
Assignment 1
CSCI 3136: Principles of Programming Languages

Due Febuary 4, 2019

Assignments are due on the due date before 23:59. All assignments must be submitted electronically via the course SVN
server. Plagiarism in assignment answers will not be tolerated. By submitting your answers to this assignment, you declare
that your answers are your original work and that you did not use any sources for its preparation other than the class notes,
the textbook, and ones explicitly acknowledged in your answers. Any suspected act of plagiarism will be reported to the
Faculty’s Academic Integrity Officer and possibly to the Senate Discipline Committee. The penalty for academic dishonesty
may range from failing the course to expulsion from the university, in accordance with Dalhousie University’s regulations
regarding academic integrity.



General Instructions: How to Submit Your Work

The following submission instructions apply to all assignments, programming assignments and theory
assignments. I will assume that you are familiar with using Subversion, as this was covered in CSCI
2132. If your knowledge of Subversion is rusty, consult your CSCI 2132 notes or look for Subversion
tutorials online.

Throughout this course, assignments are managed via the FCS Subversion server svn.cs.dal.ca.
The course repository is at https://svn.cs.dal.ca/csci3136. Only I and the TAs have access to
the whole repository. You have access to the subrepository https://svn.cs.dal.ca/csci3136/CSID,
where CSID is your CSID (your bluenose login).

Create a working copy of your subrepository in your bluenose home directory or on your personal laptop
or desktop at home using svn co https://svn.cs.dal.ca/csci3136/CSID. To work on assignment
n, make sure you have a directory CSID/an in your working copy. For some assignments, svn co or
(once checked out) svn update will create this directory for you and populate it with some files that
provide a template for your work. For other assignments, you have to create the directory yourself.

All files you are asked to submit as part of your assignment answer must be placed into this directory
an, placed under subversion control using svn add, and submitted using svn commit. You can submit
as often as you want before the submission deadline. On the deadline, I will take a snapshot of the
contents of your assignment directory for marking.

For programming assignments, each assignment states specifically which files you should submit.

For each theory assignment, you must submit a single PDF file an/an.pdf containing your assignment
answers. Both typeset solutions or handwritten solutions are acceptable. If you submit handwritten
solutions, you need to scan them to produce the PDF file to be submitted. If you submit typeset
solutions, you can typeset your answers in Word, LaTeX or any other tool you like that is capable of
producing PDF files. Word documents, LaTeX source files or any application-specific documents
are not acceptable. If you use Word, for example, you can export your document in PDF format from
Word.

After you have submitted your assignment, the markers will review your submission and provide feed-
back including marks in a single file MARKS.a?.txt or multiple files MARKS.a?q?.txt if the assignment
has multiple questions. These files will be placed inside the relevant CSID/a? directory. Thus, running
svn update and checking for the existence of these files in your assignment directories, you can check
the feedback from TAs and keep a record of your assignment marks so far. If I find the time to do it, I
am planning to also maintain a summary file in your CSID directory that provides an overview of the
marks you obtained in all assignments so far. I can guarantee that the infrastructure to create these
files will not be in place for the first two assignments.
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Rush Hour

Rush Hour is an entertaining puzzle game. You are given a 6× 6 grid with cars (horizontal or vertical
3× 1 or 2× 1 rectangles) placed on it. From here on, I call this grid the board because the original
Rush Hour game was a board game. The board is enclosed by walls, but there is an opening on the
right side of the third row:

Horizontal cars are allowed to move left and right but only as far as they can go without hitting other
cars or the wall. (“Hit” means “occupy the same grid cell as”.) Vertical cars are allowed to move up
and down subject to the same rules. By moving cars out of the way, you create new possible moves
for other cars. The third row has a single horizontal 2× 1 car on it (as well as possibly parts of some
vertical cars). In the example above, this car is red. Your goal is to find the shortest sequence of moves
that allows the red car to move through the gap on the right of the third row. A single move moves a
single horizontal car left or right or a single vertical car up or down. Whether you move this car by 1,
2, 3 or 4 positions is unimportant; it still counts as only one move as long as the move is legal (does
not hit the wall or other cars). Since the board is a 6× 6 grid and every car is at least 2 cells long, no
car can legally move by more than 4 positions.

