
Coevolutionary Bid-Based Genetic Programming for
Problem Decomposition in Classification∗

Peter Lichodzijewski Malcolm I. Heywood

July 1, 2008

Abstract

In this work a cooperative, bid-based, model for problem decomposition is proposed
with application to discrete action domains such as classification. This represents a
significant departure from models where each individual constructs a direct input-
outcome map, for example, from the set of exemplars to the set of class labels as is
typical under the classification domain. In contrast, the proposed model focuses on
learning a bidding strategy based on the exemplar feature vectors; each individual
is associated with a single discrete action and the individual with the maximum bid
‘wins’ the right to suggest its action. Thus, the number of individuals associated with
each action is a function of the intra-action bidding behaviour. Credit assignment is
designed to reward correct but unique bidding strategies relative to the target actions.
An advantage of the model over other teaming methods is its ability to automatically
determine the number of and interaction between cooperative team members.

The resulting model shares several traits with learning classifier systems and as
such both approaches are benchmarked on nine large classification problems. More-
over, both of the evolutionary models are compared against the deterministic Support
Vector Machine classification algorithm. Performance assessment considers the com-
putational, classification, and complexity characteristics of the resulting solutions. The
bid-based model is found to provide simple yet effective solutions that are robust to
wide variations in the class representation. Support Vector Machines and classifier
systems tend to perform better under balanced datasets albeit resulting in black-box
solutions.

1 Introduction

Divide-and-conquer appeals to the intuition that solving a problem through decomposition
will facilitate the search process and make the ensuing solutions more transparent. However,
despite the utility of a population-based search mechanism, canonical Genetic Programming
(GP) provides a solution in the form of a single super-individual [27]. That is to say,

∗Originally published in Genetic Programming and Evolvable Machines,
http://www.springer.com/computer/artificial/journal/10710.

1

schema theorems in their many forms predict that populations will evolve towards a single
candidate solution [28]. Models that attempt to support a divide-and-conquer approach
to learning under the GP paradigm generally fall into one of two forms: the hierarchical
‘module acquisition’ methodology in which code reuse within candidate solutions is the goal
[1, 27] or some form of team behaviour [7, 45]. We are interested in the latter, that is to say,
situations where multiple individuals from the same population are evolved to ‘cooperate’ or
decompose the original problem domain into a set of interacting behaviours that collectively
solve the problem as originally posed.

The problem domain of interest is classification where a supervised learning context with
binary feedback (correct or incorrect) is assumed. A central tenet unique to the ‘team’ based
methodology – as opposed to the canonical GP approach to classification – is the mechanism
for establishing problem decomposition. Earlier GP approaches for building teams [7, 45,
47] have relied on the explicit specification of the individuals appearing in a team. An
individual in the population was therefore viewed as a team consisting of several member
classifiers. This makes the process of credit assignment between team members during
evolution straightforward but at the natural disadvantage of assuming sufficient information
to make the decision regarding team memberships.

In this work a different view is taken to the goal of learning under a discrete supervised
domain. Instead of requiring individuals to learn a mapping between (input) exemplar
and a (discrete) target action, we require individuals to evolve a relation between (input)
exemplar and a bid (a real-valued scalar over the unit interval). Each individual has a
single scalar action assigned at initialization from the set of actions defined by the domain
(e.g., possible class labels), and the individual with largest bid wins the right to specify its
predefined action1. Thus intra-action behaviours are explicitly supported without an a priori
specification of the number of individuals of each action comprising the team.

This work also considers the issue of GP scalability on very large datasets. To this end,
the bid-based cooperative mechanism is integrated with a Pareto-based competitive coevo-
lutionary paradigm [14, 16, 39]. Pareto-based coevolution models the interaction between
learners (bidding individuals in this case) and test points (training exemplars) as a compet-
itive game. The proposed approach exploits this interaction so that it is not necessary to
evaluate learner fitness over the entire training dataset, but rather, over a fixed subset of
exemplars that are able to discriminate between the learners. In this way, the computational
overhead required during learning is decoupled from the size of the training dataset. Such a
model has been demonstrated to significantly reduce the computational overhead which has
traditionally limited GP to small datasets [33, 35, 36].

