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Files and Streams

C’s view of files mirrors Unix’s: Files are streams of bytes

File operations manipulate streams of bytes
Standard streams: stdin, stdout, stderr

Example:
* printf printsto stdout, fprintf prints to a file

- The following are equivalent

printf(“Hello, world!"”);

fprintf(stdout, “Hello, world!”);
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You almost always want to use file pointers!



File Types

Text files:
- Newline characters may be treated specially

« May have special marker byte at the end

Binary files:

* Raw access to bytes in the file

The difference is mostly in how we access the file:
- fread, fwrite: Raw byte access

« fscanf, fprintf, getline: Interpret file contents as text



FILE xfopen(const char xfilename, const char =xmode);
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Return value: file pointer or NULL If unsuccessful



Closing a File

int fclose(FILE xfile);

Return value:
e (0 ON SUCCess

- EOF otherwise



Formatted I/0O with Files

int fprintf(FILE xstream, const char xformat,
int fscanf (FILE %*stream, const char xformat,

printf( ... ) =fprintf(stdout, ...)
scanf (... )=fscanf (stdin, ...)

Print error message: fprintf(stderr, ...)

- o - e



Example

#include <stdio.h>

int main() {

FILE *stream;

stream = fopen(“hello.txt”, “w");

if (!stream) {
fprintf(stderr, “Cannot open hello.txt\n");
ex1it(EXIT FAILURE);

s

fprintf(stream, “Hello, world!'\n");

fclose(stream);

return 0;



Character /0

int putc (int c, FILE xstream);
int fputc(int c, FILE *stream);

int getc(FILE *stream);
int fgetc(FILE %stream);

getc and putc may be macros
(Do not use getc(fopen(“file.txt”, “r"”)))

putchar( ... ) =putc( ..., stdout)
getchar( ... ) =getc( ..., stdin)



Reading and Writing Blocks of Data

fread(void xrestrict ptr,
size t element size, size t nitems,
FILE %xrestrict stream);

fwrite(const void *restrict ptr,
size t element size, size t nitems,
FILE %xrestrict stream);



Checking for End of File

int feof(FILE %stream);

Return value:
« “True” (= 0) if at end of file
- “False” (= 0)if not at end of file



File Positioning

Reset file position to beginning of file:

vold rewind(FILE xstream);

Get and set the file position:

long int ftell(FILE xstream);
int fseek(FILE xstream, long int offset,
int whence);

Does not work for very large files (beyond long int capacity).

Values for whence:
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File Positioning

int fgetpos(FILE xrestrict stream,
fpos_ t xrestrict pos);
int fsetpos(FILE xstream, const fpos_t *pos);

« Similarto ftell and fseek
« Position information stored in an opaque object

- Can handle arbitrary file sizes



An Example

#include <stdio.h>
struct point { int x, vy; };

int main() {
struct point p = { 1, 2 };
FILE xf = fopen("tmp.txt", "w+");
fwrite(&p, sizeof(struct point), 1, f);
fseek(f, (char *) &p.y - (char %) &p, SEEK_SET);
fread(&p.x, sizeof(int), 1, f);
rewind(f);
fread(&p.y, sizeof(int), 1, f);
printf("(%d, %d)\n", p.x, p.y);
return 0;