To simplify the computational modelling of the problem, we will consider the red car to be free if it is
in the 5th and 6th columns, that is, its right end is right next to the opening in the wall. Clearly, if we
can move the red car to this position, we can also move it through the opening without any additional
moves. The following is a possible solution state reachable from the state above:

Your task is to write two programs that find an optimal solution (one taking the minimum number of
moves) for any Rush Hour puzzle. The first one is to be implemented in Scheme, the second in Prolog.
As part of the skeleton files you download using svn co or svn update, you get a database of almost
500,000 Rush Hour puzzles and a reference implementation of a Rush Hour solver in Python. To run
the solver on the 84,386th puzzle (which happens to be the hardest puzzle in the database), you run
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$ cd Python
$ ./rush_hour_solve.py 84386
BBHooKFoHoJKFAAoJLoGCCoLoGoIDDEEoIoo
(3,1)+2
(3,3)-1
(2,3)+1
(1,2)+3
(3,3)-1
(3,2)+2
(5,2)-3
(3,4)-1
(4,4)-1
(6,4)-2
(5,6)-3
(3,5)+2
(4,4)+1
(4,6)+1
(3,3)+3

The first 36-character string is the textual encoding of the puzzle in the database. Since this puzzle
takes 15 moves to solve, this line is followed by 15 lines, each storing one move in the optimal move
sequence. Each move is represented in the form (row,col)±offset. Both row and col are integers between
1 and 6 and refer to the position of the rightmost (bottommost) square of a horizontal (vertical) car to
be moved. For a horizontal car, a negative offset means the car is moved offset positions to the left; a
positive offset means the car is moved offset positions to the right. For a vertical car, a negative offset
means move up; a positive offset means move down.

The Python directory contains a second script rush_hour_check.py that you can use to both check
that you produced a correct solution and obtain a visual representation of the solution. To this end, it
is useful to redirect the output of rush_hour_solve.py to a file:
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$ ./rush_hour_solve.py 84386 > 84386.sol
$ ./rush_hour_check.py 84386.sol
Optimal moves = 15
Moves in solution = 15
Search space size = 308818
The computed solution is optimal.

In this example, rush_hour_check.py is happy with its input and reports that the solution is optimal. It
also prints the sequence of board states produced from the start state by the sequence of moves in the so-
lution. The first state (top left) is the start state encoded by the string “BBHooKFoHoJKFAAoJLoGCCoLoGoI
DDEEoIoo”. The last state (bottom right) is the solved state reached at the end of the sequence of
moves. Each state is obtained from the previous state to its left by moving one car to the left, to the
right, up or down as instructed by the output of rush_hour_solve.py.

If the first string in the input file of rush_hour_check.py is not a puzzle in the database, a move is
not a valid move, the final state is not a solution state (the car in the third row is not in the rightmost
position) or the number of moves is not optimal, rush_hour_check.py will print an error message.

One useful piece of information you see in the output is the search space size. This is the total number
of board states that are reachable from the initial state. The largest search space is the one of puzzle
84385, which has over 500,000 states in it. The general rule of thumb is that a larger search space size
means the puzzle is harder to solve, at least for a computer. I recommend that you use puzzles with
small search space sizes for your initial tests and move to bigger search spaces only once and if you
are ready to test the efficiency of your code. The Python code can solve any puzzle in the database
in under 4s on bluenose. I have a Rust implementation that takes no more than 0.08s to solve any
puzzle on my laptop. My Scheme and Prolog implementations, on the other hand, take up to 19s and
25s, respectively, to solve the harder puzzles on bluenose. Since I always praise Haskell, I also have a
Haskell implementation that takes no more than 8s to solve any puzzle in the database on my laptop.
Note, however, that I put significantly more effort into optimizing the Python implementation than
into optimizing any of the other solutions. For Scheme and Prolog, I tried to write as idiomatic code as
possible, which ends up being slower than the Python code in addition to the inherent speed difference
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between the Python interpreter and the Scheme and Prolog interpreters. For Haskell and Rust, I simply
did not have the time to optimize them as aggressively, since they are not the focus of this assignment.