The proposed approach, denoted Bid GP (BGP), shares similarities with Learning Clas-
sifier Systems (LCS) [20]. In particular, both approaches decompose a problem by selecting
a subset of the population to act at a given time step. However, whereas classifier systems
typically evolve condition-action-strength rules the proposed approach replaces condition
and strength with a single bid procedure. This results in deterministic individual behaviour
because, in contrast to strength, bid values are not adapted during an individual’s lifetime.
Furthermore, in BGP the subset selected to act always consists of a single individual facil-
itating credit assignment. Although the proposed approach does borrow from XCS [51] in

1Hereafter, we will use ‘class’ and ‘action’ interchangeably.

2

using accuracy as a component of individual fitness, the way in which this accuracy affects
the individual’s survival, and in general the proposed training algorithm, is very different.

In the following we first provide a review of related work, Section 2, and then develop
the BGP model of teaming, Section 3. Section 4 conducts an extensive empirical evalu-
ation of BGP under the classification domain (i.e., a problem domain with a discrete set
of behaviours) using nine large datasets that include unbalanced class distributions as well
as a varying number of classes. Given the similar teaming properties of classifier systems
(bid-based action selection, no a priori specification of the cooperating individuals), we
benchmark BGP against a real-valued XCS classifier system in addition to the second-order
Support Vector Machine (SVM) implementation LIBSVM [12]. We find that relative to both
XCS and SVM, the ensuing BGP solutions are much more transparent as the XCS model
typically utilizes the entire population in the ‘team’ while the support vectors in the SVM
models number in the hundreds and tens of thousands. Moreover, BGP decompositions
appear to be correlated with the complexity of the data and are effective at resisting class
imbalances as a whole.

2 Related Work

The approach proposed in this work specifically addresses the concept of automated problem
decomposition through a scalable coevolutionary bid-based model of credit assignment. As
such, we review literature appropriate to both problem decomposition and scaling GP to
larger classification problem domains. In particular, Section 2.1 considers specific attempts to
provide problem decomposition within GP, whereas Section 2.2 reviews the learning classifier
system paradigm in which problem decomposition is an inherent property of the model.
Section 2.3 summarizes recent approaches for scaling GP to larger datasets, and Section
2.4 provides background to the competitive coevolutionary paradigm utilized in this work.
Recent results from the more general cooperative agent-based domain are considered in
Section 2.5, and a summary of the various tradeoffs between different paradigms is provided
in Section 2.6.

2.1 Problem Decomposition in Genetic Programming

As indicated in the introduction, this work focuses on problem decomposition by means of
multiple GP-based individuals learning to assign different individuals to different parts of
the dataset / environmental conditions.

Ensemble approaches compose solutions from multiple individuals where each individual
represents a complete solution. Problem decomposition emerges when ensemble members
make non-overlapping errors; a single member may thus make the wrong decision provided
that it is masked by other members that make the right decision. As such, a voting scheme
is required to resolve cases where these base classifiers do not agree. Boosting and bagging
[4] are two established machine learning ensemble methods that have been used with GP
[17, 21]. They modify the training dataset in order to achieve variation in the ensemble
members.

Other approaches rely on the stochastic nature of GP to generate diversity within the

3

ensemble. Island-based approaches such as N -Version GP [23] compose ensembles by select-
ing individuals from independently evolved populations. Team approaches [7, 45], on the
other hand, evolve groups of associated classifiers evaluating each team as a unit. Whereas
the teaming approach were found to produce individual members that cooperated well but
performed poorly in isolation [45], island approaches evolved individuals that were relatively
fit but whose errors tended to be correlated [23]. As such, little benefit was gained from
combining individuals into teams in the island approach. This result suggests that com-
bining arbitrarily selected individuals that were independently evolved is not sufficient to
consistently provide cooperative behaviour and that the algorithm needs to recognize this
and explicitly promote cooperation (e.g., by recognizing teams of individuals). Orthogonal
Evolution of Teams [47] has been proposed to evolve fit individuals that cooperate well by
applying pressure both to teams as a whole and to their individual members.

