Sample Solutions

Assignment 6

CSCI 3110 — Summer 2018

Question 1

(a) Claim: T(n) € O(n'°®3), that is, T(n) < cn'°®3, for some ¢ > 0 and n, > 0 and all
n > n,. In fact, we claim that T(n) < cn'°®2® — dn, for some constants ¢ > 0 and d > 0.

This is necessary to make the inductive proof work.

Proof: For n = 1, we have T(n) < ¢ —d < cn'°®® —dn, for some constant ¢ > 0 and
d = c¢/2 because T(1) € ©(1).

For n > 1, we have n/2 > 1, so we can apply the inductive hypothesis to T(n/2). This

gives
T(n)=3T (g) +n
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< cn'°%2® —dn, for all 3d/2—1>d, that is, d > 2.

Thus, the claims holds for ny = 1, ¢ > 4, d = ¢/2, and c large enough to ensure that
T(1)<c/2.

Claim: T(n) € Q(n'°%23), thatis, T(n) > cn'°%23, for some ¢ > 0 and n, > 0 and all n > n,,.

Proof: For n = 1, we have T(n) > ¢ = cn'°%3, for some constant ¢ > 0 because T(1) €
©(1) and n'°&3 = 1.

For n > 1, we have n/2 > 1, so we can apply the inductive hypothesis to T(n/2). This



(b)
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gives
T(n) = 3T (g) +n
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=cn'%3 +n

> Cnlog2 3

Thus, the claim holds for ¢ > 0 small enough that T(1) > ¢ and for n, = 1.

Claim: T(n) € O(n), that is, T(n) < cn, for some ¢ > 0, n, > 0, and all n > n,,.

Proof: For 1 < n < 5, we have T(n) € ©(1), that is, T(n) < ¢ < cn, for c sufficiently
large.

For n > 5, we have n/4 > n/5 > 1, that is, we can apply the inductive hypothesis to
T(n/4) and T(n/5). This gives

< cn, for all ¢ > 20.

Thus, the claim holds for ¢ > 20 and sufficiently large to ensure that T(1) < ¢ and for
no = ]..

Claim: T(n) € Q(n), that is, T(n) = cn, for some ¢ > 0, n, > 0, and all n > n,,.
Proof: This is trivial for ¢ = 1 and all n because T(n) > n by definition.
Claim: T(n) € O(nlgn), that is, T(n) < cnlgn, for some ¢ > 0, n, > 0, and all n > n,,.

For the inductive proof to work, we do in fact prove the stronger claim that T(n) <
cnlgn—dn, for some ¢ > 0 and d > 0.

Proof: For 2 < n < 4, we have T(n) € ©(1), thatis, T(n) < c—d < cnlgn—dn, for ¢
large enough and d = ¢/2.

For n > 4, we have /n > 2, that is, we can apply the inductive hypothesis to T(4/n).



This gives

T(n) =2v/nT(v/n)+n

<2vn[cvnlgyn—dvn]|+n

=2cnlgy/n—2dn+n

=cnlgn—(2d —1)n because Igv/n = %lgn

<cnlgn—dn, foralld > 1.
Thus, the claim holds for ny =2, ¢ > 2, d = ¢/2, and c large enough that T(n) < ¢/2 for
all2<n<4.
Claim: T(n) € Q(nlgn), that is, T(n) > cnlgn, for some ¢ > 0, n, > 0, and all n > n,,.
Proof: For 2 <n < 4, we have T(n) € ©(1), so T(n) > 8c > cnlgn, for some ¢ > 0.

For n > 4, we have 4/n > 2, so we can apply the inductive hypothesis to T(4/n). This

gives

T(n)=2v/nT(v/n)+n
> 24/ncy/nlgvn+n

1
=cnlgn+n becauselg+v/n= Elgn

> cnlgn.

Thus, the claim holds for n, = 2 and ¢ small enough that T(n) > 8c for 2 <n < 4.

Question 2

(@

(b)

(@

Here we have nlgn € o(n'!) c O(n'!) = O(n'°%*¢), where ¢ = log,4 — 1.1 > 0. This
holds because Ign € o(n®) for all § > 0. Thus, the second case of the Master Theorem
applies and T(n) € ©(n'°&4).

Here we have n?/lgn = n'°%24/lgn. Since lgn € w(1), we thus don’t have n?/lgn €
O(n'°%2%) or n2?/Ign € Q(n'°e24€). We also do not have n%/lgn € 0(n'°%2%~¢) for any
e > 0 because lgn € o(n®) for all e > 0. Thus, the restrictive version of the Master

theorem discussed in class cannot be used to solve this recurrence.

Here we have n? = n'°%:°, Thus, the third case of the Master Theorem applies and T'(n) €
©(n%lgn).



(d) Here we have n = n'°¢3*¢ where ¢ = 1 —log, 3 > 0. Since we also have 3n/4 < cn for
¢ = 3/4, the first case of the Master Theorem applies and T(n) € ©(n).

(e) Here we have nlgn = n'°¢221gn. Thus, similar to (b), we neither have nlgn € ©(n'°%22)
nor is the difference polynomial in n. Thus, once again, the Master Theorem cannot be

used to solve this recurrence.