To find out which puzzles have small search spaces, look at the database file rush_no_walls.txt. The
puzzle number refers to the line in this file that the puzzle is stored on, starting from 0 for the first line.
Each line has 3 fields: the optimal number of moves to solve it, the 36-character string encoding the
puzzle, and the size of the search space.
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The General Solution Strategy and the Python Reference Code

I am making the Python reference code available so you have a solution that demonstrates how to
approach the problem and replicates the split into multiple modules that your Scheme and Prolog
implementations will follow.

Algorithmically, finding a sequence of moves that transforms the start state into a solved state is nothing
but a graph traversal problem. The nodes of the graph are all possible states. There is an edge between
two states if one of them can be transformed into the other using a single move. Then, what we are
looking for is a path from the start state to a solution state in this graph. Since we are looking for a
shortest move sequence, we are looking for a shortest path from the start state to a solution state in this
graph. This suggests to use breadth-first search (BFS) to solve the problem.

In general BFS is a poor choice for solving this type of search probem because the solution space to be
searched can get very big and BFS may need a lot of space to remember all states it has visited already.
If the size of the search space increases exponentially with the search depth, an iteratively deepening
depth-first search is more space-efficient and essentially as time-efficient as BFS. For the Rush Hour
puzzle, BFS is feasible in terms of its space consumption (and significantly faster than an iteratively
deepening depth-first search, as I verified experimentally) because a maximum search space size of
around 500,000 states is rather moderate even if we have to store every state.

The Python implementation does not in fact explicitly build the graph to be explored. It simply starts at
the start state and marks this state as visited. Then, for every state on the current frontier (the current
BFS level), it generates all its neighbours (all states that can be reached using a single move from this
state). For each neighbour, it checks whether this state is a solution state. If so, an optimal solution has
been found. If not, it checks whether the neighbour has been seen before. If so, BFS does not explore
it again. If the state has not been seen before, it is marked as seen and added to the list of states to be
explored on the next BFS level.

To maintain the set of seen states, the Python implementation uses a Python set (which is a hash table
under the hood.)

In order to report an optimal move sequence when a solved state is found, every state on the current
frontier stores, along with it, the sequence of moves taken by the breadth-first search to reach this state
from the start state. When a solved state is found, it then suffices to report this sequence of moves.

The implementation is split into three files: the main file rush_hour_solve.py, the solver module
rush_hour.solver stored in the file rush_hour/solver.py, and a module rush_hour.state stored
in the file rush_hour/state.py that provides primitives to manipulate board states. The dependency
graph is that rush_hour_solve.py imports rush_hour.solver and rush_hour.solver imports the
primitives to manipulate the board state from rush_hour.state. For your Scheme and Prolog imple-
mentations, I provide the equivalent of rush_hour_solve.py and rush_hour.state to you while you
have to implement rush_hour.solver using the primitives provided by rush_hour.state.

rush_hour_solve.py takes care of parsing the command line arguments, reading the right puzzle from
the puzzle database, invoking the solver provided by rush_hour.solver, and printing the computed
solution to stdout in the format required by rush_hour_check.py.

rush_hour.solver provides a single public function

rush_hour.solver.run(puzzle)
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This function takes the 36-character representation of the puzzle loaded from the database as its only
argument. It returns the sequence of moves in an optimal solution, each represented as a 16-bit integer
(see the rush_hour.state.make_move function below).

