
Banner number: Name:

Midterm Exam
CSCI 3110: Design and Analysis of Algorithms

June 26, 2018

Question 1.1

Question 1.2
∑

Question 2.1

Question 2.2
∑

Question 3.1

Question 3.2
∑

Group 1 Group 2 Group 3
∑

Instructions:

• The questions are divided into three groups: Group 1 (35%), Group 2 (43%), and Group 3 (22%).
You have to answer all questions in Groups 1 and 2 and exactly one question in Group 3. In
the above table, put a check mark in the small box beside the question in Group 3 you want me to
mark. If you select zero or two questions, I will randomly choose which one to mark.

• Provide your answer in the box after each question. If you absolutely need extra space, use the
backs of the pages; but try to avoid it. Keep your answers short and to the point.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your
train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired running
time, design a slower algorithm that is correct. A correct and slow algorithm earns you 50% of the
marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned
in class as black boxes, without explaining how they work, as long as these algorithms and data
structures do not directly answer the question.

• Read every question carefully before answering. In particular, do not waste time on an anal-
ysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 9 pages, including this title page. Notify me immediately if your copy has fewer
than 9 pages.

1

Question 1.1 (Worst-case running time) 4 marks

Define what the worst-case running time of an algorithm is.

The worst-case running time of a (deterministic) algorithm is a function T of the input size n such that
T (n) is the maximum running time over all possible inputs of size n. (If the algorithm is not deterministic,
the running time may also depend on factors independent of the input, something we ignore here.)

Question 1.2 (Asymptotic growth of functions) 12 marks

(a) Formally state the condition that two functions f (n) and g(n) have to satisfy for f (n) to belong
to the set Θ(g(n)). (Do not use that f (n) ∈ Θ(g(n)) if and only if f (n) ∈ O(g(n)) and f (n) ∈
Ω(g(n)).)

There must exist three constants 0 < c1 ≤ c2 and n0 ≥ 0 such that c1 · g(n) ≤ f (n) ≤ c2 · g(n) for
all n≥ n0.

(b) Formally state the condition that two functions f (n) and g(n) have to satisfy for f (n) to belong
to the set o(g(n)).

For every c > 0, there must exist a constant n0 ≥ 0 such that f (n)≤ c · g(n) for all n≥ n0.

(c) If a function f (n) is not in Ω(g(n)), does that mean that f (n) ∈ o(g(n))? If so, prove it. If not,
provide two functions f (n) and g(n) such that f (n) is neither inΩ(g(n)) nor in o(g(n)) and prove
that f (n) /∈ Ω(g(n)) and f (n) /∈ o(g(n)).

Consider the functions

f (n) =

¨

n n is even
1 n is odd

and g(n) = n.

Then f (n) /∈ o(g(n)) because for c = 1/2, there exists no n0 such that f (n) ≤ n/2 for all n ≥ n0:
for all even n, we have f (n) = g(n).

Similarly, f (n) /∈ Ω(g(n)) because for any c > 0, we have f (n) = 1 < cn = c · g(n) for all odd
n≥ 1

c + 1. Thus, there exists no n0 such that f (n)≥ c · g(n) for all n≥ n0.

2

Question 2.1 (Asymptotic growth of functions) 10 marks

(a) Prove that the function f (n) = 3n lg n− 2n+ 11 is in O(n lg n) by explicitly providing constants
n0 and c such that f (n)≤ c · g(n) for all n≥ n0.

f (n) = 3n lg n− 2n+ 11 ∀n≥ 1
0≤ 2n ∀n≥ 0

f (n)≤ 3n lg n + 11 ∀n≥ 1
0≤ 5.5n lg n − 11 ∀n≥ 2

f (n)≤ 8.5n lg n ∀n≥ 2.

(b) Use limits to prove that n lg n ∈ o(n2).

lim
n→∞

n lg n
n2

= lim
n→∞

lg n
n

= lim
n→∞

1
n ln 2

1
(by l’Hôpital’s rule)

= lim
n→∞

1
n ln 2

= 0.