Other approaches borrow from Evolutionary Multi-Objective Optimization to explicitly
encourage problem decomposition. The competitive Pareto-Coevolutionary GP Classifier
(PGPC) [33] recognizes that a single individual may not be able to perform well on all
problem instances. As such, it considers the performance of each individual on each problem
instance separately and searches for a solution in terms of a non-dominated set of individuals.
As with most ensemble methods, it requires a post-training voting scheme to provide a
single class label on unseen data. Finally, whereas the typical approach to classification is to
construct models that discriminate between classes, the multi-objective approach of [36, 37]
encourages classifiers to act as novelty detectors. Such a model is explicitly cooperative
resulting in individuals being explicitly rewarded for finding non-overlapping behaviours
that solve the larger (classification) problem. Although this approach does not use a voting
scheme, a clustering step in the inner loop of fitness evaluation increases the computational
overhead.

2.2 Learning Classifier Systems

LCS [20] were proposed as an approach to learning by interacting with an environment.
Specifically, the system was designed to interact with the environment through a set of
detectors and effectors so as to maximize reward in the long run. In the Michigan approach,
a population of classifiers is evolved where each classifier is a condition-action rule with an
associated strength value that estimates the reward expected when, given that the condition
is satisfied, the classifier’s action is taken. Each individual in this population represents a
solution sub-component that can only be applied in the context of all the other individuals.
In the original LCS formulation, the conditions were composed of strings over the alphabet
{0, 1, #}.

Since their initial introduction, there has been a lot of research done in the field of LCS
resulting in many alternate forms of the approach [29]. Here, the focus will be on Wilson’s
Michigan-style XCS [51]. This formulation appears to be particularly significant because of
its use of an accuracy-based fitness measure and a niche-based GA. As such, the approach was
shown to produce classifiers that are both accurate and general (i.e., use as many wildcard
symbols in the conditions as is possible). A concise description of the XCS data structures
and algorithm is provided in [10]. Versions of XCS that can support real-valued conditions
have been suggested [46, 53], and although XCS can be applied to classification tasks directly

4

[3, 53], improved performance can be achieved by assuming a supervised context [5].
The way in which the BGP team members interact is analogous to the way in which

Michigan-style classifiers interact: the BGP approach selects the action associated with the
highest bid and Michigan-style classifiers select the action associated with the highest pre-
diction. In this way, the bid component in the BGP model and the condition and prediction
of Michigan-style classifiers serve the same function. This is the reason for including XCS in
the later empirical evaluation, Section 4.

2.3 Genetic Programming on Large Classification Problems

The number of fitness evaluations that have to be performed in a typical run of GP is
a product of the population size, the number of iterations, the number of runs, and the
size of the training dataset. For typical parameter settings and datasets of even moderate
size the amount of time required to train becomes prohibitive. Settings for the first three
parameters are often required to fall within a certain range to guarantee solutions of quality
and therefore they cannot be significantly reduced. The last factor is problem specific and
limits canonical GP to classification problems with relatively few training instances. This
limitation was recognized in early work where a dataset consisting of 3772 training instances
was considered too large to be manageable [18]. Today, even with considerable hardware
advances, problem domains exist (e.g., intrusion detection) where GP cannot be directly
applied due to excessive training times.

One way to address the problem of the high computational overhead is to use specialized
hardware [17, 22, 25]. In contrast, the approach pursued in this work attempts to solve the
problem by reducing the number of fitness evaluations. In particular, instead of using all
exemplars, the idea is to evaluate the population on a subset of the entire training dataset
on each iteration of the algorithm [18]. In one class of such algorithms, active learning, the
performance of individuals on specific training instances can be used to bias the selection of
these instances into the subset.