To find a solution, rush_hour.solver.run implements the above BFS strategy and relies on the fol-
lowing functions provided by rush_hour.state to do so:

rush_hour.state.from_string_rep(string)

This function constructs a compact internal representation of the board state from its 36-character
string representation. The internal representation consists of four 64-bit integers. If we pad the 6× 6
grid with two extra rows and two extra columns to represent the walls surrounding the board, we
obtain an 8× 8 grid. The 64 grid positions are numbered row by row from the top left to the bottom
right. The ith bit in the first integer is 1 if the ith grid cell is occupied by a car. For the second integer,
the ith bit is 1 if this car is a horizontal car. For the third integer, the ith bit is 1 if the car is a vertical
car. For the fourth integer, the ith bit is 1 if the ith grid cell is the rightmost grid cell of a horizontal
car or the bottommost grid cell of a vertical car. From here on, state objects refer to this 4-integer
representation.

You normally shouldn’t have to worry about the details of this internal representation, but for debugging
purposes, this information may be useful.

If the provided 36-character string is not a valid representation of a Rush Hour board, the function
returns None.

rush_hour.state.make_move(pos, offset)

Given a position pos of a piece to be moved and an offset offset by which to move it, this function
returns a move object representing this move, to be used in the output of rush_hour.solver.run.

A move object is a 16-bit integer whose highest 8 bits store the position pos and whose lowest 8 bits
store offset+4. (Valid offsets are between −4 and 4, so this ensures that the offset in a move object
is represented by a non-negative integer.)

rush_hour.state.horizontal_move(state, pos, offset)

This function tries to move the car occupying grid cell pos in state state by offset positions. On
success, it returns the new state resulting from the move. On failure, the function returns None.

This operation succeeds if pos is the rightmost grid cell of a horizontal car and this car can be moved
|offset| positions to the left (negative offset) or right (positive offset) without hitting the wall or
another car. In any other scenario, the operation fails.

rush_hour.state.vertical_move(state, pos, offset)

This function tries to move the car occupying grid cell pos in state state by offset positions. It
produces the same return value as rush_hour.state.horizontal_move.

This operation succeeds if pos is the bottommost grid cell of a vertical car and this car can be moved
|offset| positions up (negative offset) or down (positive offset) without hitting the wall or another
car. In any other scenario, the operation fails.
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rush_hour.state.is_solved(state)

This function returns true if state is a solved state, that is, one where the car in the third row has
been moved all the way to the right (position 30 is occupied by a horizontal car). Otherwise, it returns
false.

rush_hour.state.is_occupied(state, pos)

This function returns true if position pos in state state is occupied by a car. Otherwise, it returns
false.

rush_hour.state.is_horizontal(state, pos)

This function returns true if position pos in state state is occupied by a horizontal car. Otherwise, it
returns false.

rush_hour.state.is_vertical(state, pos)

This function returns true if position pos in state state is occupied by a vertical car. Otherwise, it
returns false.

rush_hour.state.is_end(state, pos)

This function returns true if position pos in state state is the rightmost position of a horizontal car or
the bottommost position of a vertical car. Otherwise, it returns false.

With this description of the functions provided by rush_hour.state, you should now be able to read
the code in rush_hour/solver.py and understand how it finds an optimal solution to the given puzzle.
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(Q1) Solve Rush Hour Using Scheme

svn co or svn update should have created a directory a1/Scheme in your working copy. Inside this
directory, you find three files: rush_hour_solve.ss, rush-hour/state.ss, rush-hour/solver.ss,
and rush-hour/utils.ss.

rush-hour/utils.ss implements a few utility functions used in the implementation of the functions
in rush-hour/state.ss and of the functions in my sample implementation of rush-hour/solver.ss.
Since it is perfectly possible to implement the solver in rush-hour/solver.ss without these utility func-
tions, I do not discuss the contents of this file here. It needs to be present because rush-hour/state.ss
relies on it. You are free to have a look at the functions this file implements and use them in your
implementation, but you are on your own with that.

rush_hour_solve.ss is the main file analogous to rush_hour_solve.py. It takes care of all the boiler-
plate code such as reading the puzzle from the database and printing the computed solution to stdout
in the format expected by rush_hour_check.py. It imports the library (rush_hour solver), which
the file rush_hour/solver.ss provides. If you look into this file, there is little code in there beyond
a basic skeleton for a Scheme library file. Your task is to implement a function

(solve-puzzle string)

in this file. rush_hour_solve.ss expects (rush-hour solver) to export this function and calls it to
initiate the solution process.