3

Question 2.2 (Amortized analysis) 10 marks

Consider the problem of implementing a stack. The only supported operations are PUSH and POP. If
we never store more than m elements on the stack, then we can implement the stack using an array
A of size m along with a variable n that equals the number of elements currently stored on the stack.
Initially, n = 0. A PUSH operation stores the pushed element in the array slot A[n] and increments n.
A POP operation decrements n and returns the element A[n]. Both operations take O(1) time.

If we do not know the number of elements we may store on the stack, we need to be able to resize the
array to accommodate more elements if necessary, and we want to be able to shrink the array when n
is significantly less than m, so as not to waste space. To achieve this, we initially allocate an array of
size 4 and set its capacity to m= 4 and the number of elements it contains to n= 0. A PUSH operation
checks whether n < m. If so, it behaves exactly like the PUSH operation described above. Otherwise,
it first doubles m and allocates a new array of size m. Then it copies the n elements in A to the new
array, deallocates A, and lets the new array play the role of A. It then pushes the new element as in the
case when n< m. A POP operation decreases n by one and stores A[n] in a temporary variable x . Next
it checks whether m≤max(4,4n). If m≤max(4,4n), it returns x . If m>max(4,4n), it halves m and
allocates a new array of size m. Then it copies the n elements in A to the new array, deallocates A, and
lets the new array play the role of A. After doing this, it returns the element stored in x .

The actual cost of a PUSH or POP operation is constant if m does not change. If m changes, then the
operation spends Θ(n) time to allocate a new array and copy the Θ(n) elements from the old array to
the new array. Use a potential function to prove that the amortized cost per PUSH or POP operation is
still constant.

Hint: Note that each time we resize A, it ends up being exactly half full (m = 2n). The chance of
an expensive PUSH or POP operation increases the closer A is to being full (m = n) or a quarter full
(m= 4n). This should be all you need to define an appropriate potential function.

The potential function is Φ = 0 if n < 2 and Φ = c|n−m/2| if n ≥ 2, where c > 0 is an appropriate
constant to be defined later. Then Φ= 0 initially and Φ≥ 0 at all times, that is, this is a valid potential
function.

Using this potential function, we can prove that the amortized cost of a PUSH or POP operation excluding
the cost of resizing the array is in O(1) and the amortized cost of resizing the array is zero. Thus, the
amortized cost per PUSH or POP operation is in O(1).

PUSH (excluding resizing): This operation has an actual cost in O(1), does not alter m, and increases
n by one. Thus, Φ increases by at most c and its amortized cost is O(1) +∆Φ≤ O(1) + c = O(1).

POP (excluding resizing): This operation has an actual cost in O(1), does not alter m, and decreases
n by one. Thus, Φ increases by at most c and its amortized cost is O(1) +∆Φ≤ O(1) + c = O(1).

Resizing: The array can be resized only if n≥ 2, so Φ= |n−m/2|. We resize A either because n= m or
n= m/4. In the former case, Φ= c|m−m/2|= cm/2= cn/2. In the latter case, Φ= c|m/4−m/2|=
cm/4 = cn. After the resize operation, m = 2n (if n = m, we double m, so m = 2n; if n = m/4,
we halve m, so m = 2n). Thus, Φ = 0 after the resize operation and ∆Φ ≤ −cn/2. The actual
cost of the resize operation is bounded by an for some contant a. Thus, its amortized cost is at most
an+∆Φ≤ an− cn/2, which is non-positive as long as we choose the constant c in the potential function
to be at least 2a.

4

Extra space for Question 2.2

5

Question 3.1 (Graph algorithms) 10 marks

Consider a grid of city roads. Such a grid can be modelled as a graph where the vertices are intersec-
tions and the edges are stretches of road between intersections. In many North American cities, this
grid is mostly regular: every road runs North to South or East to West, but roads may be interrupted by
larger city blocks holding parks or bigger buildings. As a graph, this means that every intersection has
at most 4 incident edges, one going North, one South, one East, and one West, but some of these edges
may be missing. An example of a city road grid is shown below (left), along with its representation
as a graph (right).

