
Assignment 5

Sample Solution

CSCI 3110 — Fall 2018

I provide two solutions here.

The first one is the one that I intended you to come up with and which is very close to the algorithm

for partitioning a sequence into monotonically increasing subsequences, discussed in one of the tutorials.

This algorithm is quite obviously greedy because it starts with a single classroom, schedules classes in

the available classroom (thereby greedily minimizing the number of classrooms needed for the classes

processed so far) and only allocates a new classroom when it cannot schedule the next class in one of

the classrooms already allocated.

The second algorithm ends up constructing the exact same allocation of classes to classrooms but

is less obviously greedy. Its advantage is that it reuses (a variation of) the algorithm from class for

scheduling as many classes as possible in a given classroom. Kudos to one of your classmates for coming

up with this algorithm and discussing it with me during one of the office hours.

Solution 1

(a) Let C1, C2, . . . , Cn denote the n classes and let I1, I2, . . . , In be their time intervals. For each interval I j ,

we use s j and e j to denote its starting and ending times, respectively. We sort the intervals by

increasing starting times, that is, we arrange them so that s1 < s2 < · · ·< sn. Now we allocate a

classroom R1 and schedule the first class C1 in room R1. We also record e1 as the time l1 the last

class currently scheduled in R1 ends. In general, if we have allocated h classrooms R1, R2, . . . , Rh

so far, then we maintain h times l1, l2, . . . , lh, where li is the ending time of the last class scheduled

in Ri. Now we process the classes C2, C3, . . . , Cn in order. For each class C j, we check whether

there exists a classroom Ri such that li < s j. If so, we schedule C j in room Ri and set li = e j. (If

there is more than one classroom Ri such that li < s j , we choose one arbitrarily.) If li > s j for all

classrooms we have allocated so far, we allocate a new classroom Rh+1, schedule C j in room Rh+1,

and set lh+1 = e j .

(b) First we argue that the schedule produced by our algorithm is valid, that is, no two classes scheduled

in the same classroom overlap. To this end, we prove that the algorithm maintains the following

invariant:

No two classes scheduled in the same classroom overlap and, for all i, all classes

scheduled in room Ri end at or before time li .

1



This invariant clearly holds after we schedule C1 because so far we have scheduled a single class,

C1, in a single room, R1, and we set l1 = e1. So assume the invariant holds before scheduling the

jth class C j .

If we place C j into a new room Rh+1, then the invariant is maintained: C j is the only class scheduled

in Rh+1 and thus cannot overlap any classes scheduled in the same room, and it ends at time

lh+1 = e j. For the other classrooms, the sets of classes scheduled in them do not change, nor do

the recorded maximum ending times l1, l2, . . . , lh, so the invariant is maintained for these classes

as well.

If we place C j into an existing room Ri , then s j > li . Since all classes already scheduled in Ri end

at or before time li , they do not overlap C j . Also, since li < s j < e j and e j becomes the new value

of li , all classes scheduled in room Ri continue to end at or before time li . As in the previous case,

for all rooms other than Ri , the invariant cannot be violated because the set of classes we schedule

in them and the maximum ending times we record for these rooms do not change.

Once we are done scheduling all n classes, the invariant states explicitly that there are no two

overlapping classes scheduled in the same room. So the schedule we produce is valid.

Now assume the schedule produced by the above algorithm uses k classrooms R1, R2, . . . , Rk. If

k = 1, we clearly cannot do better because we need at least one classroom. So assume k > 1.

Since we start with R1 as the only room allocated initially, the other rooms are allocated one by

one in response to our failure to schedule some classes in the rooms we have allocated so far.

Let C jk be the first class we schedule in room Rk. Let l1, l2, . . . , lk−1 be the ending times recorded

for rooms R1, R2, . . . , Rk−1 at the time we schedule C jk . For all 1 ≤ i ≤ k − 1, li is the ending

time e ji of a class C ji scheduled in room Ri. Since this class is scheduled before C jk , it satisfies

s ji < s jk . Since we schedule C jk in a new room Rk, we also have s jk < li = e ji . This proves that the

intervals I j1 , I j2 , . . . , I jk all contain the time s jk . Thus, the classes C j1 , C j2 , . . . , C jk must be scheduled

in different classrooms, that is, any valid schedule needs to use at least k classrooms. Since our

schedule uses k classrooms, it is optimal.