At the top of rush-hour/solver.ss, you will notice the import statement:

(import (rnrs (6))
(rush-hour state))

The (rush-hour state) library implemented in rush_hour/state.ss provides the same functions
as rush_hour.state in the Python code. However, their return values differ slightly. The following is
the list of functions it puts at your disposal:

(state-from-string-rep string)

This function constructs a compact internal representation of the board state from its 36-character
string representation. The internal representation is the same as in the Python code. If the provided
string is not a valid representation of a Rush Hour board, this function returns #f.

(state-make-move pos offset)

Given a position pos of a piece to be moved and an offset offset by which to move it, this function
returns a move object representing this move, to be used in the output of solve-puzzle. Move objects
are represented as in the Python code.

(state-horizontal-move state pos offset)
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This function tries to move the car occupying grid cell pos in state state by offset positions. On
success, it returns the new state resulting from the move. On failure, it returns #f. The success
conditions for this function are the same as for rush_hour.state.horizontal_move in the Python
code.

(state-vertical-move state pos offset)

This function tries to move the car occupying grid cell pos in state state by offset positions. On
success, it returns the new state resulting from the move. On failure, it returns #f. This function
succeeds under the same conditions as rush_hour.state.vertical_move in the Python code.

(state-is-solved? state)

This function returns #t if state is a solved state, that is, one where the car in the third row has been
moved all the way to the right (position 30 is occupied by a horizontal car). Otherwise, it returns #f.

(state-is-occupied? state pos)

This function returns #t if position pos in state state is occupied by a car. Otherwise, it returns #f.

(state-is-horizontal? state pos)

This function returns #t if position pos in state state is occupied by a horizontal car. Otherwise, it
returns #f.

(state-is-vertical? state pos)

This function returns #t if position pos in state state is occupied by a vertical car. Otherwise, it
returns #f.

(state-is-end? state pos)

This function returns #t if position pos in state state is the rightmost position of a horizontal car or
the bottommost position of a vertical car. Otherwise, it returns #f.

To complete this question, implement the solve-puzzle function in rush_hour/solver.ss. Your
implementation must be purely functional, that is, it must not use local (define ...) forms
(nested inside function definitions) and it must not use the set! function. You are allowed to use
local variables defined using let-, let*- or letrec-blocks. Named let-blocks are also allowed.

Your implementation will be graded primarily for correctness (70%). Secondary evaluation criteria
with much lower weight are the use of proper functional idioms such as map, filter, and tail recursion
where applicable (20%). The least important criterion is the running time of your implementation. In
particular, you will not be penalized for a linear-time implementation that could shave off constant
factors by being more clever in certain low-level details. If you provide an implementation that takes
superlinear (e.g., quadratic) time in the size of the explored search space, you will lose 10% of the
marks. Given that my implementation takes no more than 19s to solve any puzzle in the database
on bluenose, your implementation should not take longer than 3 minutes to solve any puzzle in the
database on bluenose.
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(Q2) Solve Rush Hour Using Prolog

svn co or svn update should have created a directory a1/Prolog in your working copy. Inside this
directory, you find four files: rush_hour_solve.pl, rush_hour/state.pl, and rush_hour/solver.pl,
and rush_no_walls.pl.

rush_hour_solve.pl is the main file analogous to rush_hour_solve.py. It takes care of all the boil-
erplate code such as reading the puzzle from the database and printing the computed solution to
stdout in the format expected by rush_hour_check.py. SWI Prolog’s I/O system is painfully slow, to
the point where reading the puzzle database takes forever. To circumvent this, the Prolog code uses
its own puzzle database stored as predicates in rush_no_walls.pl. When you compile your program
using

