
Fast Motion Capture Matching with Replicated Motion Editing

Marc Cardle Michail Vlachos Stephen Brooks Dimitrios Gunopulos* � * �

*University of Cambridge University of California, Riverside �

Figure 1 Matches to the user query motion are returned in realtime
using an efficient search index, previously extracted from the motion
database.

 Figure 2 The animator�s motion edit performed on the query motion
is automatically replicated over all found matches.

1 Introduction
The possibility of storing large quantities of human motion
capture, or �mocap�, has resulted in a growing demand for
content-based retrieval of motion sequences without using
annotations or other meta-data. We address the issue of rapidly
retrieving perceptually similar occurrences of a particular motion
in a long mocap sequence or unstructured mocap database for the
purpose of replicating editing operations with minimal user-input.
One or more editing operations on a given motion are made to
affect all similar matching motions. This general approach is
applied to standard mocap editing operations such as time-
warping, filtering or motion-warping. The style of interaction lies
between automation and complete user control.

Unlike recent mocap synthesis systems [1], where new motion
is generated by searching for plausible transitions between motion
segments, our method efficiently searches for similar motions
using a query-by-example paradigm, while still allowing for
extensive parameterization over the nature of the matching.

────────────────
email: { *mpc33 | *sb329 }@cl.cam.ac.uk, { �mvlachos | �dg }@cs.ucr.edu
video: http://www.cl.cam.ac.uk/users/mpc33/sketch03.html

2 Motion Capture Matching
The animator selects a particular motion, by specifying its start
and end time, and the system searches for similar occurrences in a
mocap database (Fig 1). For maximum usability, our mocap
matching engine must provide near real-time response to user
queries over extended unlabeled mocap sequences, whilst
allowing for spatial and temporal deviations in the returned
matches. To this end, an unsupervised non-realtime pre-
processing phase is required to automatically build up an efficient
search index capable of guaranteeing no false dismissals. Our
novel technique works by splitting up the each joint curve and its
associated angular velocities in multi-dimensional Minimum
Bounding Rectangles and storing them in an R-Tree. Support for
Dynamic Time-warping and Longest Common Subsequence
similarity measures caters for noisy motion with variations in the
time axis thus producing robust and intuitive correspondence
between keyframes. Using our index, we rapidly locate potential
candidates within a dynamically user-defined temporal range; that
is, matches that are up to k percent shorter or longer. Spatial
match precision can also be dynamically altered to selectively
retain dissimilar matches.

The animator has the crucial ability to interactively select the
body areas utilized in the matching, so that, for example, all
instances of a grabbing motion are returned, irrespective of the
lower body motion. Negative matches can also be defined to
preclude certain motions in the returned matches. For instance, if
the user selects a kicking motion as a positive example and a
punching motion as a negative example, then only matches with a
kick, without a simultaneous punch, will be returned. Finally, in
the case where many potential matches exist, the query results are
clustered to identify the representative medoid of each cluster.
These are simultaneously displayed so that the animator can
rapidly dismiss undesirable classes of matches.

3 Replicated Editing Operations
As well as being a practical and efficient mocap search
mechanism, our system can repeat an editing operation performed

on the query motion onto all selected matches (Fig 2). For
example, one could quickly exaggerate every instance of a punch
in the whole database by altering the EMOTE Effort parameters
[2], as well as blending in a head-nodding motion. A variety of
motion editing operations are supported such as time-warping,
motion displacement mapping, motion-waveshaping, blending,
smoothing and various other linear and non-linear filtering
operations. Our index supports updates in sub-linear time so
searches including the newly edited matches, or completely new
sequence inserts, are possible with minimal wait.

For certain editing operations, such as displacement mapping,
it is preferable to locally tailor the original transformation before
applying it to each match. To this end, dynamic time-warping is
used to automatically establish the optimal sample
correspondence between the query motion and each match. The
original transform, such as the displacement map, is then
remapped in time according to the calculated warp. This
automatic alignment ensures that edits are meaningful and useful
across all matches. Additionally, the strength of applied
transforms can be made proportional to the match strength, so that
dissimilar motion will be less affected by the edits.

4 Conclusion and Future Work
Animators should find this tool particularly valuable since editing
motion capture is still very laborious and time consuming. The
benefits are especially manifest when dealing with exceedingly
long mocap sequences or large mocap databases. Replicated
editing can further be improved by investigating more ways of
locally adapting the original edit to each motion match.

References
[1] ARIKAN, K, AND FORSYTH, D, 2002. Interactive motion generation

from examples. ACM SIGGRAPH 2002.
[2] CHI, D, COSTA, D, ZHAO, L, BADLER, N, 2000. The EMOTE model

for Effort and Shape. ACM SIGGRAPH 2000.

Sketch ID_0162

http://www.cl.cam.ac.uk/users/mpc33/sketch03.html

Sketch ID_0162 1

Appendix: Fast Motion Capture Matching with Replicated Motion Editing

Marc Cardle* Michail Vlachos † Stephen Brooks* Dimitrios Gunopulos†

*University of Cambridge †University of California, Riverside

1 Introduction
This appendix delineates the underlying motion capture (mocap)
matching techniques used in our sketch. The search index format,
the supported similarity measures and the steps necessary to
process a user query are detailed.