Different algorithms have been proposed that fall within this active learning paradigm. By
measuring exemplar difficulty, Dynamic Subset Selection (DSS) [18] biases selection in favour
of exemplars that tend to be misclassified by the population. To make sure that all instances
are eventually seen by the system, selection based on age is occasionally performed. In order
to extend this paradigm to datasets that cannot be entirely cached in memory, hierarchical
versions of DSS have also been proposed [13, 44]. These algorithms first partition the dataset
into blocks that fit entirely in memory then limit subset selection to blocks that have already
been cached in order to take advantage of faster read speeds. The balanced block version of
the algorithm [13] further refines selection to handle highly unbalanced class distributions.

In [30], information about the problem structure is collected in an undirected weighted
graph and used to guide subset selection. The approach was shown to be effective, however, it
still requires significant overhead to maintain and use the graph data structure. In particular,
an Ω(N2logN2) sorting step is required on a dataset of size N to rank fitness cases for
selection.

Coevolution has also been used to reduce the number of fitness evaluations by evolving the
training cases alongside GP individuals. The active learning approach [2] associates a subset
with each individual and grows this subset during training. Intuitively, one would expect a

5

larger subset to be more effective at distinguishing between progressively fitter individuals.
More recently, Pareto-coevolution has been used for subset selection [33, 36]. Here, training
instances are selected based on the distinctions that they make (as described in Section 2.4)
in order to collectively provide an accurate evaluation of the coevolved individuals.

2.4 Ideal Evaluation and Pareto-Coevolution

The concepts of Pareto-dominance and distinctions [16, 39] were used in the Delphi system
[14] to approximate an ideal evaluation function using a reduced number of tests. This
coevolutionary framework evolves a population of learners against a population of tests.
The approach centers around an interaction function G(li, tk) which returns values from an
ordered set and indicates the outcome of applying learner li to test tk (revealing information
about the underlying problem objectives).

If v1 and v2 are two objective vectors then the Pareto-dominance relation dom(v1,v2)
which indicates that v1 dominates v2 is defined as:

dom(v1,v2)⇔ ∀q : v1[q] ≥ v2[q] ∧ ∃q : v1[q] > v2[q]. (1)

Delphi defines an objective or outcome vector for the ith learner li over all the tests as

oli [k] = G(li, tk) (2)

where tk is the kth test. The Pareto-dominance relation applied to these outcome vectors,
referred to as the coevolutionary evaluation function, is then used to determine which learners
are discarded from the population.

If the number of learners is n, the approach also constructs an n2-dimensional distinction
vector dtk for each test tk as

dtk [n · i + j] =

{
1 if G(li, tk) > G(lj, tk)
0 otherwise

(3)

where 1 ≤ i, j,≤ n index the learners. Hence, a distinction is made if the outcome on tk
for learner li is strictly greater than the outcome for learner lj. On the test side, these
distinction vectors are used to determine which tests are discarded from the test population,
again using Pareto-dominance.

An ideal evaluation function, which determines whether learner li is superior to learner
lj, is defined using the Pareto-dominance relation on the (typically unknown) underlying
objectives. With the above setup and a test population of size n2 − n, the coevolutionary
evaluation function is capable of representing this ideal evaluation function exactly because
n2 − n is an upper bound on the number of distinctions that can be made between the n
members of the learner population. Such a Complete Evaluation Set of tests may not be
necessary for successful coevolution and the size of the test population relative to the size
of the learner population may be reduced further. This serves as motivation for this work
where the goal is to reduce the GP training overhead.

6

2.5 Collective and Multi-Agent Models

Collective problem solving naturally implies problem decomposition and as such has received
a lot of interest from the wider research community. One recent example of this is the
COIN framework [48] where the goal is to provide learnable local utility functions that when
maximized also maximize the global utility function G. One such family of functions derived
using the COIN framework are difference utility functions. If ζ is the joint action of all
agents, the difference utility of agent η is

DUη = G(ζ)− Γ(f(ζ)) (4)

where Γ(f) is a utility independent of η’s action. Intuitively, the goal of the second term is
to eliminate noise caused by the actions of the other agents improving the ‘learnability’ of
the overall utility. Specific instances of the difference utility function include the Aristocrat
Utility in which Γ is designed to reflect η’s expected behaviour, and the Wonderful Life
Utility in which Γ reflects ζ but without η’s contribution [48]. Due to the iterative nature
of the BGP training algorithm, where a complete solution does not exist until after the
last training iteration, difference utilities cannot be directly calculated as there is no way to
determine G(ζ) and Γ(f(ζ)). Resolving this remains a challenge for future research.