$ swipl -o rush_hour_solve -g main -O -q -c rush_hour_solve.pl

this database gets compiled into the executable rush_hour_solve this creates along with the actual
code. This makes loading the desired puzzle significantly faster than parsing a text file.

rush_hour_solve.pl loads the module rush_hour/solver.pl. If you look into this file, there is little
code in there beyond a basic skeleton for your implementation of a predicate

puzzle_solution(Puzzle, Solution).

rush_hour_solve.pl uses this predicate to search for a solution. Given an instantiation of Puzzle
with a 36-character puzzle definition,

:- puzzle_solution(Puzzle, Solution).

should instantiate Solution with a list of move objects that represent the sequence of moves to solve
this puzzle. As in the Python and Scheme implementations, move objects are 16-bit integers.

At the top of rush_hour/solver.pl, you will notice the import statement:

:- [rush_hour/state].

This loads the module rush_hour/state.pl, which provides you with the low-level predicates for
manipulating state objects and moves. The following is the list of predicates it puts at your disposal:

puzzle_state(Puzzle, State)

Given an instantiation of Puzzle with a 36-character string representing a Rush Hour puzzle, this
predicate instantiates State with a state object. Similarly to the Python and Scheme implementations,
a state object is a list of four 64-bit integers with the same meaning as for the Python and Scheme
implementations.

This predicate is only meant to be used as a function: Given an instantiated first argument and an unin-
stantiated second argument, it instantiates the second argument with the state object corresponding
to its first argument. Any other attempted use of this predicate is likely to fail.
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pos_offset_move(Pos, Offset, Move)

This predicate expects Pos and Offset to be instantiated with a grid position and an offset. Move
should be uninstantiated. Under these conditions, the predicate succeeds and instantiates Move to be
the move object representing the move of the car at position Pos by Offset positions. Move objects
are represented as in the Python code.

horizontal_move(State, Pos, Offset, NewState)

This predicate expects State, Pos, and Offset to be instantiated; NewState should be uninstantiated.
Thus, it is once again intended to be used as a function that computes NewState from State, Pos, and
Offset. if the car occupying the grid cell position Pos in state State can be moved by Offset positions,
then the predicate succeeds and instantiates NewState to hold the new state. Otherwise, the predicate
fails. The success conditions are the same as for the function rush_hour.state.horizontal_move in
the Python implementation.

vertical_move(State, Pos, Offset, NewState)

This predicate expects State, Pos, and Offset to be instantiated; NewState should be uninstantiated.
Thus, it is once again intended to be used as a function that computes NewState from State, Pos, and
Offset. if the car occupying the grid cell position Pos in state State can be moved by Offset positions,
then the predicate succeeds and instantiates NewState to hold the new state. Otherwise, the predicate
fails. The success conditions are the same as for the function rush_hour.state.vertical_move in
the Python implementation.

state_is_solved(State)

This predicate succeeds if State is a solved state as defined for rush_hour.state.is_solved.

state_is_occupied(State, Pos)

This predicate succeeds if the grid cell at position Pos in state State is occupied.

state_is_horizontal(State, Pos)

This predicate succeeds if the grid cell at position Pos in state State is occupied by a horizontal car.

state_is_vertical(State, Pos)

This predicate succeeds if the grid cell at position Pos in state State is occupied by a vertical car.

state_is_end(State, Pos)

This predicate succeeds if the grid cell at position Pos in state State is the rightmost grid cell of a
horizontal car or the bottommost grid cell of a vertical car.
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To complete this question, implement the puzzle_solution/2 predicate in rush_hour/solver.pl.
Your implementation will be graded primarily for correctness (80%). A secondary criterion (20%) is
the running time of your implementation. Your code should be able to solve any puzzle in the database
in at most 4 minutes on bluenose.
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