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Abstract

This work details an auction-based model for problem decomposi-

tion in Genetic Programming classification. The approach builds on the

population-based methodology of Genetic Programming to evolve indi-

viduals that bid high for patterns that they can correctly classify. The

model returns a set of individuals that decompose the problem by way of

this bidding process and is directly applicable to multi-class domains. An

investigation of two auction types emphasizes the effect of auction design

on the properties of the resulting solution. The work demonstrates that

auctions are an effective mechanism for problem decomposition in classi-

fication problems and that Genetic Programming is an effective means of

evolving the underlying bidding behaviour.

1 Introduction

Genetic Programming (GP) is a population-based search algorithm that clas-
sically produces a single ‘super’ individual by way of a solution [5]. This is
a natural effect of the survival of the fittest mechanism implicit in GP and is
supported by various theoretical models [7]. The success of a single individual,
however, may be limited in scenarios where progress cannot be made without
effective problem decomposition. Attempts have been made to encourage GP
to provide multiple solutions where these have typically taken the form of di-
versity maintenance schemes such as niching [10] and coevolution [11]. In this
work we take a different approach motivated by the use of market mechanisms
in machine learning, and in particular, the Hayek framework of Baum [1] [2].
However, it is apparent that the sheer number of problem-specific parameters
endemic to the Hayek model results in a system that is very difficult to replicate
[6].

The motivation of the current work is therefore to revisit the market-based
approach for problem decomposition with the objective of keeping the model
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as simple as possible. We begin by considering the problem domain to be dis-
crete, in this case, binary and multi-class classification problems. This implies
that actions are also discrete so that individuals may concentrate on identify-
ing an appropriate bidding strategy. Such a strategy need only be profitable,
thus individuals are free to identify the subset of training exemplars on which
they will concentrate their resources. Key to encouraging the identification of
bidding strategies that facilitate problem decomposition is the definition of an
appropriate auction mechanism. To this end we concentrate on the design of the
auction model where the auction is central to establishing the credit assignment
process; if the auction is effective in instigating the relevant reward mechanism
then the learning problem as a whole should also be more straightforward.

Auctions have successfully been applied to other problem domains such as
the coordination of teams of robots [4]. This work demonstrates that a market-
based framework using auctions can also be applied to the machine learning
problem of classification. In particular, it is shown that GP is an effective
means of producing the underlying bidding behaviour with minimal a priori

knowledge.
This paper is organized as follows. The following section discusses related

systems and motivates the need for a simplification to the Hayek model. Section
3 describes the proposed approach including the two types of auctions that
are investigated. Section 4 summarizes model performance on four real-world
datasets (two binary and two multi-class), and concluding remarks are made in
Section 5.

2 Related Work

The proposed approach is motivated by the market-based Hayek model [1][2]
originally applied to a blocks world problem (i.e., reinforcement learning). Hayek
was found to be exceptional because it discovered generic solutions capable of
producing long chains of actions. In contrast, GP augmented with hand-crafted
features was able to solve problems limited in size to at most five blocks [5].

Hayek employs auctions in which individuals bid for the right to act on the
environment. Because individuals must pay out their bid, good behaviours will
tend to extract sufficient reward and therefore earn wealth while poor behaviours
will tend to lose wealth; wealth is therefore treated as a fitness measure and
used to guide the search. The key differences between Hayek and the proposed
approach are as follows:

1. In Hayek, an individual always bids the same amount (limited only by the
individual’s wealth) yet its choice of action is a function of the input. In-
dividuals in the proposed approach may bid different amounts, are always
associated with a single action, and may posses negative wealth.

2. The Hayek population is of a variable size. Individuals are created when
existing individuals accumulate enough wealth and removed when their
wealth falls below a threshold. In the proposed approach, the population
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size is fixed and the poorest individual is always removed so that survival of
the fittest is reinforced and the overhead of maintaining large populations
is reduced1.

3. In Hayek, when a child is created it receives a fraction of its parent’s
wealth. In return, the offspring must periodically pay to its parent a
constant amount plus a fraction of its profit. In the proposed approach,
there are no such transfers of wealth thus avoiding the associated problems
of parameterizing the payoff feedback loop.

4. The Hayek framework taxes each individual in proportion to its size and
the total computational overhead incurred by the system. The proposed
approach does not use taxation. However, a fixed-size population with a
steady-state selection policy ensures that the worst performing individuals
do not linger in the population.

The Hayek framework was found to be complex and sensitive to a large num-
ber of paremeter setings making it difficult to reproduce previous results [6].
The design of the proposed approach results in a simpler model enabling us
to concentrate on establishing the contribution of specific system components
(e.g., auctions). In addition, as a starting step and to make the analysis more
manageable, here the approach is applied to classification problems only.

