
Banner number: Name:

Midterm Exam

CSCI 3110: Design and Analysis of Algorithms

June 24, 2015

Group 1

Question 1.1

Question 1.2

∑

Group 2

Question 2.1

Question 2.2

∑

Group 3

Question 3.1

Question 3.2

∑

∑

Instructions:

• The questions are divided into three groups: Group 1 (18 marks = 36%), Group 2 (20 marks =

40%), and Group 3 (12 marks = 24%). You have to answer all questions in Groups 1 and 2

and exactly one question in Group 3. In the above table, put a check mark in the small box

beside the one question in Group 3 you want me to mark. If you select 0 or 2 questions in

Group 3, I will mark neither.

• Provide your answer in the box after each question. If you absolutely need extra space, use the

backs of the pages; but try to avoid it. Keey your answers short and to the point. If you need

scrap paper, you can also use the backs of the pages.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your

train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired

running time, design a slower algorithm that is correct. A correct and slow algorithm earns you

50% of the marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned

in class as black boxes, without explaining how they work, as long as these algorithms and data

structures do not directly answer the questions.

• Read every question carefully before answering. In particular, do not waste time on an

analysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 9 pages, including this title page. Notify me immediately if your copy has

fewer than 9 pages.

1

Question 1.1 (Asymptotic growth of functions) 9 marks

a. Define the set o(f (n)).

o(f (n)) is the set of all functions g(n) with the property that, for all c > 0, there exists a constant

nc ≥ 0 such that

g(n)≤ c · f (n) ∀n≥ nc.

b. Running times of algorithms are always positive functions, that is, T (n) > 0 for all n. Use the

definition of o-notation given above to show that, for two positive functions f (n) and g(n),

f (n) ∈ o(g(n)) if and only if limn→∞
f (n)

g(n)
= 0.

f (n) ∈ o(g(n))⇐⇒∀c > 0∃nc ≥ 0∀n≥ nc : f (n)≤ c · g(n) (definition of o-notation)

⇐⇒∀c > 0∃nc ≥ 0∀n≥ nc :
f (n)

g(n)
≤ c (because g(n)> 0 for all n)

⇐⇒∀c > 0∃nc ≥ 0∀n≥ nc :

�

�

�

�

f (n)

g(n)

�

�

�

�

≤ c (because
f (n)

g(n)
> 0 for all n)

⇐⇒ lim
n→∞

f (n)

g(n)
= 0 (definition of limits)

2

Question 1.2 (Running time of algorithms) 9 marks

Let A and B be two algorithms that solve the same problem P. Assume A’s average-case running time

is in Θ(n) while its worst-case running time is in Θ(n2). B’s average-case running time is in Θ(n lg n),

as is its worst-case running time. The constants hidden by the Θ-notation are much smaller for A than

for B and A is much easier to implement than B. Now consider a number of real-world scenarios where

you would have to solve problem P. State which of the two algorithms would be the better choice in

each of the following scenarios and briefly justify your answer.

a. The inputs are fairly small.

In this case, the smaller constant factors in algorithm A will likely make A faster than B, even in

the worst case, so we’d prefer A over B. The better worst-case running time of B outweighs the

smaller constant factors of A only for sufficiently large inputs.

b. The inputs are big and fairly uniformly chosen from the set of all possible inputs. You want to

process a large number of inputs and would like to minimize the total amount of time you spend

on processing them all.

Since the inputs are chosen fairly uniformly from the set of all possible inputs, the average time

it takes to process one of the inputs using A is in Θ(n). If there are m inputs, the total time to

process the inputs can therefore be expected to be in Θ(mn). Using B, processing these m inputs

takes Θ(mn lg n) time. Combined with the smaller constant factors in algorithm A, this clearly

makes A the better choice.

c. The inputs are big and heavily skewed towards A’s worst case. As in the previous case, you want

to process a large number of inputs and would like to minimize the total amount of time you

spend on processing them all.

Since the inputs are heavily skewed towards A’s worst case, most of the inputs will take Θ(n2) time

to process, for a total time of Θ(mn2) to process m inputs. Using B, it takes only Θ(mn lg n) time

to process the same inputs. Since the inputs are big, the better constant factors of A are unlikely

to outweigh this advantage of B, so B is likely the better choice.

d. The inputs are of moderate size, neither small nor huge. You would like to process them one at

a time in real time, as part of some interactive tool for the user to explore some data collection.

