
Assignment 5
CSCI 2132: Software Development

Due March 18, 2019

Assignments are due on the due date before 23:59. All assignments must be submitted electronically via the course SVN
server. Plagiarism in assignment answers will not be tolerated. By submitting your answers to this assignment, you declare
that your answers are your original work and that you did not use any sources for its preparation other than the class notes,
the textbook, and ones explicitly acknowledged in your answers. Any suspected act of plagiarism will be reported to the
Faculty’s Academic Integrity Officer and possibly to the Senate Discipline Committee. The penalty for academic dishonesty
may range from failing the course to expulsion from the university, in accordance with Dalhousie University’s regulations
regarding academic integrity.



General Instructions: How to Submit Your Work

You must submit your assignment answers electronically:

• Change into your subversion directory on bluenose: cd ~/csci2132/svn/CSID .

• Create a directory a5 for the current assignment.

• Change into your assignment directory: cd a5 .

• Create files inside the a5 directory as instructed in the questions below and put them under
Subversion control using svn add <filename> . Only add the files you are asked to add!

• Once you are done answering all questions in the assignment (or the ones that you are able to
answer—hopefully all), the contents of your a4 directory should look like this:

a5
luhn.c
matrixmult.c

(You will also have executable programs and potentially some data files in this directory, but you
should not add them to SVN.) Submit your work using svn commit -m"Submit Assignment 5" .

1



(Q1) Is Your Credit Card Number Valid? 10 marks

In 1954, Hans Peter Luhn invented a simple checksum method that can be used to detect simple errors
in various identification numbers. Today, this method, known as Luhn’s checksum, is used to check for
the validity of credit card numbers, Canadian social insurance numbers, and numerous others.

Consider a number x =
∑n

i=0 x i ·10i, where x i ∈ {0, . . . , 9} for all 0≤ i ≤ n. In other words, xn xn−1 . . . x0

is the sequence of x ’s decimal digits. For the number x = 932, for example, we have n = 2, x2 = 9,
x1 = 3, and x0 = 2.

To calculate Luhn’s checksum, we transform the sequence x = 〈xn, xn−1, . . . , x0〉 into another sequence
y = 〈yn, yn−1, . . . , y0〉 defined as

yi =

¨

x i if i is even

2x i if i is odd
,

for all 0 ≤ i ≤ n. Next, we construct a sequence z = 〈zn, zn−1, . . . , z0〉 from y = 〈yn, yn−1, . . . , y0〉 by
defining

zi =

¨

yi if yi < 10

byi/10c+ (yi mod 10) if yi ≥ 10
,

for all 0≤ i ≤ n. Finally, Luhn’s checksum of x = xn xn−1 . . . x0 is L(x) =
∑n

i=0 zi. The number x is said
to be valid if L(x) is divisible by 10. Otherwise, x is invalid.

As an example, consider the number x = 2264 16589022 6421. Then

x = 〈2,2, 6,4, 1,6, 5,8, 9,0, 2,2, 6,4, 2,1〉,
y = 〈4,2, 12,4, 2,6, 10,8, 18,0, 4,2, 12,4, 4,1〉, and

z = 〈4,2, 3,4, 2,6, 1,8, 9,0, 4,2, 3,4, 4,1〉.

This gives L(x) = 4+ 2+ 3+ 4+ 2+ 6+ 1+ 8+ 9+ 0+ 4+ 2+ 3+ 4+ 4+ 1= 57, so this number is
invalid.

If we change the number to x = 226416589022 6424, this sets x0 = y0 = z0 = 4 and leaves all other
zi-values unchanged. Thus, L(x) = 60 in this case, that is, this number is valid.

Your task is to write a program luhn.c that reads a sequence of numbers from stdin, checks for each
whether it is valid, and accordingly prints “valid” or “invalid” to stdout for each number.

Input format: The input consists of n+ 1 lines. The first line is the number n of remaining lines in
the input. Each of the remaining n lines stores a number to be checked.

The numbers in the input can be arbitrarily long, that is, you must not assume that each number can
be stored even in an unsigned long int. You may assume, however, that the checksum L(x) of each
number x in the input can be represented in an unsigned long int.

An example input looks like this:

3
00554
999
2264165890226424

2



Output format: For an input with n+ 1 lines (which consists of n numbers preceded by the count n
of these numbers), the output your program produces must consist of n lines. The ith line should be
“valid” if the ith number in the input is valid, and “invalid” if the ith number in the input is invalid.

For the input above, for example, your program should output:

valid
invalid
valid

3



(Q2) Matrix Multiplication 10 marks

The main focus of this question is for you to practice using multi-dimensional arrays in C. Algorithmically,
the problem is fairly straightforward. You should be familiar with the process of multiplying two
matrices from an introductory linear algebra course. Given an `×m matrix A and an m× n matrix B,

A=









a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...
a`,1 a`,2 · · · a`,m









B =









b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...
bm,1 bm,2 · · · bm,n









,

our task is to compute an `× n matrix C ,

C =









c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...
c`,1 c`,2 · · · c`,n









,

where

ci, j =
m
∑

k=1

ai,k bk, j, for all 1≤ i ≤ ` and 1≤ j ≤ n.

Your program should read the matrices A and B from stdin and write the matrix C to stdout. Implement
your program in a file matrixmult.c and add it to SVN. The following are the requirements on the
format of the input your program must be able to consume and of the output your program must
produce.

Input format: The input of your program consists of a file split into three parts. The first and second
part are separated by an empty line, as are the second and third part of the input.

The first part consists of a single line containing the three integers `, m, and n, separated by spaces.

The second part represents the matrix A. This part has ` lines. Each line has m floating point numbers
on it. The jth number on the ith line is the value ai, j.

The third part represents the matrix B. This part has m lines. Each line has n floating point numbers
on it. The jth number on the ith line is the value bi, j.

Each floating point number in Parts 2 and 3 are represented with two digits after the decimal point.

Here’s an example input:

3 2 4

3.00 4.50
1.25 -1.00
2.00 -3.00

1.00 1.00 -2.00 4.00
5.25 3.25 -2.25 1.00

4



This represents the input matrices

A=





3 4.5
1.25 −1

2 −3



 and B =
�

1 1 −2 4
5.25 3.25 −2.25 1

�

.

Output format: The output of your program must consist of two parts, not separated by any blank
lines. The first part consists of a single line with two integers on it, ` and n. The second part consists
of ` lines. Each line has n floating point numbers on it. The jth number on the ith line is the value ci, j.
Each value must be represented with two digits after the decimal point.

The output for the above sample input should look like this:

3 4
26.63 17.63 -16.12 16.50
-4.00 -2.00 -0.25 4.00
-13.75 -7.75 2.75 5.00

This represents the output matrix

C = A× B =





26.625 17.625 −16.125 16.5
−4 −2 −0.25 4
−13.75 −7.75 2.75 5



 .

(Due to the requirement that each number should be represented with two digits of precision after
the decimal point, the first three numbers on the first line are rounded. You do not have to worry
about implementing a particular rounding rule. Simply produce the output that printf’s %.2f format
specifier produces.)

5


