
CSCI 2132: Software Development

File Manipulation in C

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Files and Streams

C’s view of files mirrors Unix’s: Files are streams of bytes
File operations manipulate streams of bytes

Standard streams: stdin, stdout, stderr

Example:

• printf prints to stdout, fprintf prints to a file

• The following are equivalent

printf(“Hello, world!”);

fprintf(stdout, “Hello, world!”);

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

• Used with system calls: 
open, close, read, write, ...

• No buffering

File pointer: C library construct that wraps a file descriptor

• Used with C library functions:  
fopen, fclose, fread, fwrite, ...

• Buffering

You almost always want to use file pointers!

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

• Used with system calls: 
open, close, read, write, ...

• No buffering

File pointer: C library construct that wraps a file descriptor

• Used with C library functions:  
fopen, fclose, fread, fwrite, ...

• Buffering

You almost always want to use file pointers!

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

• Used with system calls: 
open, close, read, write, ...

• No buffering

File pointer: C library construct that wraps a file descriptor

• Used with C library functions:  
fopen, fclose, fread, fwrite, ...

• Buffering

You almost always want to use file pointers!

File Pointers

In C, files are accessed through file pointer or file descriptors:

File descriptor: Low-level Unix identifier for a file

• Used with system calls: 
open, close, read, write, ...

• No buffering

File pointer: C library construct that wraps a file descriptor

• Used with C library functions:  
fopen, fclose, fread, fwrite, ...

• Buffering

You almost always want to use file pointers!

File Types

Text files:

• Newline characters may be treated specially

• May have special marker byte at the end

Binary files:

• Raw access to bytes in the file

The difference is mostly in how we access the file:

• fread, fwrite: Raw byte access

• fscanf, fprintf, getline: Interpret file contents as text

Opening Files

Modes:

• “r”: Read

• “w”: Write (Overwrite if exists, create if not)

• “a”: Append

• “r+”: Read and write, start at beginning

• “w+”: Read and write, delete old content

• “a+”: Read and write, write at end position

• “""...b”: Open binary file (ignored on Linux and BSD)

Return value: file pointer or NULL if unsuccessful

FILE *fopen(const char *filename, const char *mode);

Closing a File

Return value:

• 0 on success

• EOF otherwise

int fclose(FILE *file);

Formatted I/O with Files

printf(""...) = fprintf(stdout, ""...)
scanf (""...) = fscanf (stdin, ""...)

Print error message: fprintf(stderr, ""...)

int fprintf(FILE *stream, const char *format, ""...);
int fscanf (FILE *stream, const char *format, ""...);

Example

#include <stdio.h>

int main() {
 FILE *stream;
 stream = fopen(“hello.txt”, “w”);
 if (!stream) {
 fprintf(stderr, “Cannot open hello.txt\n”);
 exit(EXIT_FAILURE);
 }
 fprintf(stream, “Hello, world!\n”);
 fclose(stream);
 return 0;
}

Character I/O

getc and putc may be macros 
(Do not use getc(fopen(“file.txt”, “r”)))

putchar(""...) = putc(""..., stdout)
getchar(""...) = getc(""..., stdin)

int putc (int c, FILE *stream);
int fputc(int c, FILE *stream);

int getc(FILE *stream);
int fgetc(FILE *stream);

Reading and Writing Blocks of Data

fread(void *restrict ptr,
 size_t element_size, size_t nitems,
 FILE *restrict stream);

fwrite(const void *restrict ptr,
 size_t element_size, size_t nitems,
 FILE *restrict stream);

Checking for End of File

Return value:

• “True” ("!= 0) if at end of file

• “False” ("== 0) if not at end of file

int feof(FILE *stream);

File Positioning

long int ftell(FILE *stream);
int fseek(FILE *stream, long int offset,
 int whence);

void rewind(FILE *stream);

Reset file position to beginning of file:

Get and set the file position:

Does not work for very large files (beyond long int capacity).

Values for whence:

• SEEK_SET relative to beginning of file (absolute positioning)

• SEEK_END relative to end of file

• SEEK_CUR relative to current position (relative positioning)

File Positioning

• Similar to ftell and fseek

• Position information stored in an opaque object

• Can handle arbitrary file sizes

int fgetpos(FILE *restrict stream,
 fpos_t *restrict pos);
int fsetpos(FILE *stream, const fpos_t *pos);

An Example
#include <stdio.h>

struct point { int x, y; };

int main() {
 struct point p = { 1, 2 };
 FILE *f = fopen("tmp.txt", "w+");
 fwrite(&p, sizeof(struct point), 1, f);
 fseek(f, (char *) &p.y - (char *) &p, SEEK_SET);
 fread(&p.x, sizeof(int), 1, f);
 rewind(f);
 fread(&p.y, sizeof(int), 1, f);
 printf("(%d, %d)\n", p.x, p.y);
 return 0;
}