(c) Almost all of the above algorithm can be implemented in O(n lg n) time, assuming the list of classes

is given as an array or linked list and the output we produce is a linked list of classrooms, each

represented as a linked list of classes scheduled in it. Sorting the classes by increasing starting

times then takes O(n lg n) time using an optimal sorting algorithm, such as Merge Sort. Then we

inspect the classes one at a time. For each class C j , once we have chosen the room Ri to schedule it

in, updating li and appending C j to the list of classes scheduled in Ri takes constant time. If Ri is a

new room we allocate to accommodate C j, appending Ri to the list of rooms also takes constant

time. Thus, we spend constant time per class, O(n) time in total, on this part of the algorithm.

The expensive part is testing whether there exists a classroom Ri such that li < s j . To find Ri , we

simply scan the linked list of classrooms and test this condition for each inspected room. If we

have allocated h classrooms by the time we schedule class C j , then the cost of scanning the list of

classrooms to find a room where to schedule class C j is in O(h). Since h ≤ k, the cost per class

2



is in O(k), O(kn) for all n classes. By adding the costs of the different parts of the algorithm, we

obtain the desired complexity of O(n lg n+ kn).

(d) As just argued, the only part of the algorithm whose cost is not in O(n lg n) (if k ∈ ω(lg n)) is

finding the classroom where to schedule each class. Here we reduce the O(kn) cost of this part to

O(n lg k), thereby reducing the overall cost of the algorithm to O(n lg n+ n lg k) = O(n lg n) (since

every room contains at least one class, we have k ≤ n.)

We maintain the maximum ending times l1, l2, . . . , lh of rooms R1, R2, . . . , Rh in a binary heap.1 The

binary heap supports three types of operations in O(lg h) time, where h is the number of elements

it currently stores: Find the minimum ending time lm (that’s just the root of the heap). Delete

the minimum ending time lm (delete the root). Insert a new ending time li . Now, when trying to

schedule a class C j, there exists a room Ri such that li < s j if and only if lm < s j. Thus, finding

the minimum ending time is sufficient to decide whether we should allocate a new room for C j or

schedule C j in an existing room. If we can schedule C j in an existing room, remember that the

correctness of our algorithm did not depend on the choice of the room where we schedule C j; any

room Ri with li < s j is good enough. So we simply schedule C j in room Rm if lm < s j. To reflect

this in our data structure, we delete lm from the heap and insert e j as the new ending time of room

Rm (which may no longer be the room with the minimum ending time, that is, e j may not end up

being the root of the heap). If we schedule C j in a new room Rh+1, we only insert e j into the heap

as the ending time of room Rh+1. In summary, we perform at most three heap operations per class

and each of these operations takes O(lg h) ⊆ O(lg k) time. Thus, the total cost of maintaining the

heap over the course of the algorithm is O(n lg k), as desired.

Solution 2

(a) An alternate strategy for constructing the same allocation of classes to classrooms as produced

by the previous algorithm fills one classroom at a time. Once again, we sort the classes by their

starting times s1, . . . , sn. Let S1 be this sorted list. This is the input we use to construct the set of

classes to be scheduled in the first classroom R1. In general, the ith iteration of the algorithm is

given the list Si of classes not already scheduled in classrooms R1, . . . , Ri−1 and selects from Si the

set of classes to be scheduled in room Ri. The classes in Si not scheduled in room Ri are placed

into the input list Si+1 for the next iteration. The ith iteration works as follows: If Si = ;, then

there are no classes left to schedule and the algorithm terminates, having scheduled all classes

in classrooms R1, . . . , Ri−1. Otherwise, it initialize the ending time `i of the last class scheduled

in room Ri to be `i = −∞ and initializes Si+1 = ;. Then it scans the classes in Si in order. For

each class C j in Si, if s j ≥ `i, then C j starts after the last class in Ri ends, so we can schedule C j

in room Ri. The algorithm does just that and reflects this decision by setting `i = e j as the new

1A balanced binary search tree would also do just fine, but it is a more complicated data structure, so it is worthwhile to
observe that the full power of binary search trees is not needed here.