Thus, you care about the response time on each individual input.

Since the inputs are not small, quadratic running time cannot be expected to be negligible. Since

I care about response time on each individual input, the resulting delay in processing the input

is unacceptable. Thus, I need an algorithm that guarantees a performance better than Θ(n2) for

every single input: algorithm B.

3

Question 2.1 (Asymptotic growth of functions) 10 marks

a. Order the following functions by increasing order of growth:

n lg n nlg n (lg n)n 2
lg n
2 n2

2
lg n
2 =
p

n n lg n n2 nlg n (lg n)n

b. Prove that you have arranged the second and third functions in the sorted sequence in the right

order; that is, if the sorted sequence is f1(n), f2(n), . . . , f5(n), prove that f2(n) ∈ o(f3(n)).

The second function is n lg n, the third function is n2. We need to prove that limn→∞
n lg n

n2 = 0,

which holds if and only if limn→∞
lg n

n
= 0. To prove the latter, we apply l’Hôpital’s rule:

lim
n→∞

lg n

n
= lim

n→∞

1/(n ln2)

1
= lim

n→∞

1

n ln 2
= 0.

c. Prove that f (n) = 3n2+n lg n−10n ∈ Θ(n2) by providing constants 0< c1 < c2 and n0 ≥ 0 such

that c1n2 ≤ f (n)≤ c2n2 for all n≥ n0.

For all n ≥ 0, we have 10n ≥ 0, so 3n2 + n lg n − 10n ≤ 3n2 + n lg n. We also have 2 ≥ lg2,
dn

dn
= 1, and

d lg n

dn
= 1

n ln2
< 1 for all n≥ 2, so n≥ lg n for all n≥ 2. This shows that, for all n≥ 2,

n lg n≤ n2 and thus 3n2 + n lg n≤ 4n2. In summary, we have f (n)≤ 4n2 for all n≥ 2.

For all n ≥ 1, we have n lg n ≥ 0, so 3n2 + n lg n − 10n ≥ 3n2 − 10n. For n ≥ 10, we have

n2 ≥ 10n, so 3n2 − 10n≥ 2n2. In summary, we have f (n)≥ 2n2 for all n≥ 10.

Putting these two inequalities together, we have 2n2 ≤ f (n) ≤ 4n2 for all n ≥ max(2, 10) = 10;

c1 = 2, c2 = 4, and n0 = 10.

4

Question 2.2 (Correctness proofs) 10 marks

Here’s yet another minimum spanning tree algorithm:

MST(G)

T := G

while T contains a cycle

do Choose an arbitrary cycle C in T

Remove the heaviest edge in C from T

return T

Prove that this algorithm does indeed produce a minimimum spanning tree of G. You may assume

that G is connected and that there are no two edges in G that have the same weight. Your proof needs

to show that the algorithm terminates, that the result is a spanning tree of G, and that it has minimum

weight among all spanning trees of G.

First we argue that the algorithm terminates. Since we start with the finite graph T = G and each

iteration of the while loop removes one edge from T, we leave T without edges after a finite number

of iterations. At this point, T is guaranteed to be cycle-free, so the while-loop exits and the algorithm

terminates.

It is easy to show that T is a tree when the while loop exits: Since G is connected and we initially set

T = G, T is initially connected. Removing an edge from a cycle cannot disconnect the graph. Thus, T

remains connected at all times. The while loop exits only once the graph contains no more cycles. At this

point, T is connected and contains no cycles, that is, it is a tree.

Next assume that T is not an MST of G. Let T ′ be an MST of G. In particular, T ′ 6= T, so there exists an

edge e′ ∈ T ′ that does not belong to T . The removal of e′ from T ′ splits T ′ into two subtrees T ′
1

and T ′
2
.

Let U be the vertex set of T ′
1

and W be the vertex set of T ′
2
.

