
Banner number: Name:

Final Exam
CSCI 3110: Design and Analysis of Algorithms

August 10, 2018

Question 1.1

Question 1.2

Question 1.3
∑

Question 2.1

Question 2.2

Question 2.3
∑

Question 3.1

Question 3.2

Question 3.3
∑

Group 1 Group 2 Group 3

∑

Instructions:

• The questions are divided into three groups: Group 1 (40%), Group 2 (36%), and Group 3 (24%).
You have to answer all questions in Groups 1 and 2 and exactly two questions in Group 3. In
the above table, put a check mark in the small box beside the question in Group 3 you want me to
mark. If you select none or both questions, I will randomly choose which one to mark.

• Provide your answer in the box after each question. If you absolutely need extra space, use the backs
of the pages; but try to avoid it. Keep your answers short and to the point.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your
train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired running
time, design a slower algorithm that is correct. A correct and slow algorithm earns you 50% of the
marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned
in class as black boxes, without explaining how they work, as long as these algorithms and data
structures do not directly answer the question.

• Read every question carefully before answering. In particular, do not waste time on an anal-
ysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 12 pages, including this title page. Notify me immediately if your copy has
fewer than 12 pages.

1

Question 1.1 (Asymptotic growth of functions) 6 marks

(a) Formally define the worst-case running time of an algorithm.

The worst-case running time of an algorithm is a function T (·) of the algorithm’s input size. For a
fixed input size n, T (n) is the maximum running time of the algorithm over all inputs of size n.

(b) Formally define the set Θ(f (n)).

Θ(f (n)) is the set of all functions g(n) such that there exist constants n0 ≥ 0, c1 > 0, and c2 > 0
such that c1 · f (n)≤ g(n)≤ c2 · f (n) for all n≥ n0.

(c) Consider two algorithms A and B that both solve some problem P in Θ(n lg n) time in the worst
case and assume that your primary goal is to solve P as quickly as possible on large inputs. Based
on the available information, can you decide which of the two algorithms is preferable? If yes,
explain how. If not, explain why not.

We only know that c1n lg n ≤ TA(n) ≤ c2n lg n and c3n lg n ≤ TB(n) ≤ c4n lg n for appropriate
constants c1, c2, c3, c4 > 0 and for sufficiently large n. It is possible that c1� c4 or c3� c2. In the
former case, B is preferable over A; in the latter, A is preferable over B. So, no, it is not possible to
decide which of the two algorithms is preferable based on the provided information.

2

Question 1.2 (Worst case, average case, and amortization) 6 marks

Consider three data structures D1, D2, and D3. All three support the same operations. Any operation on
D1 takes O(lg2 n) time in the average case and in the worst case. Any operation on D2 takes O(n) time in
the worst case but O(lg n) amortized time. D3’s behaviour depends on the input. For a uniform random
sequence of operations on D3, the expected cost per operation on D3 is in O(lg n). The worst-case cost
per operation on D3 is in O(n). Now consider using any of these data structures in an algorithm that
performs O(n) data structure operations and spends a negligible amount of time on tasks other than
data structure operations. You may assume that the sequence of operations the algorithm performs
on the data structure is a uniform random sequence. In the following table, list the average-case and
worst-case running times of the algorithm when using D1, D2 or D3:

Data structure D1 D2 D3

Worst-case running time O(n lg2 n) O(n lg n) O(n2)

Average-case running time O(n lg2 n) O(n lg n) O(n lg n)

Question 1.3 (Complexity classes) 8 marks

(a) Formally define the complexity class P.

P is the class of all formal languages that can be decided in polynomial time. Formally, a language
L ⊆ Σ∗ belongs to P if there exists an algorithm D which, for any string x ∈ Σ∗, answers yes if and
only if x ∈ L, and the running time of D on any string x ∈ Σ∗ is in O(|x |c), for some constant c.

(b) Formally define the complexity class NP.

NP is the class of all formal languages that can be verified in polynomial time. Formally, a language
L ⊆ Σ∗ belongs to NP if there exists a language L′ ⊆ Σ∗ ×Σ∗ such that L′ ∈ P and any string x ∈ Σ∗
belongs to L if and only if there exists a string y ∈ Σ∗ with |y| ∈ O(|x |c) and such that (x , y) ∈ L′.

(c) Formally define what an NP-hard language is.

A language L is NP-hard if L ∈ P implies that P= NP.

3

Question 2.1 (Solving recurrences) 7 marks

Solve the following recurrences using whichever method you like (Master Theorem, substitution or
recursion tree), that is, provide a function f (n) such that T (n) ∈ Θ(f (n)) and prove that T (n) ∈ O(f (n)).
You do not need to prove that T (n) ∈ Ω(f (n)) and you do not need to use the same method for both
recurrences.