The approach presented in this work is also related to Learning Classifier
Systems [8]. Whereas classifier systems evolve populations of condition-action-
strength rules, in the proposed approach the condition and strength component
has been replaced by the bid procedure. This has several implications, for
example, it makes the behaviours of each individual deterministic as it does
not depend on any dynamic parameters such as strength. Furthermore, in the
proposed approach the action set always consists of a single individual making
allocation of credit more straightforward. Finally, compared to some popular
classifier system formulations, in the proposed approach an individual’s fitness
is not solely a function of its bid accuracy [14]. Instead, individuals may survive
in the population so long as their ratio of the gains made on profitable auctions
to the losses sustained during unprofitable auctions is sufficiently high.

3 Methodology

A population of individuals each defining a bid and an action is evolved. The
view is taken that only the bidding behaviour needs be represented as a program.
The corresponding action is defined by a scalar selected a priori over the range
of class labels, i.e., the set of integers {0, ..., n− 1} in an n-class classification
problem. Given that a market model will be utilized as the methodology for
problem decomposition, wealth should reflect the success of an individual’s bid-
ding behaviour. Thus, when new individuals are initialized in the population,
they assume the same wealth as the poorest individual in the population. Such

1Populations with tens of thousands of individuals were encountered in Hayek.
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a view is taken in order to avoid injecting disproportionally high volumes of
wealth into the market. Moreover, the initial population possesses zero wealth.
This does not preclude individuals from bidding as negative wealth is possible.
Thus, wealth is used as a relative measure of performance as opposed to having
any monetary properties.

The following sections describe the generic auction model, two specific auc-
tion types, and the form of GP employed.

3.1 Generic Auction Model

The population is of a fixed size. During initialization, Step 1 of Algorithm
1, individuals generated with uniform probability are added to the population
until the population limit is reached. Initial wealth values are set to zero.
Following initialization, the training algorithm proceeds in a series of epochs,
Step 2. In the first stage of an epoch, an auction is held for each pattern in
the training dataset, Step 2(a)i. During the auction, agents compete for the
ownership of the pattern and wealths are adjusted to reflect the outcome of this
competition. Reproduction takes place once the auctions have completed. At
this time, the individual with the least amount of wealth is replaced. A single
parent is selected with uniform probability from the population, Step 2(c), and a
child is created from this parent through the application of mutation operators.
The wealth of the poorest agent in the remaining population is determined, with
the wealth of the child taking this value, Step 2(e). The child is then added
to the population. If the new individual is profitable, its ranking with respect
to wealth should ‘bubble up’ relative to the performance of the population in
successive epochs.

The goal of training is to produce a population where each individual wins
a subset of the training exemplars for which its action is suitable (e.g., in clas-
sification, suitable means that the label of the exemplar matches the action
of the individual). Following training, the aggregate bidding behaviour of the
population will determine how the system acts on an unseen exemplar.

3.2 Auction Types

Two types of auctions, Step 2(a)i of Algorithm 1, were investigated. The first
represents a vanilla first-price auction in which the winning agent pays the
difference between its bid and the reward resulting from its action. The second
auction model explicitly encourages individuals representing different actions
to minimize their bid values when their actions do not match that of the class
label.

First-Price (FP). An exemplar is presented and each individual submits an
associated bid. The individual with the highest bid is selected as the
auction winner and must pay its bid to the environment (i.e., a payment
is made but never collected). The winner’s action is then compared to the
exemplar label. When the the two match, the winner receives a reward of
1, otherwise, the winner receives a reward of 0.
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Algorithm 1 Generic auction-based evolutionary training algorithm.

1. while less than the population size limit do

(a) seed = newRandomIndividual();

(b) seed.wealth = 0;

(c) population.insert(seed);

2. for each epoch do

(a) for each training exemplar ‘p’ do

i. auction(population, p);

(b) population.delete(findPoorestIndividual(population));

(c) parent = selectRandomIndividual(population);

(d) child = newChild(parent);

(e) child.wealth = findPoorestIndividual(population).wealth;

(f) population.insert(child);

Second-Price (SP). Individuals again submit a bid for each exemplar and
the highest bidder is selected as the auction winner. The winner’s action
is compared to that of the exemplar, and the FP scheme followed if the
winner’s action does not match that of the label. If the winner’s action
matches the label, then the highest bidder is identified from individuals
representing alternative actions. The winner does not pay out its bid (to
the environment) but rather the bid of this runner-up. In addition, the
runner-up pays its bid (to the environment). Since the winner’s action
matched the class of the pattern, the winner receives a reward of 1.

In both auctions, an individual can profit only by winning auctions for pat-
terns whose class is the same as its action without overbidding. As such, the
goal is to evolve winning bids that reflect the reward associated with individu-
als’ actions on each pattern. In addition, the SP auction is designed to increase
the winner’s profit (especially during the later stages of training when high bids
are expected) and produce more robust behaviours by driving down bids of
non-winning classes.

