SEMANTIC ANALYSIS
PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018

Dalhousie University

1/28

PROGRAM TRANSLATION FLOW CHART

Source program Scanner (lexical analysis)
(Character stream) y L
= Token stream
5
= < Parser (syntactic analysis) J
(o]
- Parse tree
[Semantic analysis and o
code generation L 2
Abstract syntax treeor || = [J
— other intermediate form [| & [
Machine-independent) g
L2 code improvement o
Modified
° intermediate form
(<] T .
_E Target code generation W
@ Target language
(e.g, assembly)
Modified Machine-specific]
target language code improvement

2/28

ROAD MAP

- Syntax, semantics, and semantic analysis
- Attribute grammars
- Action routines

- Abstract syntax trees

3/28

ROAD MAP

- Syntax, semantics, and semantic analysis

3/28

SYNTAX AND SEMANTICS

- Describes form of a valid program

- Can be described by a context-free grammar

4/28

SYNTAX AND SEMANTICS

- Describes form of a valid program

- Can be described by a context-free grammar

Semantics

- Describes meaning of a program

- Cannot be described by a context-free grammar

4/28

SYNTAX AND SEMANTICS

- Describes form of a valid program

- Can be described by a context-free grammar

Semantics

- Describes meaning of a program

- Cannot be described by a context-free grammar

Some constraints that may appear syntactic are enforced by semantic analysis!

Example: Use of identifier only after its declaration

4/28

SEMANTIC ANALYSIS

Semantic analysis

+ Enforces semantic rules

- Builds intermediate representation (e.g., abstract syntax tree)
- Fills symbol table

- Passes results to intermediate code generator

5/28

SEMANTIC ANALYSIS

Semantic analysis

- Enforces semantic rules
- Builds intermediate representation (e.g., abstract syntax tree)
- Fills symbol table

- Passes results to intermediate code generator

Two approaches

- Interleaved with syntactic analysis

- As a separate phase

5/28

SEMANTIC ANALYSIS

Semantic analysis

+ Enforces semantic rules

- Builds intermediate representation (e.g., abstract syntax tree)
- Fills symbol table

- Passes results to intermediate code generator

Two approaches

- Interleaved with syntactic analysis

- As a separate phase

Formal mechanism

- Attribute grammars

5/28

ENFORCING SEMANTIC RULES

Static semantic rules

- Enforced by compiler at compile time

- Example: Do not use undeclared variable.

6/28

ENFORCING SEMANTIC RULES

Static semantic rules

- Enforced by compiler at compile time

- Example: Do not use undeclared variable.

Dynamic semantic rules

- Compiler generates code for enforcement at runtime.
- Examples: Division by zero, array index out of bounds

- Some compilers allow these checks to be disabled.

6/28

ROAD MAP

- Syntax, semantics, and semantic analysis

7/28

ROAD MAP

- Syntax, semantics, and semantic analysis

- Attribute grammars

7/28

ATTRIBUTE GRAMMARS

Attribute grammar

An augmented context-free grammar:

- Each symbol in a production has a number of attributes.
- Each production is augmented with semantic rules that

- Copy attribute values between symbols,
- Evaluate attribute values using semantic functions,
- Enforce constraints on attribute values.

8/28

ATTRIBUTE GRAMMAR: EXAMPLE

E—E+T
E—E—-T
E—T
T—TxF
T—T/F
T—F
F——F
F—(E)

F — const

9/28

ATTRIBUTE GRAMMAR: EXAMPLE

E—E+T
E—E—-T
E—T
T—TxF
T—T/F
T—F
F——F
F—(E)

F — const

Ey—E+T
Ey—E,—T
E—=T
T1— Ty*xF
T1—Ty/F
T—F
Fr——F
F—(E)

F — const

{Ey.val = add(E,.val, T.val) }
{ Ey.val = sub(E,.val, T.val) }
{E.val =T.val}

{Ty.val = mul(T,.val, F.val) }
{Th.val = div(T,.val, F.val) }

{T.val = F.val }
{ Fy.val = neg(F,.val) }
{F.val = E.val }

{F.val = const.val }

9/28

SYNTHESIZED AND INHERITED ATTRIBUTES

Synthesized attributes

Attributes of LHS of production are computed from attributes of RHS of
production.

10/28

SYNTHESIZED AND INHERITED ATTRIBUTES

Synthesized attributes

Attributes of LHS of production are computed from attributes of RHS of
production.