A

B

A

B

Now consider a visitor to the city who wants to drive from point A to point B (A and B are intersections,
that is, vertices of the graph). While the locals are good at picking the shortest route, a visitor is mostly
interested in not getting lost, so the route should be as simple as possible, even if it isn’t the shortest
route. Here, we consider a route simple if it makes few turns. Thus, we want to find a path between
any two vertices of the graph that involves as few turns as possible. In the figure above, the dashed
path from A to B is shorter than the solid path, but it makes 4 turns while the solid path makes only
two. Thus, the locals would prefer the dashed path but visitors would prefer the solid path.

Describe an algorithm that takes the graph representing the grid of city streets as input and finds a
route with the minimum number of turns in O(n lg n) time, where n is the number of vertices in the
graph. Argue briefly that the running time of your algorithm is in O(n lg n) and prove that it does
indeed find a path with the smallest number of turns.

Hint: First observe that the input graph G has only O(n) edges because every vertex has degree at
most 4. Next observe that the problem is essentially a shortest path problem with the length of a path
not being the number of edges on the path but the number of turns you make along the path. Can you
build an auxiliary graph H whose vertices represent the edges of G and where the distance between
two nodes corresponds to the minimum number of turns in any path in G that starts with one of the
two corresponding edges and ends with the other one?

The algorithm: The auxiliary graph H has one vertex per edge of G. We refer to each vertex of H by
the same name as its corresponding edge in G. There is an edge between two vertices e1 and e2 of H if
and only if the two edges e1 and e2 of G share an endpoint v. The weight of this edge (e1, e2) in H is 1 if
the edge e1 of G is vertical and the edge e2 is horizontal or vice versa; otherwise (both edges are vertical
or both are horizontal), the edge (e1, e2) in H has weight 0.

We construct H by first making the edge list of G the vertex list of H. Then we scan the adjacency list of
every vertex in G and add an edge (e1, e2) to H for every pair of edges (e1, e2) in the adjacency list of a
vertex v.

Given two vertices A and B of G between which we want to find the minimum-turn path, we run up to
4 single-source shortest-path computations in H, one starting with each edge incident to A. The shortest
path to each edge incident to B corresponds to the minimum-turn path in G starting with the chosen
edge incident to A and ending with the chosen edge incident to B. We report the shortest of these paths
(in H), from which the corresponding path in G, as an edge sequence, can be constructed trivially.

6

Extra space for Question 3.1

Analysis: The construction of H obviously takes linear time in the number of vertices and edges added
to H. H has m vertices, but we observed already that m ≤ 4n. Similarly, every vertex of H has at most
6 neighbours, up to 3 per endpoint of the corresponding edge of G. Thus, H has at most 6m ≤ 24n
edges. This shows that H can be constructed in O(n) time. Running Dijkstra’s algorithm on H 4 times
to compute shortest paths takes O(n lg n) time. (By exploiting that all edge weights are 0 or 1, we can
in fact compute shortest paths in H in O(n) time, but this takes more effort.)

Correctness: Consider any path Q between two nodes e1 and e2 in H. Since there is an edge between
two nodes in H if and only if the two corresponding edges in G share an endpoint, Q corresponds to a
path P in G and the edge weights in H are chosen so that the length of Q is exactly the number of turns
P makes.

Conversely, any path P in G that starts with e1 and e2 corresponds to a path Q from e1 to e2 in H whose
length is the number of turns P makes. Thus, distH(e1, e2) is exactly the minimum number of turns in
any path in G that starts with e1 and ends with e2. By considering all paths starting with an edge e1

incident to A and ending with an edge e2 incident to B, we find the minimum-turn path from A to B in G.

