
CSCI 2132: Software Development

Testing and Debugging

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Software Testing and Debugging

Bugs = programming errors

• Obvious bugs

• Is it a “bug” or a “feature”?

Testing used to detect bugs

Debugging used to remove bugs

Software Testing

Motivation:

• Ensure robust software

• Maintain reputation

• Lower cost: Fixing a bug before release is always cheaper than
after release.

• May be critical for security, ensuring user privacy

Software engineer in testing is a whole job!

What Do We Test?

Does the program work?

What does this mean?

• Does the program meet its specifications?

Specification:

• Description of the input

• Description of the output

• Set of conditions

• Specification of output as a function of the input and conditions

What Do We Test?

Does the program work?

What does this mean?

• Does the program meet its specifications?

Specification:

• Description of the input

• Description of the output

• Set of conditions

• Specification of output as a function of the input and conditions

How Do We Test?

Mindset: Try as hard as you can to make your program fail!

Typical test cases:

• Regular cases

• Boundary cases

• Error cases (the code fails when it should)

Types of Testing

White box testing:

• Use knowledge of implementation to guide selection of test cases

• Goal: Achieve maximum code coverage (exercise every single line/
function of the code)

Black box testing:

• Use specification to guide selection of test cases

• Goal: Achieve maximum coverage of cases given in the
specification

Debugging

Debugging = methodical process of finding and fixing bugs (defects) 
 in a computer program

Key step: Find where things go wrong in the program

• Track program state:

• Current location in the program

• Current values of variables

• Number of iterations through a loop

• Identify when the observed program state does not match the
expected program state.

printf Debugging

Use printf statements to print

• Values of variables

• Program location

Example: printf(“Got here\n”);

Cons:

• Requires modifications to the code to be removed later

Pros:

• Debuggers usually only show the current state

• printf statements can used to produce a log of the program execution

Strategies for printf Debugging

Linear approach:

• Start adding printf statements at the beginning of the program

• Continue until the printout differs from what we expect

Binary search:

• Select halfway point

• Determine if the bug has occurred

• If yes, look in the first half

• Otherwise, look in the second half

Experience:

• We often have an idea roughly where the error occurred

• Apply the above strategies in a limited scope

Using a Debugger

Debugger = tool to run program in a sandbox to observe its behaviour

Features:

• Step through program

• Inspect variables

• Inspect program state (e.g., call stack)

• ...

Modern IDEs include a debugger

gdb: GNU Project Debugger

Symbolic (source-level) debugger

Program that allows programmer to

• Access another program’s state

• Map the state to the program’s source code 
(line numbers, variable names, ...)

• View variable values

• Set breakpoints

• Requires compilation with -g option 
(adds source code information to the executable)

Breakpoints

Mark program locations so the debugger stops the program execution
each time such a location is reached.

When stopped at a breakpoint, the programmer can:

• Inspect variable contents

• Single-step through code

• Resume execution until the next breakpoint is reached

gdb Commands

run: start running the program

break line_number: Set a breakpoint 
at line line_number

break function_name: Set a breakpoint 
at the entry point of function function_name

next: Execute next step in the program 
(Step over function call: function call = 1 step)

step: Execute next step in the program 
(Step into function call)

 311 }
 312
 313 int call_me(int x) {
 314 int y = 0;
 315 while (x) {
 316 y = (y<<1) + (x&1);
 317 x >>= 1;
 318 }
 319 return y;
 320 }

 422
 423 void calling_you() {
 424 int x = 0;
 425 int y = call_me(x);
 426 printf(“%d\n”, y);
 430 }
 431

next

step

break call_me

break 316

Basic Debugger Operations

• Set breakpoints

• Examine variables at breakpoints or trace execution of the code

• Strategy: linear or binary

• Do this until the bug is found

• Advantage over printf-style debugging: No recompilation

