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Instructions:

• The questions are divided into three groups: Group 1 (18 marks = 36%), Group 2 (20 marks =

40%), and Group 3 (12 marks = 24%). You have to answer all questions in Groups 1 and 2

and exactly one question in Group 3. In the above table, put a check mark in the small box

beside the one question in Group 3 you want me to mark. If you select 0 or 2 questions in

Group 3, I will mark neither.

• Provide your answer in the box after each question. If you absolutely need extra space, use the

backs of the pages; but try to avoid it. Keey your answers short and to the point.

• You are not allowed to use a cheat sheet.

• If you are asked to design an algorithm and you cannot design one that achieves the desired

running time, design a slower algorithm that is correct. A correct and slow algorithm earns you

50% of the marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned

in class as black boxes, without explaining how they work, as long as these algorithms and data

structures do not directly answer the questions.

• Read every question carefully before answering. In particular, do not waste time on an

analysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 8 pages, including this title page. Notify me immediately if your copy has

fewer than 8 pages.
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Question 1.1 (Asymptotic growth of functions) 9 marks

O( f (n)), Ω( f (n)), Θ( f (n)), o( f (n)), and ω( f (n)) are sets of functions.

a. Define the set O( f (n)).

O( f (n)) is the set of all functions g(n) that satisfy

g(n)≤ c · f (n) for two constants c > 0 and n0 ≥ 0 and all n≥ n0.

b. Define the set Θ( f (n)).

Θ( f (n)) is the set of all functions g(n) that satisfy

c1 · f (n)≤ g(n)≤ c2 · f (n) for three constants c1 > 0, c2 > 0, and n0 ≥ 0 and all n≥ n0.

c. Define the set ω( f (n)).

ω( f (n)) is the set of all functions g(n) such that, for all c > 0, there exists a constant n0 ≥ 0 such

that

g(n)≥ c · f (n) for all n≥ n0.

Question 1.2 (Running time of algorithms) 9 marks

a. Define what the worst-case running time of an algorithm is.

The worst-case running time of an algorithm is a function T (·) defined as follows: Let In be the

set of all inputs of size n and let T ′(I) be the running time of the algorithm on input I. Then

T (n) =max{T ′(I) | I ∈ In}.

b. Define what the average-case running time of an algorithm is.

The average-case running time of an algorithm is a function T (·) defined as follows: Let In be

the set of all inputs of size n and let T ′(I) be the running time of the algorithm on input I. Then

T (n) = 1
|In|
∑

I∈In
T ′(I).
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Question 2.1 (Asymptotic growth of functions) 10 marks

a Order the following functions by increasing order of growth:

(lg n)2 n1/ lg n n

lg n
4lg n

p
n

n1/ lg n = 2 (lg n)2
p

n
n

lg n
4lg n = n2

b Prove that you have arranged the second and third functions in the sorted sequence in the right

order; that is, if the sorted sequence is f1(n), f2(n), . . . , f5(n), prove that f2(n) ∈ o( f3(n)).

The second function is (lg n)2, the third function is
p

n. We need to prove that limn→∞
(lg n)2p

n
= 0,

which hold if and only if limn→∞
lg n

n1/4 = 0. To prove the latter, we apply l’Hôpital’s rule:

lim
n→∞

lg n

n1/4
= lim

n→∞

1/(n ln2)

n−3/4/4
= lim

n→∞

4

n1/4 ln 2
= 0

because limn→∞
4

ln2
= 4

ln2
and limn→∞ n1/4 =∞.

c Prove that n ∈ o(n2) without using limits.

We need to prove that, for all c > 0, there exists an n0 ≥ 0 such that, for all n ≥ n0, n ≤ cn2,

which is equivalent to 1
c
≤ n. So, n0 =

1
c
.

3



Question 2.2 (Correctness proofs) 10 marks

Euclid’s algorithm can be used to find the greatest common divisor (GCD) of two integers:

EUCLID(a, b)

// You may assume that both numbers are non-negative and that at least one is strictly positive.

1 if a < b

2 swap a and b

3 if b == 0

4 return a

5 return EUCLID(a− b, b)

Prove that this algorithm is correct, that is, that it does indeed return the GCD of the two numbers.

We prove the claim by induction on n= a+ b.

If n = 1, then we have a = 0 and b = 1 or a = 1 an b = 0. In both cases, the algorithm returns

max(a, b) = 1, which is the correct answer.

If n> 1, we distinguish three cases:

If a = 0, then b > 0 and the algorithm returns b. Since b | b, b | 0, and c ∤ b for all c > b, this is the

correct answer.

If b = 0, then a > 0 and, by the same argument as in the previous case, the algorithm correctly returns a.

Finally, if a > 0 and b > 0, observe that the algorithm swaps a and b if necessary to ensure that a ≥ b.

This guarantees that a − b ≥ 0 and b > 0. Since (a − b) + b = a < a + b (because b > 0), we can

apply the inductive hypothesis to show that EUCLID(a− b, b) returns the GCD of a − b and b. Thus, it

remains to prove that gcd(a− b, b) = gcd(a, b).

Let x = gcd(a − b, b). Then b = b′x and a − b = a′x for some a′, b′ ∈ N. Thus, a = b + (a − b) =

b′x + a′x = (a′ + b′)x, that is, x | a. This shows that gcd(a, b)≥ gcd(a− b, b).