(a) T (n) = 4T (n/3) + n lg n

Since lg n ∈ o(nε) for all ε > 0, we have n lg n ∈ O(nlog3 4−ε) for all 0 < ε < log3 4 − 1. Since
log3 4> 1, such an ε exists. Thus, by the Master Theorem, T (n) ∈ Θ(nlog3 4).

(b) T (n) = T (n/2) + T (n/3) + n lg n

We claim that T (n) ∈ Θ(n lg n).

To prove that T(n) ∈ O(n lg n), observe that T(n) ∈ O(1) ≤ cn lg n for 2 ≤ n < 6 and c large
enough.

For n≥ 6, we have

T (n) = T
�n

2

�

+ T
�n

3

�

+ n lg n

≤
cn
2

lg
n
2
+

cn
3

lg
n
3
+ n lg n (by the inductive hypothesis)

≤
5cn
6

lg n+ n lg n (because lg
n
3
≤ lg

n
2
≤ lg n)

≤ cn lg n ∀c ≥ 6.

4

Question 2.2 (Correctness proof) 6 marks

Consider the binary search algorithm for finding a given element x in a sorted array A:

BINARYSEARCH(A, l, r, x)

1 if r < l
2 then return FALSE

3 m= b(l + r)/2c
4 if x = A[m]
5 then return TRUE

6 else if x < A[m]
7 then return BINARYSEARCH(A, l, m− 1, x)
8 else return BINARYSEARCH(A, m+ 1, r, x)

Prove that the invocation BINARYSEARCH(A, 1, n, x) returns TRUE if and only if x ∈ A[1 . . n].

We prove by induction on r − l that the invocation BINARYSEARCH(A, l, r, x) returns TRUE if and only if
x ∈ A[l . . r]. Setting l = 1 and r = n then proves the claim.

If r < l, then A[l . . r] is empty, so x /∈ A[l . . r] and the algorithm correctly returns FALSE in line 2.

If r ≥ l, then l ≤ m≤ r, so (m− 1)− l < r − l and r − (m+ 1)< r − l. If x = A[m], then x ∈ A[l . . r]
because l ≤ m≤ r, so the algorithm correctly returns TRUE in line 5.

If x < A[m], then x < A[i] for all m ≤ i ≤ r because A is sorted. Thus, x ∈ A[l . . r] if and only if
x ∈ A[l . . m−1]. Since (m−1)− l < r− l, the invocation BINARYSEARCH(A, l, m−1, x) returns TRUE if
and only if x ∈ A[l . . m−1], that is, if and only if x ∈ A[l . . r] given that x < A[m]. Thus, the algorithm
returns the correct answer in line 7.

If x > A[m], then x > A[i] for all l ≤ i ≤ m because A is sorted. Thus, x ∈ A[l . . r] if and only if
x ∈ A[m+1 . . r]. Since r− (m+1)< r− l, the invocation BINARYSEARCH(A, m+1, r, x) returns TRUE if
and only if x ∈ A[m+1 . . r], that is, if and only if x ∈ A[l . . r] given that x > A[m]. Thus, the algorithm
returns the correct answer in line 8.

5

Question 2.3 (Polynomial-time reductions) 5 marks

Let L1 ⊆ Σ∗ and L2 ⊆ Σ∗ be two formal languages. Assume L1 is NP-hard and there exists a polynomial-
time reduction R from L1 to L2. Prove that this implies that L2 is also NP-hard.

We need to prove that L2 ∈ P implies that P= NP. Since L1 ∈ P implies that P= NP, it suffices to prove
that L2 ∈ P implies that L1 ∈ P.

So assume L2 ∈ P, that is, there exists a decision algorithm D2 such that, for any x ∈ Σ∗, D2(x) = true if
and only if x ∈ L2; the running time of D2 on input x is in O(|x |c2) for some constant c2.

We construct a decision algorithm D1 for L1 as D1(x) = D2(R(x)), that is, we first apply R to the input
of D1, then pass the result R(x) to D2, and return the answer this invocation of D2 returns. Since
x ∈ L1⇔ R(x) ∈ L2 (R is a reduction from L1 to L2) and R(x) ∈ L2⇔ D2(R(x)) = true (D2 decides L2),
we have x ∈ L1⇔ D2(R(x)) = D1(x) = true, that is, D1 decides L1.

The running time of D1 on input x is the cost of running R on x plus the cost of running D2 on R(x).
Since R is a polynomial-time reduction, its running time on input x is in O(|x |c) for some constant c. In
time O(|x |c), R can produce an output of size at most O(|x |c), so |R(x)| ∈ O(|x |c). The running time
of D2 on R(x) is in O(|R(x)|c2) ⊆ O(|x |cc2). Thus, the total cost of D1 is in O(|x |c + |x |cc2), which is
polynomial in |x |.

