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Figure 1  Matches to the user query motion are returned in realtime
using an efficient search index, previously extracted from the motion
database. 

  Figure 2  The animator�s motion edit performed on the query motion
is automatically replicated over all found matches. 

1 Introduction 
The possibility of storing large quantities of human motion 
capture, or �mocap�, has resulted in a growing demand for 
content-based retrieval of motion sequences without using 
annotations or other meta-data. We address the issue of rapidly 
retrieving perceptually similar occurrences of a particular motion 
in a long mocap sequence or unstructured mocap database for the 
purpose of replicating editing operations with minimal user-input. 
One or more editing operations on a given motion are made to 
affect all similar matching motions. This general approach is 
applied to standard mocap editing operations such as time-
warping, filtering or motion-warping. The style of interaction lies 
between automation and complete user control. 

Unlike recent mocap synthesis systems [1], where new motion 
is generated by searching for plausible transitions between motion 
segments, our method efficiently searches for similar motions 
using a query-by-example paradigm, while still allowing for 
extensive parameterization over the nature of the matching. 

──────────────── 
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2 Motion Capture Matching 
The animator selects a particular motion, by specifying its start 
and end time, and the system searches for similar occurrences in a 
mocap database (Fig 1). For maximum usability, our mocap 
matching engine must provide near real-time response to user 
queries over extended unlabeled mocap sequences, whilst 
allowing for spatial and temporal deviations in the returned 
matches. To this end, an unsupervised non-realtime pre-
processing phase is required to automatically build up an efficient 
search index capable of guaranteeing no false dismissals. Our 
novel technique works by splitting up the each joint curve and its 
associated angular velocities in multi-dimensional Minimum 
Bounding Rectangles and storing them in an R-Tree. Support for 
Dynamic Time-warping and Longest Common Subsequence 
similarity measures caters for noisy motion with variations in the 
time axis thus producing robust and intuitive correspondence 
between keyframes. Using our index, we rapidly locate potential 
candidates within a dynamically user-defined temporal range; that 
is, matches that are up to k percent shorter or longer. Spatial 
match precision can also be dynamically altered to selectively 
retain dissimilar matches. 

The animator has the crucial ability to interactively select the 
body areas utilized in the matching, so that, for example, all 
instances of a grabbing motion are returned, irrespective of the 
lower body motion. Negative matches can also be defined to 
preclude certain motions in the returned matches. For instance, if 
the user selects a kicking motion as a positive example and a 
punching motion as a negative example, then only matches with a 
kick, without a simultaneous punch, will be returned. Finally, in 
the case where many potential matches exist, the query results are 
clustered to identify the representative medoid of each cluster. 
These are simultaneously displayed so that the animator can 
rapidly dismiss undesirable classes of matches. 

3 Replicated Editing Operations  
As well as being a practical and efficient mocap search 
mechanism, our system can repeat an editing operation performed 

on the query motion onto all selected matches (Fig 2). For 
example, one could quickly exaggerate every instance of a punch 
in the whole database by altering the EMOTE Effort parameters 
[2], as well as blending in a head-nodding motion. A variety of 
motion editing operations are supported such as time-warping, 
motion displacement mapping, motion-waveshaping, blending, 
smoothing and various other linear and non-linear filtering 
operations. Our index supports updates in sub-linear time so 
searches including the newly edited matches, or completely new 
sequence inserts, are possible with minimal wait. 

For certain editing operations, such as displacement mapping, 
it is preferable to locally tailor the original transformation before 
applying it to each match. To this end, dynamic time-warping is 
used to automatically establish the optimal sample 
correspondence between the query motion and each match. The 
original transform, such as the displacement map, is then 
remapped in time according to the calculated warp. This 
automatic alignment ensures that edits are meaningful and useful 
across all matches. Additionally, the strength of applied 
transforms can be made proportional to the match strength, so that 
dissimilar motion will be less affected by the edits. 