Conversely, if x = gcd(a, b), then b = b′x and a = a′x for some a′, b′ ∈ N, so a − b = a′x − b′x =
(a′ − b′)x, that is, x | (a− b). This shows that gcd(a, b)≤ gcd(a− b, b).

Together, these two inequalities prove that gcd(a, b) = gcd(a− b, b). This finishes the proof.
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Question 3.1 (Graph algorithms) 12 marks

You are given a graph G each of whose edges is either red or blue and an integer parameter k ≥ 0. Your

task is to develop an algorithm that decides whether G has a spanning tree with exactly k red edges.

(The algorithm does not have to find such a spanning tree. This can be done and is not particularly

hard but requires more time to figure out than you have in this exam.) The running time of your

algorithm should be O(n+m), where n is the number of vertices of G and m is the number of edges

of G. To make your task easier, here are the three parts of the answer you have to figure out:

(a) Argue that G has a spanning tree with exactly k red edges if and only if it has a spanning tree

with at most k red edges and it has a spanning tree with at least k red edges.

(b) Argue that a minimum spanning tree of a graph whose edges have weight 0 or 1 can be found

in O(n+m) time.

(c) Use the linear-time minimum spanning tree algorithm for 0/1 edge weights to decide whether

G has two spanning trees as in (a).

(a) Clearly, if G has a spanning tree T with exactly k red edges, it also has a spanning tree with at

most k red edges and a spanning tree with at least k red edges, namely T .

Now assume there exist two spanning trees T1 and T2, one with k1 ≤ k red edges and the other

with k2 ≥ k red edges. Let {e1, e2, . . . , eq} be the set of edges of T2 that do not belong to T1. We

obtain a sequence T1 = T ′
0
, T ′

1
, . . . , T ′

q
= T2 of spanning trees as follows: We define T ′

0
= T1. For

0 < i ≤ q, we add ei to T ′
i−1

. This creates a cycle C in T ′
i−1
∪ {ei}. Since T2 contains no cycle,

there must exist an edge f in C that does not belong to T2. We choose such an edge f and define

T ′
i

:= T ′
i−1
∪ {ei} \ { f }. Since C is the only cycle in T ′

i−1
∪ {ei} and removing f breaks this cycle,

T ′
i

is a spanning tree of G. Now observe that T1 = T ′
0

has at most k red edges, T2 = T ′
q

has at least

k red edges, and for all 0 < i ≤ q, T ′
i

contains exactly one edge that does not belong to T ′
i−1

, that

is, the number of red edges in T ′
i−1

and T ′
i

can differ by at most 1. Thus, there must exist an index

i such that T ′
i

has exactly k red edges.

(b) The cost of Prim’s algorithm can be divided into O(n + m) plus the cost of the O(m) priority

queue operations the algorithm performs. If every edge has weight 0 or 1, and thus every priority

queue entry has priority 0 or 1, we can use a simple priority queue implementation consisting of

two doubly-linked lists, one for priority-0 entries, one for priority-1 entries. An INSERT operation

appends the inserted element to the end of the corresponding list, which takes O(1) time. A DE-

CREASEKEY operation moves the element from one list to the other, which also takes O(1) time.

A DELETEMIN operation returns the first element in the priority-0 list unless this list is empty, in

which case it returns the first element in the priority-1 list. This also takes O(1) time. Thus, each

priority queue operation takes O(1) time and Prim’s algorithm takes O(n + m) time using this

priority queue.

(c) To test whether there exists a spanning tree with at most k red edges, we give weight 0 to all blue

edges and weight 1 to all red edges. There exists such a spanning tree if and only if the MST with

respect to these edge weights has weight at most k. To test whether there exists a spanning tree

with at least k red edges, we give weight 1 to all blue edges and weight 0 to all red edges and ask

whether the MST with respect to these edge weights has weight at most n− k− 1.
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Extra space for Question 3.1
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Question 3.2 (Greedy algorithms) 12 marks

In class, we discussed the interval scheduling problem where we tried to maximize the number of non-

overlapping intervals we can choose from a given set of intervals. One possible application I mentioned

was that the intervals could represent the times when certain classes need to be held and we want to

choose the largest subset of classes that can be held in the same classroom without holding two classes

in the same classroom simultaneously. Now, simply cancelling the classes we cannot schedule in this

fashion is not an option in practice. This leads us to the following problem: You are given a set of

classes to be scheduled, each with a start time and an ending time. Your task is to find the minimum

number, k, of classrooms such that all classes can be scheduled while ensuring that the time intervals

of any two classes scheduled in the same classroom are disjoint. Your algorithm should compute a

schedule of the given set of classes in k rooms and should run in O(n lg n+ kn) time, where n is the

number of classes provided as input and k is the number of classrooms you determine are needed.

Prove that your algorithm does indeed find the minimum k such that it is possible to schedule all

classes in these k classrooms.

Hint: Observe that you need at least k classrooms if there are k classes that need to be held simul-

taneously, that is, if there is a time t that is contained in the time intervals of k classes. Thus, your

algorithm should have the property that, if it uses k classrooms to schedule all n classes, then there

exists such a set of k simultaneously held classes.
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Extra space for Question 3.2
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