CSCI 2132: Software Development | NorbertZen

Faculty of Computer Science
Dalhousie University

File ManipulationinC | =

Files and Streams

C’s view of files mirrors Unix’s: Files are streams of bytes

File operations manipulate streams of bytes
Standard streams: stdin, stdout, stderr

Example:
* printf printsto stdout, fprintf prints to a file

- The following are equivalent

printf(“Hello, world!"”);

fprintf(stdout, “Hello, world!”);

File Pointers

In C, files are accessed through file pointer or file descriptors:

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

» Used with system calls:
open, close, read, write, ..

* No buffering

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

» Used with system calls:
open, close, read, write, ..

* No buffering

File pointer: C library construct that wraps a file descriptor

« Used with C library functions:
fopen, fclose, fread, fwrite, ..

« Buffering

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

» Used with system calls:
open, close, read, write, ..

* No buffering

File pointer: C library construct that wraps a file descriptor

« Used with C library functions:
fopen, fclose, fread, fwrite, ..

« Buffering

You almost always want to use file pointers!

File Types

Text files:
- Newline characters may be treated specially

« May have special marker byte at the end

Binary files:

* Raw access to bytes in the file

The difference is mostly in how we access the file:
- fread, fwrite: Raw byte access

« fscanf, fprintf, getline: Interpret file contents as text

FILE xfopen(const char xfilename, const char =xmode);

Modes:

“w._n,

r:

w,.n,

W .
“on.

11} ”n

r+ .

11} ”n

W+

1} ”n

da+ .

“ ... Db": Open binary file (ignored on Linux and BSD)

Read

Opening Files

Write (Overwrite if exists, create if not)

Append

Read

Read

Reac

dndad

dndad

dndad

write, start at beginning
write, delete old content

write, write at end position

Return value: file pointer or NULL If unsuccessful

Closing a File

int fclose(FILE xfile);

Return value:
e (0 ON SUCCess

- EOF otherwise

Formatted I/0O with Files

int fprintf(FILE xstream, const char xformat,
int fscanf (FILE %*stream, const char xformat,

printf(...) =fprintf(stdout, ...)
scanf (...)=fscanf (stdin, ...)

Print error message: fprintf(stderr, ...)

- o - e

Example

#include <stdio.h>

int main() {

FILE *stream;

stream = fopen(“hello.txt”, “w");

if (!stream) {
fprintf(stderr, “Cannot open hello.txt\n");
ex1it(EXIT FAILURE);

s

fprintf(stream, “Hello, world!'\n");

fclose(stream);

return 0;

Character /0

int putc (int c, FILE xstream);
int fputc(int c, FILE *stream);

int getc(FILE *stream);
int fgetc(FILE %stream);

getc and putc may be macros
(Do not use getc(fopen(“file.txt”, “r"”)))

putchar(...) =putc(..., stdout)
getchar(...) =getc(..., stdin)

Reading and Writing Blocks of Data

fread(void xrestrict ptr,
size t element size, size t nitems,
FILE %xrestrict stream);

fwrite(const void *restrict ptr,
size t element size, size t nitems,
FILE %xrestrict stream);

Checking for End of File

int feof(FILE %stream);

Return value:
« “True” (= 0) if at end of file
- “False” (= 0)if not at end of file

File Positioning

Reset file position to beginning of file:

vold rewind(FILE xstream);

Get and set the file position:

long int ftell(FILE xstream);
int fseek(FILE xstream, long int offset,
int whence);

Does not work for very large files (beyond long int capacity).

Values for whence:

- SE
« SE
« SE

<_SET
<_END

el

re

re

re

ative to beginning of file (absolute positioning)

lative to end of file

ative to current position (relative positioning)

File Positioning

int fgetpos(FILE xrestrict stream,
fpos_ t xrestrict pos);
int fsetpos(FILE xstream, const fpos_t *pos);

« Similarto ftell and fseek
« Position information stored in an opaque object

- Can handle arbitrary file sizes

An Example

#include <stdio.h>
struct point { int x, vy; };

int main() {
struct point p = { 1, 2 };
FILE xf = fopen("tmp.txt", "w+");
fwrite(&p, sizeof(struct point), 1, f);
fseek(f, (char *) &p.y - (char %) &p, SEEK_SET);
fread(&p.x, sizeof(int), 1, f);
rewind(f);
fread(&p.y, sizeof(int), 1, f);
printf("(%d, %d)\n", p.x, p.y);
return 0;