3.3 Linear Genetic Programming

Bid procedures were evolved using a linear GP representation [3]. The Sigmoid
function f(y) = (1−e−y)−1 was used to obtain a bid over the unit interval given
a raw (real-valued) GP output y. Since the possible reward values were restricted
to the set {0, 1}, an individual could overbid only for instances of the wrong class.
A null-initialized set of registers was made available for storing intermediate
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results and the final output was extracted from a predefined register. Denoting
registers by R, inputs by I, and operations by op, the instructions themselves
could be of the form Rx ← op Rx Ry or Rx ← op Rx Iy. Both unary and binary
operators were allowed, and in the cases where op was unary it was applied to
the y operand.

Five stochastic search operators were used to mutate a parent to generate a
child of which the first four affected the bid program: (1) bid delete removed
an instruction at an arbitrary position, (2) bid add inserted an arbitrary in-
struction at a randomly chosen position, (3) bid mutate flipped a random bit
of an instruction at an arbitrarily chosen position, (4) bid swap exchanged the
positions of two arbitrarily chosen instructions, and (5) action mutate changed
the action associated with an individual to a randomly chosen value. Each of
these operators was applied with a specified probability and the application of
the operators was not exclusive.

During initialization, the individual bid program sizes were selected from a
predefined range with uniform probability (i.e., a fixed length representation).
The bid delete and add operators were therefore included to allow change to the
complexity of a program. The bid swap operator was added for situations when
a program had the right instructions but in the wrong order. Finally, the action
mutate operator was employed in case individuals appeared that exhibited the
right bidding behaviour but for the wrong class. In addition, this operator
proved useful for ensuring an action always had a chance of appearing in the
population (e.g., in situations where all individuals advocating an action were
extinct).

4 Evaluation and Results

4.1 Datasets and Parameterization

Four real-world datasets from the UCI Machine Learning Repository [12] were
used to evaluate the approach, Table 1. The test partitions were generated by
randomly selecting instances from the entire dataset to approximately preserve
class distributions. With the exception of the BCW dataset where a 50/50 split
was used to reduce training times, in all cases one-quarter of all the patterns were
held out for testing. BCW refers to the Wisconsin Breast Cancer dataset with
patterns containing missing attributes removed. BUPA is the liver disorders
databases. Classes 1, 2, and 3 in the Iris dataset correspond to flowers iris-
setosa, iris-versicolor, and iris-virginica respectively. Finally, Housing refers to
a three-class version of the Boston Housing dataset [9]. The BUPA and Housing
datasets are considered to be representative of the more difficult classification
problems. It should be noted that individuals in the population were initialized
with a single action selected a priori from the set of possible class labels, Table
1, with uniform probability.

The parameters used in all of the experiments are given in Table 2. Thirty
different initializations were performed for each configuration to account for the
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Table 1: Datasets used in evaluating the proposed approach. Distribution refers
to the number of patterns of each class and is given in the same order as the
class labels in the ‘Labels’ column. All labels are shown as they appear in the
original datasets.

Train Test
Dataset Features Labels Size Distribution Size Distribution

BCW 9 (2, 4) 342 (222, 120) 341 (222, 119)
BUPA 6 (1, 2) 259 (108, 151) 86 (37, 49)
Iris 4 (1, 2, 3) 113 (37, 37, 39) 37 (13, 13, 11)
Housing 13 (1, 2, 3) 380 (123, 140, 117) 126 (44, 33, 49)

Table 2: Parameter values used in the experiments.

Parameter Value

Minimum program size 1
Maximum program size 256

Bid delete/add/mutate/swap probability 0.5
Action mutate probability 0.5

Number of registers 4
Function set {+, ×, −, ÷, cos, sin, exp, log}

Population size 100
Epochs 100 000

Number of initializations 30

dependence of the algorithm on the starting conditions.
After training, individuals that won zero auctions on the training data were

marked as inactive and not used on the test partition. Results were then com-
piled in terms of the number of active individuals, classification accuracy, and
bidding behaviour. The results shown are averaged over the thirty initializations
performed for each pairing of auction type and dataset.

4.2 Results

Figure 1 summarizes the number of active individuals. Compared to the SP
auction, the FP auction uses more individuals one the easier datasets and fewer
on the difficult ones. Conversely, the SP auction allocates more resources to the
more difficult problems and less to the easier problems. Both approaches assign
significantly more resources to the more difficult BUPA and Housing datasets.