4 Conclusion and Future Work 
Animators should find this tool particularly valuable since editing 
motion capture is still very laborious and time consuming. The 
benefits are especially manifest when dealing with exceedingly 
long mocap sequences or large mocap databases. Replicated 
editing can further be improved by investigating more ways of 
locally adapting the original edit to each motion match. 
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1 Introduction 
This appendix delineates the underlying motion capture (mocap) 
matching techniques used in our sketch. The search index format, 
the supported similarity measures and the steps necessary to 
process a user query are detailed. 

The reader is invited to view our demonstration video on the 
attached CD or online1.  
 

2 Indexing Motion Capture Sequences 
Linear search on a large multi-dimensional mocap database is not 
feasible for real-time query response. Consequently we perform 
extensive dimensionality reduction to obtain a fast searching 
process. For that reason, we ‘split’ the captured sequences into a 
number of equi-length Minimum Bounding Rectangles (MBRs). 
Specifically to index and query the mocap database we follow 
these steps (Fig. 1): 
 
1. The individual mocap sequences are segmented into MBRs 

of length m (user defined). 
2. The resulting MBRs are stored in a multi-dimensional R-tree 

[3]. 
3. User queries are similarly segmented and probed into the 

index. 
4. Based on the MBR distance (or overlap), similarity estimates 

are calculated between the query and the indexed sequences. 
These estimates ‘guide’ our search as to which sequences are 
most likely similar to the given query. For the most 
promising sequences, the exact distance function is 
calculated on the raw data, and the top-k results are kept in a 
priority queue. 

 
The Euclidean Distance between the segmented 1D sequences Q 
and S (which underestimates the distance on the raw data) is given 
by the following equation: 
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Figure xxx demonstrates the above steps when the Euclidean 
distance is used for describing the similarity between sequences. 
In following sections we will provide further details on the index 
construction. We will also show how this methodology can be 
extended in order to support more flexible matching using the 
Longest Common Subsequence (LCSS) or Dynamic Time 
Warping (DTW) distance. 
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Figure 1:  Index Matching. The index stores rectangles (gray) that 
approximate the sequence motion. The query is segmented, too, and the 
resulting MBRs are probed in the index. 
 
3 Indexing Structure 
The distance computed between the sequence MBRs is a lower 
bound of the actual Euclidean distance. Therefore, according to 
the GEMINI framework [1], our index structure will guarantee no 
false dismissals.  The fundamental result of this observation is that 
our index will retrieve the same top-k matches, as the ones that the 
sequential scan would have returned. The mocap data used for this 
research consisted of 57 Euler joint curves. It is well known that 
the performance of the R-tree degrades rapidly for increasing 
dimensionalities [2]. Our solution to this problem is to utilize a 2-
dimensional R-tree, where different joints (e.g. upper-leg X 
rotation or left-arm Z rotation) are stored at different temporal 
positions as illustrated in Fig. 2. Supposing that the maximum 
length of the captured data and the user queries’ does not exceed 
the 500 frames, we can place each type of motion at different, 
non-overlapping time intervals. 

 

 
Figure 2:  The different types of motions are stored at different temporal 
positions of the R-tree. This approach allows for efficient low-dimensional 
indexing. 
 

The user queries that (possibly) contain multiple joint motions, 
are segmented and subsequently each motion is probed at the 
corresponding R-tree location. The estimates for each motion are 
calculated and finally a cumulative estimate over all motions is 
returned. 
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4 Matching Weights 
The storage of different motions at distinct parts of the index 
facilitates a simple weighting scheme. The ability to interactively 
select the body-areas utilized in the matching is accomplished by 
multiplying the distance estimates for each joint by its associated 
weight value. Important joints, such as the upper leg and knees, 
are proportionally favored as opposed to joints with less impact 
such as the foot joint.  Unwanted joint motion can also be defined 
in a similar fashion (Fig 3). This negative matching is achieved by 
weights inferior to 1. 

5 Subsequence Matching 
Until now, only whole sequence matching has been described. 
Extending our framework to additionally perform subsequence 
matching is straightforward. This is done by shifting the query 
MBRs (each of length m), by ⎣ ⎦2/m  time instants and recording 
the new distance (that is the next position that could potentially 
have smaller distance). Using the raw data we compute the actual 
best-so-far match. However, we only need to calculate the 
distance on the raw data, if the lower bound distance is smaller 
than the best-so-far. Therefore, distant subsequences can be 
efficiently pruned. The procedure continues until the whole 
sequence is scanned. This is illustrated in Fig. 4.  
 

