and 
“stretching” pixels in flat areas.  But, instead of contracting 
only at major edges in the image (which in our case are lo-
cated under the lead stripping), we contract every minor 
discontinuity. By designing the warp to be sensitive to 
small discontinuities, a myriad of small facets of color are 
produced.  Figure 14 shows examples of this.  

The filter has multiple stages that distort the input image 
subject to the presence of discontinuities. The first stage 
convolves the image with the following Sobel kernels, 
which respond to edges in the x and y directions: 
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The combined absolute magnitude map of the two resulting 
edge images, Gx(x, y) and Gy(x, y), is computed as: 

( ) ( ) ( )22 ,,, yxGyxGyxG yx +=                                (12) 

Next, a Gaussian smoothing kernel is applied to the edge 
magnitude map, an example of which can be seen in figure 
12.  The radius of the Gaussian kernel is important here as it 
has a direct effect on the regularity of the facets: the wider 

the kernel, the wider and more regular the facets will be.  
Figure 14 shows the effect of kernel size on the final result.  
On the left is a single colorized region with Perlin noise 
added.  The center and right images show the same region 
after filtering is applied.  Note how the center image exhib-
its smaller and less regular faceting due to the smaller ker-
nel size of 0.5.  The right image exhibits wider facets using a 
kernel size of 3.  In all examples in this paper a standard 
deviation (stdev) of 3 pixels has been used.  

To compute the horizontal and vertical displacement 
amounts the partial derivatives (dx, dy) of |G(x, y)| are es-
timated by convolution with the following kernels:  
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The resulting vectors dx(x, y) and dy(x, y) shown in figure 13 
are used as a displacement map, translating the pixels in 
the colorized image.  The displacement vectors are scaled 
by a constant factor of 3, though one could provide the user 
with a slider to control the degree of faceting. 

Even for completely smooth regions, the addition of 
Perlin noise prior to colorization offers a sufficient degree 
of discontinuity for this filtering operation to work well. 
Moreover, since the larger edge discontinuities are at region 
boundaries, excessive distortion of the region interiors does 
not occur.  We also note that the displacement function has 
a positive side effect on the lead stripping in that the calmes 
become smoother and less regular.  A variety of faceted 
examples can be seen in figure 15. 

10 SOLID GLASS REPLACEMENT 
Some stained glass images are entirely comprised of solid 
pieces of stained glass (without painted detail) and others 
are formed from a combination of solid glass and painted 
glass.   Similarly, we extend the range of stained glass styles 
through the replacement of colorized regions with solid 
glass pieces.  A solid glass result is shown in figure 18 and, 
for reference, a selection of solid glass can been seen in fig-
ure 17.  When selectively replacing a subset of colorized 
regions, C, with solid regions, S, it must be determined 
whether a given region, Jr, should be replaced and, if so, 
which piece of real solid glass, Si, will replace it. 

We offer two alternative user interfaces for replacement 
selection.  The first simply allows the user to directly toggle 
solid replacement by clicking anywhere within a region.  In 
the second interface the user controls region replacement 
by adjusting a slider that dictates the number of regions 
that must be replaced in the image  (see figure 19).   For this    

 
Fig. 12. Absolute magnitude of edge maps produced by Sobel convolu-
tion. Gaussian smoothing has been applied. 

   
Fig. 13. Horizontal (left) and vertical (right) displacement maps. 

 

  
Fig. 14. Left: colorized region. Middle: faceting with Gaussian 
stdev = 0.5. Right: faceting with stdev = 3.0.  
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Fig. 15. A selection of input images (left) is converted into a stained glass style. The target stained glass images are shown in the center column 
and the final results are shown to the right.  Last row: the region matching process for the watery background has been partially randomized.  
Bottom row with copper calmes, remaining rows with lead.  
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Fig. 16. A selection of constructed stained glass images are symmetrically tiled across 3D tiffany lampshades. Bottom Left: An example showing 
a mixture of colorized and solid glass regions.  
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to be meaningful the regions must be ordered in some way.  
Regions are ordered according to their texture contrast lev-
els as computed in section 6.  Regions are ordered from 
lowest to highest texture contrast.  Therefore, when the user 
sets n number of regions to be replaced the n colorized re-
gions with the least texture contrast are replaced with solid 
glass.  This second interface operates under the assumption 
that regions of minimal texture are likely to be less impor-
tant than highly textured regions.  The operation of both 
types of interface is illustrated in the accompanying video.   

When a colorized region, Jr, has been selected for re-
placement, a choice must be made as to which piece of solid 
glass is used.  This returns us to image querying and an 
analysis of the solid glass database, S, needs to be com-
puted.  Texture and color feature vectors are computed for 
each image Si in the database, using the same analysis 
methods described previously in section 6.  When searching 
for a solid match for a colorized region, Jr the same distance 
metric is also used.  But in this case no segmentation is 
needed, as the solid glass pieces are single regions.    