7

Question 3.2 (Greedy algorithms) 10 marks

You are given n jobs J1, . . . , Jn. Each job Ji takes one unit of time to complete and has a deadline di

before which it must be completed. Develop an algorithm that takes O(n lg n) time to compute an
ordering in which to complete the jobs so that the number of jobs completed before their deadlines
is maximized. Argue briefly that its running time is indeed in O(n lg n) and prove that there is no
ordering of the jobs that ensures that more jobs are completed before their deadlines than using the
ordering output by your algorithm.

Example: Given 5 jobs J1, . . . , J5 with deadlines 3, 2, 2, 1, 5, you can complete 4 of them before their
deadlines using the following two orderings (and a few others):

J4 J2 J1 J3 J5Job

1 2 3 4 5Completion time

1 2 3 2 5Deadline

J4 J3 J1 J5 J2Job

1 2 3 4 5Completion time

1 2 3 5 2Deadline

No order allows you to complete more than 4 jobs before their deadlines, so these orders are optimal.

Hint: Your algorithm should make a very natural greedy choice for each job. If you fail to complete
job Ji before its deadline di, then you should have more than di jobs with deadlines before di. This
should be the key to your correctness proof.

We can assume that the deadlines are integers because a job can be completed before its deadline di if
and only if it can be completed before the earlier deadline bdic.

The algorithm: We sort the jobs by their deadlines. Let J1, . . . , Jn be the resulting ordering. Now we
inspect the jobs in order and add them to a schedule S. We also keep a list L of late jobs that we cannot
schedule before their deadlines. Initially, both S and L are empty. For the ith job Ji, if S already contains
di jobs, then the earliest completion time for job Ji would be di+1. Thus, we append Ji to L. If S contains
less than di jobs, we append Ji to S. Once we have inspected all jobs, we append all jobs in L to S.

Analysis: The algorithm sorts the jobs in O(n lg n) time and then inspects each job spending constant
time for each job to decide whether to add it to S or L. Thus, the construction of S and L takes O(n)
time. Concatenating S and L at the end takes no more than O(n) time even if we represent S and L as an
array (which is what I would do in an actual implementation). Thus, the running time of the algorithm
is dominated by the initial sorting step and thus takes O(n lg n) time. (By exploiting that the deadlines
are integers and that jobs with deadlines greater than n are completed before their deadlines no matter
the order in which we schedule jobs, we can accomplish the sorting step in linear time using Counting
Sort. This reduces the running time to O(n).)

Correctness: We prove by induction on i that (1) all jobs we add to S are completed before their deadlines
and (2) if we schedule ni of the jobs in {J1, . . . , Ji}, before their deadlines, then it is impossible to schedule
more than ni jobs in this set before their deadlines. For i = n, this shows that it is impossible to schedule
more jobs before their deadlines than using the final ordering produced by our algorithm.

For the base case, i = 0, S = ;, so (1) holds trivially. It is clearly not possible to schedule more than 0
jobs in the empty set before their deadlines, so (2) also holds.

For the inductive step, i > 0, we distinguish two cases:

8

Extra space for Question 3.2

If we append Ji to S, then S contains at most di jobs after we append Ji to S, so Ji is completed before
its deadline di and (1) continues to hold. We have ni = ni−1 + 1 in this case. Any ordering that
completes more than ni of the jobs in {J1, . . . , Ji} before their deadlines would have to complete more
than ni − 1 = ni−1 of the jobs {J1, . . . , Ji−1} before their deadlines. By the inductive hypothesis, this
is impossible. Thus, it is impossible to complete more than ni of the jobs in {J1, . . . , Ji} before their
deadlines, that is, (2) holds.

If we do not append Ji to S, then (1) trivially continues to hold. Since we do not append Ji to S, S already
contains di jobs from {J1, . . . , Ji−1}, that is, ni = ni−1 = di. All jobs in {J1, . . . , Ji} have deadlines no later
than di because we inspect jobs by increasing deadlines. Thus, even if all jobs in {J1, . . . , Ji} had deadline
di, it would not be possible to complete more than di of them before their deadline. Since ni = di, this
shows that it is impossible to complete more than ni of the jobs in {J1, . . . , Ji} before their deadlines; (2)
holds.

9