 
Figure 4:  Top: Typical Subsequence Matching using a sliding window. 
Bottom: Using the rectangles to perform matching, we can sufficiently 
speedup the produce and at the same time avoid trivial matches.  
 

By segmenting the sequences into MBRs, not only do we perform 
a fast and efficient dimensionality reduction, but we also 
eliminate the trivial matches that we would have gotten upon 

operating in the original dimensionality. Trivial matches are the 
matches returned by sliding a sequence ‘left’ or ‘right’ by a small 
amount, which result to almost identical series. 
 
6 Support for LCSS and DTW 
The LCSS is a variation of the edit distance and has been 
extensively used for matching discrete values. In our formulation, 
we extend the LCSS model in order to allow for a matching when 
the sequence values are within a certain range in space and in 
time. Suppose that we have sequences A and B, where 
A=(a1,…,an), B=(b1,…,bm) and Head(A) = (a1,…,an-1). 
 
DEFINITION: Given an integer δ and a real number 0<ε<1, we 
define the LCSSδ,ε(A,B).  

 

An example of the new LCSS definition is provided in the 
following figure. 

 
 
Figure 5 : The notion of LCSS matching within a region of δ in time and ε 
in space. The gray area defines the Minimum Bounding Envelope (MBE) 
of a sequence. Anything that lies outside this envelope can never be 
matched. 
 
The value of the LCSS is unbounded as depends on the length of 
the compared sequences. We need to normalize it in order to 
support sequences of variable length. The distance defined from 
the LCSS similarity is defined as: 
 

 
 
The proposed framework can efficiently support more flexible 
matches by using the Longest Common Subsequence (LCSS) [5] 
or Dynamic Time Warping (DTW) models. As opposed to 
Euclidean distance, DTW and LCSS take into account variations 
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Figure 3:  Body Area Weighting. (Left) The user can limit the matching
to only the legs by assigning weights to individual joints proportionally to
their importance. (Right) Negative matching areas can be defined so that
only motions dissimilar to the query’s arm motion, and similar in leg
motion, are returned. 
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in the time axis. LCSS also has the advantage of being more 
robust to noise.  
It can be shown that if we surround the query by a bounding 
envelope indicating the areas of possible matching, the lower 
bound distance computed between this envelope and the indexed 
MBRs, guarantees no false dismissals [4]. By allowing 
constrained time warping, we can achieve faster execution time 
and at the same time avoid distant and degenerate matchings. Fig. 
6 shows an example of this approach for the LCSS model.  
 

E. LCSS Upper Bound Estimate = L1+L2+L3

A. Query Q

C. Envelope Splitting

B. Query Envelope

D. Sequence MBRs

L1 L2 L3

 
 

Figure 6:  A demonstration of how our framework can support flexible 
matches. (A). User Query, (B). Areas of possible matching  are surrounded 
by the  Minimum Bounding Envelope (MBE). (C). The MBE is 
segmented into MBRs, (D). Indexed MBRs, (E). Estimates between the 
query and the index MBRs are computed. 
 
Since the LCSS model describes the similarity, we don’t calculate 
the distance between MBRs, but their degree of overlap. Now our 
estimates provide an upper bound on the actual similarity, and 
since similarity is inversely analogous to distance, the claim of no 
false dismissals still holds. 

 
Below we depict an example of the quality of time warped 
matching for multidimensional sequences. 

 
 
 
 

 
7 Further Optimizations 
In order to provide better sequence approximation, one can 
alternatively use a greedy split algorithm to generate the sequence 
MBRs. The complexity of this operation is now O(nlogn) (for 
sequences with n points), however the time-series approximation 
is significantly tighter (Fig 8). Our experimental results indicate 
that the approximation is very close to the optimal one, which is 
achieved using dynamic programming and requires a costly 
quadratic execution time. 
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Figure 7:  An example of time warping between multidimensional
time-series. 

 
Figure 8:  Using a greedy MBR generation approach we can provide a
very tight sequence approximation 

 