Since e′ ∈ G but e′ /∈ T, the construction of T from G must have removed e′ as the heaviest edge of some

cycle C. The path P obtained by removing e′ from C has one endpoint in U and one in W. Thus, it must

contain an edge e that crosses the cut (U , W). Since e ∈ C, e′ is the heaviest edge in C, and no two edges

have the same weight, we have w(e) < w(e′). Let T ′′ = T ′ \ {e′} ∪ {e}. Since T ′ is connected, T ′ ∪ {e}
is connected. T ′′ is obtained by removing the edge e′ from a cycle in T ′ ∪ {e}, so T ′′ is also connected.

The only cycle in T ′ ∪ {e} is the one formed by adding e because T ′ is a tree. This cycle is broken by the

removal of e′, so T ′′ contains no cycle. Thus, T ′′ is connected and acyclic, that is, it is a tree. The weight

of T ′′ is w(T ′′) = w(T ′) + w(e)− w(e′) < w(T ′) because w(e) < w(e′). Thus, since T ′′ is a spanning

tree of G, T ′ cannot be an MST of G, a contradiction.

5

Question 3.1 (Graph algorithms) 12 marks

Given a graph G whose edges have positive weights, a shortest path between two vertices u and w is a

path from u to w whose edges have minimum total weight among all paths from u to w. The distance

dist(u, w) between u and w is the length of such a shortest path. The diameter of G is the maximum

distance between any two vertices in G: diam(G) = maxu,v∈G dist(u, v). In general, computing the

diameter of G boils down to computing all pairwise vertex distances and reporting the largest one. If

G is a tree, however, things get quite a bit simpler.

Develop an algorithm that computes the diameter of a tree T whose edges have positive weights. The

running time of your algorithm should be in O(n), where n is the number of vertices of T . Describe

your algorithm, argue that its running time is in O(n), and prove that it does indeed compute the

diameter of T .

The first observation is that, since the edge weights are positive, the two vertices u and v such that

diam(T) = dist(u, v) are leaves. Indeed, if v is not a leaf, then there exists a leaf v′ such that v belongs

to the path from u to v′, that is, dist(u, v′) = dist(u, v)+dist(v, v′)> dist(u, v) because all edge weights

are positive and thus dist(v, v′) > 0. The same argument can be applied to argue that u must be a leaf.

Thus, all we have to find is the maximum distance between two leaves of T .

Let r be an arbitrary leaf of T . From here on, we no longer consider r to be a leaf of T and instead call

it the root of T . The parent of a node v is now the first node after v on the path from v to r in T . For

two nodes u and w, the lowest common ancestor (LCA) of u and w is the node closest to r on the path

from u to w.

Now let P be the set of all pairs of leaves of T . Then, as we observed already diam(T) =

max(u,v)∈P dist(u, v). We can partition P into sets Px , for x ∈ V (T), such that (u, v) ∈ Px if and only

if x is the LCA of u and v. This gives diam(T) = maxx∈V (T)max(u,v)∈Px
dist(u, v). Since T has n ver-

tices, computing diam(T) thus takes linear time once we are given mx := max(u,v)∈Px
dist(u, v) for all

x ∈ V (T).

To compute these values mx for all x ∈ V (T), we start by computing values dx for all x ∈ V (T).

For every x ∈ V (T), dx is the maximum distance from x to some descendant leaf y of x. Formally,

dx :=maxy∈Dx
dist(x , y), where Dx is the set of all leaves y such that x belongs to the path from r to y.

Assume for now, we have already computed these values. Then we observe that we can compute mx , for

every x ∈ V (T), in linear time in the number of its children in T:

If x = r, then r is the LCA of u and v if and only if w.l.o.g. u= r and v ∈ Dr . Thus, Pr = {(r, y) | y ∈ Dr}
and mr = dr .

If x 6= r, consider a pair (u, v) ∈ Px and let u′ and v′ be the children of x such that u ∈ Du′ and v ∈ Dv′ .