Since D1 decides L1 and its running time on any input x is polynomial in |x |, L1 ∈ P, which is what we
had to show.

6

Question 3.1 (Dynamic programming) 6 marks

Two players, A and B, play a game on a row of n coins with values C1, . . . , Cn. The two players take
turns. In each turn, the player whose turn it is removes the first or last coin from the row of coins and
gains its value. Assuming A is the first player to take a coin and both players play an optimal strategy,
determine the amount of money each player wins. Your algorithm should take O(n2) time. Argue
briefly that your algorithm achieves this running time and is correct.

Let Si, j =
∑ j

h=i Ch be the total value of coins Ci, . . . , C j. Given coins Ci, . . . , C j remaining on the table, let
Fi, j be the value that can be won by whoever moves first on this subset of coins. Then the value we aim to
determine is F1,n, the value player A wins, and S1,n − F1,n, the value player B wins.

Fi,i = Ci for all 1≤ i ≤ n because the first player takes the only available coin on the table and the game
ends.

For i < j, the first player can take Ci or C j. In the former case, the first player gains the value of coin Ci

and the second player is the first player to move on 〈Ci+1, . . . , C j〉. Thus, the second player wins Fi+1, j and
the first player wins Ci + Si+1, j − Fi+1, j = Si, j − Fi+1, j. In the latter case, the first player gains the value of
coin C j and the second player is the first player to move on 〈Ci, . . . , C j−1〉. Thus, the second player wins
Fi, j−1 and the first player wins C j + Ci, j−1− Fi, j−1 = Ci, j − Fi, j−1. The first player chooses the strategy that
maximizes his winnings, so Fi, j = Si, j −min(Fi, j−1, Fi+1, j).

This gives the following simple algorithm:

COINGAME(C)

1 for i = 1 to n
2 do S[i, i] = C[i]
3 for j = i + 1 to n
4 do S[i, j] = S[i, j − 1] + C[j]
5 for i = 1 to n
6 do F[i, i] = S[i, i]
7 for k = 1 to n− 1
8 do for i = 1 to n− k
9 do F[i, i + k] = S[i, i + k]−min(F[i, i + k− 1], F[i + 1, i + k− 1])

10 return (F[1, n], S[1, n]− F[1, n])

The running time of this algorithm is easily seen to be in O(n2). Lines 1–4 consist of two nested loops
with at most n iterations each. The same is true for lines 7–9. Lines 5–6 consist of a single loop with n
iterations. Since each iteration takes constant time, the algorithm takes O(n2) time.

The correctness of the algorithm follows from two observations: (i) Each value F[i, j] is computed as
F[i, j] = S[i, j]−min(F[i, j−1], F[i+1, j]) following the recurrence established by the above discussion.
(ii) When computing F[i, j], F[i, j − 1] and F[i + 1, j] have already been computed and thus can be
used. This is true because we evaluate all entries in F by increasing difference k = j − i.

7

Extra space for Question 3.1

8

Question 3.2 (Divide and conquer) 6 marks

A deficient grid is a 2n × 2n grid with an arbitrary cell missing. Thus, a deficient grid has 4n − 1 cells. A
tromino is a deficient 21 × 21 grid. Develop an algorithm that tiles any deficient grid with trominoes,
that is, it places trominoes on the deficient grid so that every grid cell is covered by a tromino and no
two trominoes overlap. Your algorithm should have running time O(4n). Prove that your algorithm is
correct and that it achieves this running time.

Hint: Note that this is a divide and conquer question. Can you express the problem of tiling a deficient
2n × 2n grid in terms of tiling deficient 2n−1 × 2n−1 grids?

A deficient grid with cell (4,14) missing A tromino A tiling of the deficient grid on the left with trominoes

If n= 1, then the grid has the shape of a tromino and we place a tromino of the correct orientation on
the grid.

If n> 1, we divide it into four 2n−1 × 2n−1 subgrids. The missing grid cell is contained in exactly one of
these 2n−1 × 2n−1 subgrids. Assume w.l.o.g. that the cell is contained in the top-left subgrid; the other
three cases are analogous. Then the top-left subgrid is a deficient grid and can be tiled recursively. We
turn the bottom-left subgrid into a deficient grid by removing its top-right corner. Similarly, we remove
the top-left corner from the bottom-right subgrid and the bottom-left corner from the top-right subgrid.
This turns each of these three subgrids into a deficient grid that can be tiled recursively. Once we have
tiled the deficient subgrids recursively, there are exacly three cells that are left uncovered: the top-right
corner of the bottom-left subgrid, the top-left corner of the bottom-right subgrid, and the bottom-left
corner of the top-right subgrid. However, these three cells together form a tromino, so we can obtain the
final tiling by placing a tromino that covers these cells.