The reader is invited to view our demonstration video on the
attached CD or online1.

2 Indexing Motion Capture Sequences
Linear search on a large multi-dimensional mocap database is not
feasible for real-time query response. Consequently we perform
extensive dimensionality reduction to obtain a fast searching
process. For that reason, we ‘split’ the captured sequences into a
number of equi-length Minimum Bounding Rectangles (MBRs).
Specifically to index and query the mocap database we follow
these steps (Fig. 1):

1. The individual mocap sequences are segmented into MBRs

of length m (user defined).
2. The resulting MBRs are stored in a multi-dimensional R-tree

[3].
3. User queries are similarly segmented and probed into the

index.
4. Based on the MBR distance (or overlap), similarity estimates

are calculated between the query and the indexed sequences.
These estimates ‘guide’ our search as to which sequences are
most likely similar to the given query. For the most
promising sequences, the exact distance function is
calculated on the raw data, and the top-k results are kept in a
priority queue.

The Euclidean Distance between the segmented 1D sequences Q
and S (which underestimates the distance on the raw data) is given
by the following equation:

∑
⎩
⎨
⎧

=
=

k

i SiQi
LB MBRMBRMBRD

D
1 otherwise

overlap MBR no f

*),(
i0

Figure xxx demonstrates the above steps when the Euclidean
distance is used for describing the similarity between sequences.
In following sections we will provide further details on the index
construction. We will also show how this methodology can be
extended in order to support more flexible matching using the
Longest Common Subsequence (LCSS) or Dynamic Time
Warping (DTW) distance.

1 video: http://www.cl.cam.ac.uk/users/mpc33/sketch03.html

Indexed Sequence

Query Sequence

Figure 1: Index Matching. The index stores rectangles (gray) that
approximate the sequence motion. The query is segmented, too, and the
resulting MBRs are probed in the index.

3 Indexing Structure
The distance computed between the sequence MBRs is a lower
bound of the actual Euclidean distance. Therefore, according to
the GEMINI framework [1], our index structure will guarantee no
false dismissals. The fundamental result of this observation is that
our index will retrieve the same top-k matches, as the ones that the
sequential scan would have returned. The mocap data used for this
research consisted of 57 Euler joint curves. It is well known that
the performance of the R-tree degrades rapidly for increasing
dimensionalities [2]. Our solution to this problem is to utilize a 2-
dimensional R-tree, where different joints (e.g. upper-leg X
rotation or left-arm Z rotation) are stored at different temporal
positions as illustrated in Fig. 2. Supposing that the maximum
length of the captured data and the user queries’ does not exceed
the 500 frames, we can place each type of motion at different,
non-overlapping time intervals.

Figure 2: The different types of motions are stored at different temporal
positions of the R-tree. This approach allows for efficient low-dimensional
indexing.

The user queries that (possibly) contain multiple joint motions,
are segmented and subsequently each motion is probed at the
corresponding R-tree location. The estimates for each motion are
calculated and finally a cumulative estimate over all motions is
returned.

0 500 5000 5500 25000 25500

Hips.Xposition RightCollar.
Zrotation

RightUpLeg.
Yrotation

.....

Sketch ID_0162 2

4 Matching Weights
The storage of different motions at distinct parts of the index
facilitates a simple weighting scheme. The ability to interactively
select the body-areas utilized in the matching is accomplished by
multiplying the distance estimates for each joint by its associated
weight value. Important joints, such as the upper leg and knees,
are proportionally favored as opposed to joints with less impact
such as the foot joint. Unwanted joint motion can also be defined
in a similar fashion (Fig 3). This negative matching is achieved by
weights inferior to 1.

5 Subsequence Matching
Until now, only whole sequence matching has been described.
Extending our framework to additionally perform subsequence
matching is straightforward. This is done by shifting the query
MBRs (each of length m), by ⎣ ⎦2/m time instants and recording
the new distance (that is the next position that could potentially
have smaller distance). Using the raw data we compute the actual
best-so-far match. However, we only need to calculate the
distance on the raw data, if the lower bound distance is smaller
than the best-so-far. Therefore, distant subsequences can be
efficiently pruned. The procedure continues until the whole
sequence is scanned. This is illustrated in Fig. 4.

Figure 4: Top: Typical Subsequence Matching using a sliding window.
Bottom: Using the rectangles to perform matching, we can sufficiently
speedup the produce and at the same time avoid trivial matches.

By segmenting the sequences into MBRs, not only do we perform
a fast and efficient dimensionality reduction, but we also
eliminate the trivial matches that we would have gotten upon

operating in the original dimensionality. Trivial matches are the
matches returned by sliding a sequence ‘left’ or ‘right’ by a small
amount, which result to almost identical series.