Then dist(u, v) = dist(u, u′) + w(u′, x) + w(x , v′) + dist(v′, v). If dist(u, v) = mx , then dist(u, u′) = du′

and dist(v′, v) = dv′ . Assume dist(u, u′) < du′ . Then there exists a leaf u′′ ∈ Du′ with dist(u′′, u′) =
du′ > dist(u, u′). We have (u′′, v) ∈ Px and dist(u′′, v) = dist(u′′, u′)+w(u′, x)+w(x , v′)+dist(v′, v)>

dist(u, u′)+w(u′, x)+w(x , v′)+dist(v′, v) = dist(u, v), contradicting the assumption that dist(u, v) =

mx . The same argument shows that dist(v′, v) = dv′ . Thus, to compute mx , all we need to find is the

pair of children (u′, v′) such that du′ + w(u′, x) + dv′ + w(v′, x) is maximized. This sum is maximized

if we maximize the two terms hu′ := du′ + w(u′, x) and hv′ := dv′ + w(v′, x) individually, respecting the

constraint that u′ 6= v′. Thus, we can compute mx using a single scan of the list of children of x during

which we keep track of the two children u′ and v′ of x we have seen so far that maximize hu′ and hv′ .

6

Extra space for Question 3.1

Since we can compute mx in O(|Cx |) time for every x ∈ V (T), where Cx is the set of x’s children and

every node y ∈ V (T) is the child of at most one node x ∈ V (T), computing mx for all x ∈ V (T) thus

takes O(n) time.

It remains to compute dx for all x ∈ V (T). To do this, we process the nodes by decreasing distance

(measured in number of edges, not their weight) from r. This is easily done in linear time using a

DFS traversal of T starting from r and processing every node x immediately before the DFS backtracks

from x. Since the children of x have been visited by this time, the value dy is known for each such child

y by the time we attempt to compute dx . Now it suffices to observe that dx = maxy∈Cx
(w(x , y) + dy),

where Cx is the set of x’s children, that is, dx can be computed in O(|Cx |) time from the dy values of its

children. In total, this takes linear time over all nodes of T .

To see that dx =maxy∈Cx
(w(x , y)+dy), we start by observing that dx ≥maxy∈Cx

(w(x , y)+dy). Indeed,

choose y ′ ∈ Cx such that w(x , y ′) + dy ′ = maxy∈Cx
(w(x , y) + dy). Then there exists a leaf y ′′ ∈ Dy ′

such that dy ′ = dist(y ′, y ′′). For this leaf, dist(x , y ′′) = w(x , y ′) + dist(y ′, y ′′) = w(x , y ′) + dy ′ . Since

y ′′ ∈ Dx , this shows that dx =maxz∈Dx
dist(x , z)≥ dist(x , y ′′) = w(x , y ′) + dy ′ .

To see that dx ≤maxy∈Cx
(w(x , y)+ dy), let z′′ ∈ Dx such that dist(x , z′′), and let z′ be the child of x on

the path from x to z′′. Then dist(x , z′′) = w(x , z′)+dist(z′, z′′)≤ w(x , z′)+dz′ ≤maxy∈Cx
(w(x , y)+dy).

7

Question 3.2 (Greedy algorithms) 12 marks

In this question, you are given a set C = {1, 5, 10, 25} of coin denominations, that is, pennies, nickels,

dimes, and quarters. Your goal is to design an algorithm which, for any input value V in cents, outputs

the minimum number of coins with denominations in C whose total value is exactly V . For example,

to represent the value V = 37, we would choose one quarter, one dime, one nickel, and two pennies,

a total of 5 coins. Your algorithm should take O(|C |) = O(1) time. An O(V + |C |)-time algorithm is

also acceptable.

Describe your algorithm, argue briefly that it does indeed achieve the desired running time, and prove

formally that it outputs the minimum number of coins needed to represent a given value V , for any

value V it is given as input.

Here’s a simple constant-time algorithm:

MinimumNumberOfCoins(V)

nq := ⌊V/25⌋
V1 := V − 25nq

nd := ⌊V1/10⌋
V2 := V1 − 10nd

nn := ⌊V2/5⌋
V3 := V2 − 5nn

np := V3

Use nq quarters, nd dimes, nn nickels, and np pennies to represent V

The algorithm clearly takes constant time. The chosen coins have a total value of V : V3 = np. V2 =

V3 + 5nn = np + 5nn. V1 = V2 + 10nd = np + 5nn + 10nd . V = V1 + 25nq = np + 5nn + 10nd + 25nq.