The correctness of the algorithm is obvious from this description. For the analysis, observe that each
recursive call takes constant time. The number of recursive calls is given by the recurrence

R(n) =

¨

1 n= 1

1+ 4R(n− 1) n> 1
.

Thus, for n= 1, R(n)< 4n − 1. For n> 2, we have R(n) = 1+ 4R(n− 1)< 1+ 4 · (4n−1 − 1)< 4n − 1.
This shows that the algorithm takes O(4n) time.

9

Extra space for Question 3.2

10

Question 3.3 (Data structures) 6 marks

Given a sequence S = 〈x1, . . . , xn〉, a range minimum query is given a pair of indices (i, j) such that
1 ≤ i ≤ j ≤ n and asks for the element min{x i, . . . , x j}. Provide a data structure that supports the
following operations:

• INSERT(S, i, x): Insert x between the ith element and the (i + 1)st element of S. x becomes the new
(i + 1)st element and elements x i+1, . . . , xn are shifted one position to the right. If i = 0, then x
becomes the new first element of S. If i = n, then x becomes the new last element of S.

• DELETE(S, i): Remove the ith element from S. Elements x i+1, . . . , xn are shifted one position to the
left.

• RANGEMINIMUM(S, i, j): If the current sequence of elements in S is 〈x1, . . . , xn〉, then report the
element min{x i, . . . , x j}.

Each operation should take O(lg n) time. Argue that each operation on your data structure takes O(lg n)
time and that the RANGEMINIMUM operation gives the correct answer. Remember that you are allowed
to use data structures we discussed in class as building blocks.

The data structure is a rank-select tree T over the elements in S except that the elements aren’t sorted; they
are stored at the leaves in the order they appear in S. In addition, every node of T stores the minimum
element stored at its descendant leaves.

Range-minimum query: To answer a RANGEMINIMUM(S, i, j) query, we perform a SELECT(T, i) and
a SELECT(T, j) operation. Let Pi and Pj be the two paths traversed by these two queries. We can split
Pi into two subpaths P and Q i such that the nodes in P belong to Pj and the nodes in Q j do not. Then
Pj = P ◦Q j, where the nodes in Q j are the nodes in Pj that are not in Pi. Observe that the elements in
S[i, j] are exactly the elements stored

• At the leaves at the bottom of the two paths Pi and Pj,
• At descendant leaves of the children of the last node of P that occur between the first nodes of Q i

and Q j,
• At descendant leaves of all right siblings of nodes in Q i except the first node, and
• At descendant leaves of all left siblings of nodes in Q j except the first node.

Each node stores the minimum element stored at its descendant leaves. Thus, we report the minimum of

• The elements stored at the leaves in Pi and Pj,
• The minimum elements stored at the children of the last node of P that occur between the first nodes of

Q i and Q j,
• The minimum elements stored at right siblings of all nodes in Q i except the first node, and
• The minimum elements stored at left siblings of all nodes in Q j except the first node.

The two SELECT queries take O(lg n) time and the two paths Pi and Pj have length O(lg n) and thus
O(lg n) pendant nodes. Thus we are taking the minimum over O(lg n) values, in O(lg n) time. Overall, a
RANGEMINIMUM query can be answered in O(lg n) time.

11

Extra space for Question 3.3

Insert (w/o rebalancing): If i = 0, we use a MINIMUM(T) operation to find the leftmost leaf in T
and then add x as the new leftmost child of its parent. Otherwise, we use a SELECT(T, i) operation to
find the ith leaf of T and then add x as its right sibling. This takes O(lg n) time. We update the subtree
sizes as needed by a rank-select tree. In addition, we recompute the minimum of every ancestor of x as
the minimum of the minima stored with all its children, bottom-up. Thus, we can support insertions in
O(lg n) time plus the time needed to rebalance the tree.

Delete (w/o rebalancing): We use a SELECT(T, i) operation to find the ith leaf of T and delete it.
This takes O(lg n) time. We update the subtree sizes as needed by a rank-select tree. In addition, we
recompute the minimum of every ancestor of x as the minimum of the minima stored with all its children,
bottom-up. Thus, we can support deletions in O(lg n) time plus the time needed to rebalance the tree.

Node split: When splitting a node, the subtree sizes and the minima to be stored with the newly created
nodes can be computed from the subtree sizes and minima stored with their children. Thus, a node split
takes constant time.

Node fusion: When fusing two nodes, the subtree size and the minimum to be stored with the newly
created node can be computed from the subtree sizes and minima stored with its children. Thus, a node
fusion takes constant time.

Since an insertion performs up to O(lg n) node splits and a deletion peforms at most one node split and up
to O(lg n) node fusions, this shows that insertions and deletions including rebalancing take O(lg n) time.

12