6 Support for LCSS and DTW
The LCSS is a variation of the edit distance and has been
extensively used for matching discrete values. In our formulation,
we extend the LCSS model in order to allow for a matching when
the sequence values are within a certain range in space and in
time. Suppose that we have sequences A and B, where
A=(a1,…,an), B=(b1,…,bm) and Head(A) = (a1,…,an-1).

DEFINITION: Given an integer δ and a real number 0<ε<1, we
define the LCSSδ,ε(A,B).

An example of the new LCSS definition is provided in the
following figure.

Figure 5 : The notion of LCSS matching within a region of δ in time and ε
in space. The gray area defines the Minimum Bounding Envelope (MBE)
of a sequence. Anything that lies outside this envelope can never be
matched.

The value of the LCSS is unbounded as depends on the length of
the compared sequences. We need to normalize it in order to
support sequences of variable length. The distance defined from
the LCSS similarity is defined as:

The proposed framework can efficiently support more flexible
matches by using the Longest Common Subsequence (LCSS) [5]
or Dynamic Time Warping (DTW) models. As opposed to
Euclidean distance, DTW and LCSS take into account variations

Typical Subsequence Matching

Subsequence Matching on the
Segmented Sequences

Query

Shifted
Query

m
m/2

Figure 3: Body Area Weighting. (Left) The user can limit the matching
to only the legs by assigning weights to individual joints proportionally to
their importance. (Right) Negative matching areas can be defined so that
only motions dissimilar to the query’s arm motion, and similar in leg
motion, are returned.

10 20 30 40 50 60 70

40 pts 6 pts

2δ

ε

Q
A

,
,

(,)
(,) 1

max(,)
LCSS

D
A B

δ ε
δ ε

Α Β
Α Β = −

n
, δ,ε

,

,

0 if A or B empty
if |a |

(,) 1 LCSS ((), ())
and |n-m| δ

max(((),),
(, ()))

nb
LCSS Head A Head B

LCSS Head A B
otherwise

LCSS A Head B

δ ε

δ ε

δ ε

ε

⎧
⎪
⎪
⎪ − <⎪Α Β = +⎨ <⎪
⎪
⎪
⎪⎩

Sketch ID_0162 3

in the time axis. LCSS also has the advantage of being more
robust to noise.
It can be shown that if we surround the query by a bounding
envelope indicating the areas of possible matching, the lower
bound distance computed between this envelope and the indexed
MBRs, guarantees no false dismissals [4]. By allowing
constrained time warping, we can achieve faster execution time
and at the same time avoid distant and degenerate matchings. Fig.
6 shows an example of this approach for the LCSS model.

E. LCSS Upper Bound Estimate = L1+L2+L3

A. Query Q

C. Envelope Splitting

B. Query Envelope

D. Sequence MBRs

L1 L2 L3

Figure 6: A demonstration of how our framework can support flexible
matches. (A). User Query, (B). Areas of possible matching are surrounded
by the Minimum Bounding Envelope (MBE). (C). The MBE is
segmented into MBRs, (D). Indexed MBRs, (E). Estimates between the
query and the index MBRs are computed.

Since the LCSS model describes the similarity, we don’t calculate
the distance between MBRs, but their degree of overlap. Now our
estimates provide an upper bound on the actual similarity, and
since similarity is inversely analogous to distance, the claim of no
false dismissals still holds.

Below we depict an example of the quality of time warped
matching for multidimensional sequences.

7 Further Optimizations
In order to provide better sequence approximation, one can
alternatively use a greedy split algorithm to generate the sequence
MBRs. The complexity of this operation is now O(nlogn) (for
sequences with n points), however the time-series approximation
is significantly tighter (Fig 8). Our experimental results indicate
that the approximation is very close to the optimal one, which is
achieved using dynamic programming and requires a costly
quadratic execution time.

9 References

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993). ‘Efficient

similarity search in sequence databases’. In Proc. of the 4th Int'l
Conference on Foundations of Data Organization and
Algorithms. Chicago, IL, Oct 13-15. pp 69-84

[2] Böhm C., Berchtold S., Keim D.A. (2001) ‘Searching in high-
dimensional spaces: Index structures for improving the
performance of multimedia databases’, ACM Computing
Surveys 33(3): pp 322-373

[3] Guttman A., (1984), ‘R-trees: A Dynamic Index Structure for
Spatial Searching’, In Proc. of ACM SIGMOD International
Conf. on Management of Data,

[4] Keogh E., (2002) ‘Exact Indexing of Dynamic Time Warping’
In Proc. of the 28th International Conference on Very Large
Data Bases. Hong Kong. pp 406-417.

[5] Vlachos M., Kollios G., Gunopulos D (2002). ‘Discovering
Similar Multidimensional Trajectories’. In Proc. of the 18th
International Conference on Data Engineering,

0
50

100
150

0

500

1000

1500

100

200

300

400

500

600

X movement

Figure 7: An example of time warping between multidimensional
time-series.

Figure 8: Using a greedy MBR generation approach we can provide a
very tight sequence approximation