There are a number of final points worth noting that re-
late to solid glass replacement. The first is that the replace-
ments can be matched to either the colorized regions or the 
original regions. Matching to the colorized regions main-
tains the overall style of the target stained glass image, T.   
The second point is that the simulated glass filtering dis-
cussed in the previous section is only applied to the color-
ized regions and not to solid glass replacement regions, 
since the solid replacements are real glass to begin with.  

We find that the quality of the results is not overly sensi-
tive to the size of the database of solid glass images. Good 
results can be obtained with a database that has a reason-
able coverage of the color space.  However, the larger the 
database, the more accurate the texture matching will be.  A 
last point of efficiency is that the analysis of the database 
need only be pre-computed once. 

11 RESULTS 
We present a further selection of results in figure 15.   For 
the examples shown, the average total processing time was 
approx. 1 min. 15 sec. on a 3.6 GHz P4, including segmenta-
tion and stained glass assembly.  User input times for the 
semi-automatic segmentation varied from image to image.  
In the cases of the simple flower image in figure 6 and the 
butterfly image in figure 15, user guided region collection 
was performed in under a minute.  More complicated im-
ages such as the parrot image in figure 1 and the architec-
tural image in figure 15 required between 2 and 3 minutes.  

In our experiments we found that, at some stages in the 
process, it is sufficient to work with images down-sampled 
by 50% in both dimensions. For example, this is applicable 
to region analysis. Although we super-sample the calmes 
synthesis, we typically only need to synthesize less than 

15% of the total area at region boundaries.  
A limitation of our method is that it relies on the input 

image having a degree of non-uniformity in terms of color. 
For example, the input image in the last row of figure 15 
depicts a white swan on a uniform watery background.  
Due to this uniformity, the resulting colorization would be 
uninteresting since all water regions would find the same 
match in the target image, T.  To overcome this we random-
ize the matching of water regions for colorization (shown 
right).  In a similar fashion to solid glass replacement, we 
allow the user to toggle whether a region’s matching is 
randomized by clicking on a given region.   This is trivial to 
implement, requiring only that the system select a random 
match from the target image, T, for each user-click.  

A further selection of constructed stained glass images 
are shown symmetrically tiled across 3D tiffany lamp-
shades in figure 16.  These images illustrate one potential 
use of our results but are not meant to imply that we are 
proposing a method for the physically based rendering of 
glass.  The top image uses the solid glass example from fig-
ure 18.  The bottom left image uses a mixture of colorized 
and solid glass and is derived from the butterfly example of 
figure 15. The appearance of the middle image in the bot-
tom row is somewhat dominated by the symmetrically til-
ing, however, if one looks closely, the parrots of figure 1 
can clearly be seen.  The remaining example is derived from 
a tree and mountain scene.  A convenient side effect of our 
approach is that the calmes mask can be used as both 
transparency and bump maps when texturing.   

12   CONCLUSION & FUTURE WORK 

The simulation of the stained glass form is a challenging 
problem requiring a multi-stage solution.  Producing plau-

 

 
Fig. 18. A solid stained glass example shown with synthesized calmes. 

  

 
Fig. 19. As the slider values increase, more regions are replaced with
solid glass, by order of increasing texture contrast.    

   
Fig. 17. Solid glass pieces for replacement.   
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sible stained glass renditions has required image warping, 
colorization, segmentation and querying as well as texture 
synthesis. This has resulted in a considerable improvement 
of results over existing approaches.  

In addition, there are aspects of our work that are more 
broadly applicable.  Our image segmentation framework 
could be applied to any segmentation task. For instance, it 
could used to construct Image Analogies masks [5].  Facet 
warping could be used as a stand-alone glass filter.  And, 
the concept of region querying within a single image might 
be used in conjunction with digital photomontage [25] for 
the automatic replacement of regions with similar queried 
regions taken from a target image. 

Our approach requires a modest amount of human 
guidance to initially segment the image into regions.  Al-
though we argue that robust segmentation under human 
guidance is worth the cost, it might be preferable to in-
crease automation even further. As most segmentation al-
gorithms could be adapted to our framework, future ad-
vances in segmentation might reduce user involvement.    

Another segmentation related issue regards the potential 
use of our system for designing real stained glass tem-
plates.  Although we have not focused on generating pat-
terns for real stained glass in the present work, future work 
might integrate constraints in the user-guided segmenta-
tion process that would ensure that segments are ‘cuttable’ 
in real glass.  For this, it may be sufficient to highlight seg-
ments that are potentially problematic for cutting.  The user 
could then further dissect the problem segment or this 
could be automated at the user′s request.   

Though outside the scope of this paper, other avenues of 
future research might include the physical simulation of 
glass with non-homogeneous pigments or the physical 
simulation of broken or chipped glass.  Another possible 
extension to the current work could allow the user to gen-
erate geometric patterns into low-texture regions. An alter-
nate Design Gallery [32] interface might be adopted for 
exploring multiple stained glass renderings of the same 
input image, using a structured database of target stained 
glass imagery. This would be useful for exploring random-
ized variations as well.  It might also be possible to develop 
a system that converts video into a stained glass style. 
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