Inherited attributes

Attributes flow from left to right:

- From LHS to RHS,

- From symbols on RHS to symbols later on the RHS.

10/28

SYNTHESIZED ATTRIBUTES: EXAMPLE

The language
£ =4{a"b"c" | n> 0} ={abc,aabbcc,aaabbbccc, ...}

is not context-free but can be defined using an attribute grammar:

11/28

SYNTHESIZED ATTRIBUTES: EXAMPLE

The language

£ =4{a"b"c" | n> 0} ={abc,aabbcc,aaabbbccc, ...}

is not context-free but can be defined using an attribute grammar:

S—ABC
A—a
A — A)a
B—b
By —Byb
C—c

G—Gc

{Condition: A.count = B.count = C.count}
{A.count =1}

{A1.count = A,.count + 1}

{B.count =1}

{Bj.count = By.count + 1}

{C.count =1}

{Cy.count = Gy.count + 1}

11/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

12/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc
S— S
Iy
/\ /\ /\
/\ /\ /\

a b C

12/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree:
S
’ ‘L\
A A '/\
A a B b

/ /N /N //\
aT b [1]
b

U — >
0o —0

12/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree:

12/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

13/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree:

13/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree:

13/28

SYNTHESIZED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree:

13/28

INHERITED ATTRIBUTES: EXAMPLE

Again, we consider the language

£ =1{a"b"c" | n> 0} = {abc,aabbcc, aaabbbccc, .. .}.

14/28

INHERITED ATTRIBUTES: EXAMPLE

Again, we consider the language

£ =1{a"b"c" | n> 0} = {abc,aabbcc, aaabbbccc, .. .}.

S—ABC
A—a
A — Aa
B—b
By — Byb
C—c

G—>Gc

{B.inhCount = A.count; C.inhCount = A.count}
{A.count =1}

{A1.count = A,.count + 1}

{Condition : B.inhCount = 1}

{B,.inhCount = By.inhCount — 1}

{Condition : C.inhCount = 1}

{C,.inhCount = Cy.inhCount — 1}

14/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree: S

VANEANAN
VANANRAN

a b C

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree: S
A/|\
7/ \ /\ /\
2] A a
7/ \ /\ /\
R |
a b C

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree: ///T
g Elf
AN AN AN
2] A a
VA /\ /\
S
a b C

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree:

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (1)

Input: aaabbbccc

Parse tree:

15/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

16/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree: S

A/IL\C
A/ \a B/ \b /\
/\ | /N

A a b C C

a C

16/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree: S

|
3 A/B\C
7/ \ / \ /\
/A\ a E|3 b c o c
/
a b C/\c

16/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree: S

16/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree: S

16/28

INHERITED ATTRIBUTES: PARSE TREE DECORATION (2)

Input: aaabbccc

Parse tree: S

16/28

ATTRIBUTE FLOW

Annotation or decoration of the parse tree:

- Process of evaluating attributes

17/28

ATTRIBUTE FLOW

Annotation or decoration of the parse tree:

- Process of evaluating attributes

Synthesized attributes:

- Attributes of LHS of each production are computed from attributes of
symbols on the RHS of the production.
- Attributes flow bottom-up in the parse tree.

17/28

ATTRIBUTE FLOW

Annotation or decoration of the parse tree:

- Process of evaluating attributes

Synthesized attributes:

- Attributes of LHS of each production are computed from attributes of
symbols on the RHS of the production.
- Attributes flow bottom-up in the parse tree.

Inherited attributes:

- Attributes for symbols in the RHS of each production are computed from
attributes of symbols to their left in the production.
- Attributes flow top-down in the parse tree.

17/28

S-ATTRIBUTED AND L-ATTRIBUTED GRAMMARS

S-attributed grammar

- All attributes are synthesized.

- Attributes flow bottom-up.

18/28

S-ATTRIBUTED AND L-ATTRIBUTED GRAMMARS

S-attributed grammar

- All attributes are synthesized.

- Attributes flow bottom-up.

L-attributed grammar

For each production X — YiY5...Yy,

- X.syn depends on X.inh and all attributes of Y, Y5, ..., Ye.
- Forall 1 <i <Kk, Y,.inh depends on X.inh and all attributes of Y7, Y5, ..., Yi_g.

18/28

S-ATTRIBUTED AND L-ATTRIBUTED GRAMMARS

S-attributed grammar

- All attributes are synthesized.