3



ending time of the last class scheduled in room Ri . If s j < `i , then C j starts before the last class in

Ri ends and the algorithm appends C j to Si+1, to be scheduled in a subsequent classroom.

(b) Analogous to the correctness proof of the previous algorithm, observe that, if we place a class C j

into a classroom Ri , then `i ≤ s j at the time we add C j to class Ri . Thus, all classes scheduled in Ri

so far end at or before time `i and thus do not overlap with class C j . Thus, scheduling C j in room

Ri maintains the invariant that no two classes in Ri overlap. (A completely formal proof uses the

same invariant as in Solution 1.) Since this argument applies to every classroom Ri, the classes

scheduled in each room do not overlap, so the assignment of classes to classrooms is valid.

Now assume that we use k classrooms R1, . . . , Rk. Once again, let C jk be the first class we schedule

in room Rk. Since C jk ∈ Sk ⊆ Sk−1 ⊆ · · · ⊆ S1, that is, the class C jk is inspected by the scan of

each of of the lists S1, . . . , Sk−1 and the algorithm decided not to schedule C jk in any of the rooms

R1, . . . , Rk−1. Consider the scan of Si . At the time we reach C jk , we would schedule C jk in room Ri

if `i ≤ s jk . Thus, s jk < `i . Since `i is the ending time of some class C ji already scheduled in Ri , we

have e ji > s jk and, since this class was inspected before C jk during the scan of Si , s ji ≤ s jk . Thus, I ji

contains the time s jk . By applying this argument to each of the lists S1, . . . , Sk−1, we obtain k− 1

classes C j1 , . . . , C jk−1
scheduled in rooms R1, . . . , Rk−1 whose intervals I j1 , . . . , I jk−1

all contain the

time s jk . Since I jk also contains s jk , we once again have k intervals that contain s jk , that is, we

need at least k classrooms to schedule all classes in S1; the schedule computed by the algorithm is

optimal.

(c) Sorting the classes by their starting times to produce S1 takes O(n lg n) time using Merge Sort or

any other optimal sorting algorithm. After that, each iteration of the algorithm scans Si and splits

it into the list of classes scheduled in room Ri and Si+1. This takes O(n) time per iteration. Since

the algorithm terminates after k iterations, the total cost of the algorithm is O(n lg n+ kn).

(d) The only disadvantage of this algorithm is that it is harder to reduce its running time to O(n lg n).

Indeed, it seems impossible to make it run in O(n lg k) time excluding the initial sorting cost, which

was possible for the algorithm in Solution 1. However, since the sorting cost is O(n lg n) anyway, it

suffices to reduce the total running time of the k iterations of the algorithm to O(n lg n).

For 1 ≤ i ≤ k, let ni be the number of classes scheduled in room Ri. Then we show how to

implement the ith iteration in O(ni lg n) time. Since
∑k

i=1 ni = n, this implies that the total cost

of the k iterations of the algorithm is O(
∑k

i=1 ni lg n) = O(n lg n). To achieve this, each iteration

expects the classes in Si stored in a binary search tree with their starting times as keys. Instead

of sorting the classes by their starting times to produce S1, the preprocessing for the algorithm

now consists of constructing the initial binary search tree representing S1, which can be done

using n insertions into the tree and thus still takes O(n lg n) time. The overall running time of the

algorithm is thus O(n lg n), as for Solution 1.

Given a binary search tree T storing the classes in Si , the first class we schedule in room Ri is the

class with minimum starting time, which can be found in O(lg n) time by following the path to the

4



leftmost leaf of T . The next class we schedule in room Ri is the first class C j′ in Si whose starting

time is no less than the ending time e j of the most recent class C j scheduled in room Ri . We can

locate C j′ by searching T for the smallest starting time s j′ that is no less than e j. This is called a

successor query in data structure parlance and can be performed on a binary search tree in O(lg n)

time. Thus, each of the ni classes scheduled in room Ri can be located in O(lg n) time using a

successor query. The overall cost of these successor queries is O(ni lg n), as required. In order to

prepare T for the next iteration, we need to ensure that it stores the classes in Si+1 after the ith

iteration. This is easily accomplished by deleting every class scheduled in Ri from T , which takes

O(lg n) time per class, O(ni lg n) time in total. Thus, the cost of the ith iteration is O(ni lg n), as

required.

5