Moreover, the produced solution is feasible because nq, nd , nn, np ≥ 0. To see this, observe that V ≥ 0

and hence nq = ⌊V/25⌋ ≥ 0. Since nq = ⌊V/25⌋, we have 25nq ≤ V , so V1 = V − 25nq ≥ 0. By the

same arguments, V2, V3, nd , nn, np ≥ 0.

We refer to the solution produced by our algorithm as the tuple (nq, nd , nn, np). The number of coins in

this solution is |(nq, nd , nn, np)| := nq + nd + nn+ np. We prove that this is the unique optimal solution,

that is, there exists no optimal solution (n′
q
, n′

d
, n′

n
, n′

p
) that does not satisfy n′

q
= nq, n′

d
= nd , n′

n
= nn,

and n′
p
= np. So consider any optimal solution (n′

q
, n′

d
, n′

n
, n′

p
).

First observe that n′
p
< 5. Otherwise, (n′

q
, n′

d
, n′

n
+ 1, n′

p
− 5) would be a better solution than

(n′
q
, n′

d
, n′

n
, n′

p
). Similarly, n′

n
< 2 because otherwise (n′

q
, n′

d
+ 1, n′

n
− 2, n′

p
) would be a better solution.

Next observe that n′
q
≤ nq because 25n′

q
≤ V and nq = ⌊V/25⌋. If n′

q
< nq, then (0, n′

d
, n′

n
, n′

p
) is a

solution for the value V1 = V −25n′
q
, and it must be an optimal solution because if there existed a better

solution (n′′
q
, n′′

d
, n′′

n
, n′′

p
) for V1, then (n′

q
+ n′′

q
, n′′

d
, n′′

n
, n′′

p
) would be a better solution for V . Now observe

that V1 = V − 25n′
q
≥ 25nq − 25n′

q
≥ 25.

If n′
d
≥ 3, then (0, n′

d
, n′

n
, n′

p
) is not optimal because the solution (1, n′

d
− 3, n′

n
+ 1, n′

p
) also represents

V1 and uses one less coin.

If n′
d
= 2, then n′

n
≥ 1 or n′

p
≥ 5 because 10n′

d
+ 5n′

n
+ n′

p
= V1 ≥ 25. Since we already observe that

n′
p
< 5, we must have n′

n
≥ 1 and (1, n′

d
− 2, n′

n
− 1, n′

p
) is a better solution for V1. So n′

d
6= 2.

8

Extra space for Question 3.2

If n′
d
< 2, then n′

n
≥ 2 or n′

p
≥ 5 because 10n′

d
+5n′

n
+ n′

p
= V1 ≥ 25. However, we observed that n′

n
< 2

and n′
p
< 5, so this is also impossible.

Since we obtain a contradiction to the optimality of (n′
q
, n′

d
, n′

n
, n′

p
) for every choice of n′

d
if n′

q
< nq, we

must have n′
q
= nq, both (0, n′

d
, n′

n
, n′

p
) and (0, nd , nn, np) represent the value V1 = V − 25nq and, as

observed above, the representation (0, n′
d
, n′

n
, n′

p
) must be optimal.

Once again, since 10n′
d
≤ V1 and nd = ⌊V1/10⌋, we have n′

d
≤ nd . If n′

d
< nd , then (0, 0, n′

n
, n′

p
) must be

an optimal representation of the value V2 = V1 − 10n′
d
≥ 10nd − 10n′

d
≥ 10. We observed that n′

n
< 2.

This, however, implies that n′
p
≥ 5 because 5n′

n
+ n′

p
= V2 > 10, which is also impossible. Thus, n′

d
< nd

is impossible and we have n′
d
= nd .

One final time: since (0, 0, n′
n
, n′

p
) is an optimal representation of V2 and nn = ⌊V2/5⌋, we have n′

n
≤ nn.

If n′
n
< nn, then n′

p
= V2 − 5n′

n
≥ 5nn − 5n′

n
≥ 5, a contradiction because n′

p
< 5. Thus, n′

n
= nn.

Since n′
q
= nq, n′

d
= nd , and n′

n
= nn, we also have n′

p
= V−25n′

q
−10n′

d
−5n′

n
= V−25nq−10nd−5nn =

np, so the two solutions (nq, nd , nn, np) and (n′
q
, n′

d
, n′

n
, n′

p
) are the same.

9