- Attributes flow bottom-up.

L-attributed grammar

For each production X — YiY5...Yy,

- X.syn depends on X.inh and all attributes of Y, Y5, ..., Ye.
- Forall 1 <i <Kk, Y,.inh depends on X.inh and all attributes of Y7, Y5, ..., Yi_g.

S-attributed grammars are a special case of L-attributed grammars.

18/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:

E—T
E— EAT
T—n
A—+

A— —

19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:

E—T 10—3+5
E— EAT
T—n

Ao /T\

Ao E A T

AN .

+ 5

19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:

EoT 10-3+5=(10=3)+5="12
E— EAT 10-3+5#10—(3+5)=2
T—n
A— — /E\ A T

== 5

19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:

E—=T 10—3+5=(10-3)+5=12
E — EAT 10—-3+5#10—(345)=2
T—n
A E A T

AN .

E A T + 5

| | |

T - 3

|

10

This grammar captures left-associativity. 19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:

E—T 10-34+5=(10—-3)+5=12
E— EAT 10-34+5%£10—(3+5)=2
T—n E

L \\

o o 4)T v B3
T sub—3

T

[10] 10

This grammar captures left-associativity. 19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:
E—T 10—3+5=(10—-3)+5="12
E— EAT 10—-3+5#£10—(345)=2

T—n
A—+ /]" c
A /E : FEQuleTR PREI:IC}T(R)
— n
/‘ '\\ ! | - | E — EAT {n}

10| E A T + |5]5

S E SR ST
T [sub] — [3]3 A=+ {+}
T Ao)
[10] 10

This grammar captures left-associativity. 19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (1)

A simple grammar for arithmetic expressions using addition and subtraction:
E—T 10—3+5=(10—-3)+5="12
E— EAT 10—-3+5#£10—(345)=2

T—n
A—+ /]" c
A /E : FEQuleTR PREI:IC}T(R)
— n
/‘ '\\ ! | - | E — EAT {n}

10| E A T + |5]5

S E SR ST
T [sub] — [3]3 A=+ {+}
T Ao)
[10] 10

This grammar captures left-associativity. It is not LL(1)! 19/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT
E—TES {n}
F—e {$}
E — ATE {+, -}
T—n {n}

A—+ {+}
A== {=}

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT E
ETES {n} : % \ ;
E0—e {$}
E = ATE {+.—} 1|0 | / |T\ o
T—n {n}
Amt {4 l l A / |T \ E
s o L
+ 5

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT
E—=TES {n} \
F—e {$} - \
E— ATE {+,-} | /

|
10-A T F
T—n {n}
A— + {+} l l |T\
SO I
5

|

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT / E \
E—TES$S {n} / / :

F—e {$} |T/’/E|\
E—ATE {+-} . (6] 4 i’ ;
Ton {n} | | / | \
Amt {H) ~ [sub] 3[3] A T P
e O o

5

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT E
E— TF'S {n} T \$
F—e {$} | /’/N
E — ATE {+, -} 10 Mol A -
T=n {n) - | \

A— + {+} _ l
A=— {=} |

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT / E \
E—TES$S {n} / / :

T

Fve {3} [10]—" \
F o ATE {+ -} | /|

10 [10] A S = F
T—n {n} || |\
A— + {+} _3 A T £
_ 5
A .
+ [add] 5[5] e

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

E—TE'S
F—e
E — ATE
T—n

A— +

PREDICT E
0l T,
{4+ -} | D /N

|
) " L] 2 B T E|
v 5[5] e

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

E—TE'S
F—e
E — ATE
T—n

A— +

PREDICT E

{n} . \ ;
{$} | / |

= 0 0] 4 F
{n} | |

0 t
) ~ [sun] 3[3] & e [2]
B
) | |!-ﬂ”
|

5[s]

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT E
F e {$} | /’/N
F o ATE {4, -} ! g

10 |10 A S =
T—n {n} |

Aot ~[b] 3 AT Ty €
s) | RS

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

PREDICT E
E—TES {ﬂ} T \$
o W T R
F o ATE {4, -} T

10 [10| A S = E'
T—n {n) |

At) “[h] 3[4 e [l
e () | RS

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

E
PREDICT

E—TES {ﬂ} T N $
E e {$} | /N\\

E—ATE {+, -} !