As seen in the summary of the accuracy results on the test data, Figure 2,
there is no clear preference for either auction type. In addition, neither approach
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Figure 1: Active individual counts. The box boundaries denote the first and
third quartiles, the thick horizontal line the median.

is seen to be superior with respect to consistency (i.e., spread of test accuracies).
Even though the overall accuracy of the FP and SP approaches appears to be
similar, the two differ with respect to their per class accuracies, Figure 3. In
the case of the BCW and Iris datasets, the task appears to be straightforward
as all classes are represented with a high degree of precision under both auction
schemes. On the more difficult BUPA and Housing datasets, however, the SP
approach yields more balanced results (i.e., the SP approach is more effective
at profiling all classes). This suggest that the SP approach will be less biased
in situations where the class distributions are unbalanced.

Figure 4 shows aggregate bidding behaviour on the training data. For each
case, the mean bid value is calculated by considering the bids of all individuals
of a given action on all patterns of a given class. The mean maximum bid is
calculated in a similar fashion except that for each pattern only the winning
individual is considered (from all individuals advocating a given action). For
individuals of action x bidding on instances of class y, the desired behaviour
corresponds to bidding high only if x = y and low otherwise. This corresponds
to individuals bidding high for patterns that match their actions and low oth-
erwise. Desirable behaviour does not necessarily imply that the mean bid is
high whenever x = y. Given a class x, certain individuals of action x may bid
high only for some of the patterns of class x thus identifying a subclass within
a single class (as labeled in the dataset).

Figure 4 shows that the SP approach yields better bidding behaviour. Using
the FP approach, the maximum bid always tends to be high; individuals bid

8



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

H
ou

si
ng

 S
P

H
ou

si
ng

 F
P

Ir
is

 S
P

Ir
is

 F
P

B
U

P
A

 S
P

B
U

P
A

 F
P

B
C

W
 S

P

B
C

W
 F

P

ac
cu

ra
cy

case

Figure 2: Accuracy results on the test data. The thick horizontal line denotes
the median, the box boundaries the first and third quartiles, and the line end-
points the minimum and maximum.
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Figure 3: Per class accuracies on the test data. Each bar shows the accuracy of
the FP or SP approach on the class denoted on the x-axis.
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Figure 4: Bidding behaviour on the training data. Each bar shows the maximum
mean bid (height of the bar) and the mean bid (segment crossing the area of the
bar) for the FP or the SP approach. The bars are grouped by bidding scenarios.

high even for patterns associated with the wrong class. This is best illustrated
on the BCW dataset where the mean maximum bid using the FP approach is
always virtually unity regardless of the true class of the pattern. Using the
SP approach, if a pattern does not match the individual’s action then that
individual’s bid tends to be significantly lower. This behaviour appears to be a
direct result of the penalty applied to the runner-up in the SP wealth adjustment
process and suggests more robust decision boundaries.

4.3 Comparison with C5.0

To summarize and to put the difficulty of the learning task into context, Table 3
shows a comparison of the results obtained using the FP and SP auction types
and C5.0 [13]. C5.0 is an established data mining algorithm that can be used
to build classifiers in the form of decision trees. In setting up C5.0, all BCW
attributes were defined as ordered discrete, the ‘CHAS’ Housing attribute was
defined as discrete, all other attributes were defined as continuous, and default
learning parameters were used. The table shows that the proposed approach
typically outperforms C5.0.
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Table 3: Test accuracies (in percent) of the FP and SP schemes compared to
C5.0.

BCW BUPA Iris Housing
Best Mean Best Mean Best Mean Best Mean

FP 96 94 67 58 100 96 77 67
SP 97 95 70 59 100 96 78 70
C5.0 94 - 67 - 97 - 75 -

5 Conclusion

A market-based model for decomposing classification problems between multiple
GP individuals was presented. The central mechanism in this model is the
auction where an individual can profit only by correctly classifying a problem
instance. The proposed approach requires a single population to be evolved and
can be directly applied to problems with more than two classes.

Two auction types were examined and the SP formulation found to be supe-
rior for several reasons. First, it allocated more resources to the more difficult
problems and fewer resources to the easier problems. Second, it yielded more
balanced per class classification accuracies. Finally, it produced a wider margin
between correct and incorrect bids suggesting more robust decision boundaries.

This work demonstrates that auctions are an effective means of partitioning
the instance space in classification problems and that they can be tailored to
achieve desired system behaviour. By using bids to associate individuals with
patterns, problem decomposition can be achieved. In addition, GP was shown
to be able to successfully evolve the bidding behaviour underlying every auction.
In this regard, wealth was shown to be an effective measure of individual fitness.

As demonstrated by Hayek, the idea of using an auction to select an appro-
priate action given an input is also applicable to reinforcement learning scenar-
ios. One obstacle in this problem domain is the high number of possible test
instances. Future work should therefore focus on incorporating active learning
to select a manageable and informative subset of test cases during training.
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