10 [10| A S = E'
T—n {n) |

Aot ~[b] 3 AT Ty €
s) | RS

20/28

LL(1) PARSING, LEFT-ASSOCIATIVITY, AND L-ATTRIBUTED GRAMMARS (2)

An LL(1) grammar for the same language:

E—TE'$S {F.in=Tuval Eval = F val}
F—e {E'.val = E'.in}
B, — ATE, {E,.in = A.fun(E}.in, T.val); E{.val = EY,.val}

T—n {T.val = n.val}
A— + {T.fun = add}
A— — {T.fun = sub}

20/28

ROAD MAP

- Syntax, semantics, and semantic analysis

- Attribute grammars

21/28

ROAD MAP

- Syntax, semantics, and semantic analysis
- Attribute grammars

- Action routines

21/28

ACTION ROUTINES

Action routines are instructions for ad-hoc translation interleaved with parsing.

Parser generators (e.g., bison or yacc) allow programmers to specify action
routines in the grammar.

Action routines can appear anywhere in a rule (as long as the grammar is LL(1)).

22/28

ACTION ROUTINES: EXAMPLE

Example:

E' — AT {$3.in = $1.fun($0.in, $2.val)} E' {$0.val = $3.val}

23/28

ACTION ROUTINES: EXAMPLE

Example:

E' — AT {$3.in = $1.fun($0.in, $2.val)} E' {$0.val = $3.val}

Corresponding parse function in recursive descent parser:

def parseEE(node0):
nodel = ParseTreeNode()
node2 = ParseTreeNode()
node3 = ParseTreeNode()
parseA(nodel)
parseT(node2)
node3.op = nodel.fun(node®.in, node2.val)
parseEE(node3)
node0®.val = node3.val

23/28

ROAD MAP

- Syntax, semantics, and semantic analysis
- Attribute grammars

- Action routines

24/28

ROAD MAP

- Syntax, semantics, and semantic analysis
- Attribute grammars
- Action routines

- Abstract syntax trees

24/28

ABSTRACT SYNTAX TREES

Problem with parse trees:

- They represent the full derivation of the program using grammar rules.

- Some grammar variables are there only to aid in parsing (e.g., to eliminate
left-recursion or common prefixes).

- Code generator is easier to implement if the output of the parser is as
compact as possible.

Abstract syntax tree (AST)

A compressed parse tree that represents the program structure rather than the
parsing process.

25/28

ABSTRACT SYNTAX TREE: EXAMPLE (1)

Fun — funid Stmts.
Stmts — €
Stmts — Stmt Stmts

Stmt — ...

26/28

ABSTRACT SYNTAX TREE: EXAMPLE (1)

Fun — funid Stmts. fun foo
Stmts — € swap drop +

Stmts — Stmt Stmts

Stmt — ...

26/28

ABSTRACT SYNTAX TREE: EXAMPLE (1)

Fun — funid Stmts. fun foo
Stmts — € swap drop +
Stmts — Stmt Stmts
Stmt — ... //Fun\\
fun id Stmts .
Stmt (swap) Stmts

Stmt (drop) Stmts

7\

Stmt (+) Stmts

€ 26/28

ABSTRACT SYNTAX TREE: EXAMPLE (1)

Fun — funid Stmts. fun foo
Stmts — € swap drop +
Stmts — Stmt Stmts
Stmt — ... //Fun\\
fun id Stmts -
AST: Stmt (swap) Stmts
/FU”\ Stmt (drop) Stmts

id - StTtS\ Stmt (+) Stmts

Stmt (swap) Stmt (drop) Stmt (+) €

26/28

ABSTRACT SYNTAX TREE: EXAMPLE (2)

def parseFun(node0):
nodel = ParseTreeNode()
node2 = ParseTreeNode()
matchFunkw()
parseId(nodel)
parseStatements(node2)
matchEndKw()

def parseStatements(node0®):
if next token is .:
node0.statements = []
else:
nodel = ParseTreeNode()
node2 = ParseTreeNode()
parseStatement(nodel)
parseStatement(node2)
node0®.statements = \
[nodel.statement] + \
node2.statements

fun id Stmts

Stmt (swap) Stmts
RN
Stmt (drop) Stmts
7\
Stmt (+) Stmts
|

€
Fun

RN

id Stmts

Stmt (swap) Stmt (drop) Stmt (+)

27/28

SUMMARY

- Semantic analysis augments the parsing process to represent the meaning
of the program.

- The output is often an annotated abstract syntax tree (AST).

- Attribute grammars and action routines are used to construct the AST.

28/28