Multi-agent models of problem solving also provide a natural metaphor for problem de-
composition [41]. This body of work covers a wide range of properties, however, a specific
case of particular relevance to the proposed approach is the case of coevolutionary multi-
agent behaviours [42]. The coevolutionary multi-agent model assumes the basic cooperative
coevolutionary framework of [43] in which an independent population exists for each ac-
tion. The number of actions, and hence the number of individuals cooperating in a team,
is thus predefined. A central design decision rests in establishing who should interact with
an individual at each ‘evaluation’, thus, fitness is a function of the combination of payoffs
from one or more evaluations. Game theory may be employed for establishing the design for
such interactions, however, computational considerations limit the number of combinations
that may be considered, adding noise to the evaluation. Moreover, pathologies exist, such
as disengagement and focusing (also a problem with competitive coevolution) and relative
over-generalization. The latter corresponds to a tendency for credit assignment to reward
individuals that assume a ‘jack-of-all-trades’ policy; this may or may not represent an ‘op-
timal’ model of collaboration for the problem domain in question. Solutions to date require
an estimator for the ‘optimal collaborator’ where this is naturally problem dependent.

2.6 Summary

Relative to the research summarized in Section 2.1, we note several similarities. Early
metaphors for GP teaming worked well within the confines of the team but perform poorly
on an individual basis [7, 45], an example of relative over-generalization. Conversely, it is
apparent that the recent Orthogonal Evolution of Teams model [47] may address the relative
over-generalization issue through the utilization of search operators that take a structured
approach to ‘mixing’ between evaluation or team member selection. Conversely, in the pro-
posed bid-based model, all the diversity is established from a single population, thus we rely
on the appropriate formulation of a fitness function that is able to reward (correct) unique

7

behaviours in isolation. If successful in this goal, the bid based model will avoid the limita-
tion of a one-model-per-action paradigm – implicit in the coevolutionary multi-agent model
– while also avoiding the pathological tendency of previous GP teaming metaphors towards
producing either weak but cooperative behaviours, or strong but correlated behaviours. In
addition, the bid-based model is to work in conjunction with the competitive coevolutionary
component in order to scale to problem domains described in terms of a large number of
exemplars (states). Such a constraint precluded the earlier ‘wealth’ based formulation for
bid-based GP, and currently has not been explicitly demonstrated, to the authors knowledge,
under the COIN framework.

3 Bid GP

BGP assumes a discrete problem domain limiting the set of actions represented by the
population to a finite, discrete, set of behaviours. We assume the classification domain
for illustrative purposes in the following description as well as in the empirical evaluation,
Section 4.

As in the Delphi system, a test population and a learner population are competitively
coevolved. The test population indexes a subset of the entire training dataset2. The learner
population consists of a set of bidders whose behaviour is evolved using GP resulting in the
cooperative coevolutionary behaviour. Specifically, each learner defines a bid and an action.
The bid is represented as a program while the discrete action is defined a priori from the set
of possible class labels. Together, the goal of the learners is to correctly classify the tests.
The goal of the tests is to accurately distinguish between the learners.

In order to deploy the model post training each learner in the final solution executes its
bid program on the input feature vector and submits an associated bid. The highest bidder
is selected as the winner and the action of this winner is then output as the label for the
that exemplar. As the final solution may contain multiple learners with the same action,
the interaction between the bidding behaviours of these learners results in a cooperative
intra-action policy in addition to the inter-action cooperation of learners of different actions.

Various formulations of the bid process have been proposed [34]. However, in order to
provide a simple interface to the competitive coevolutionary paradigm, thus scaling to larger
datasets, we base credit assignment on a first-past-the-post model [35]. In particular, the
proposed model has no concept of ‘wealth’ relying instead on a normalized outcome vector
that penalizes degenerate behaviours. In the following two subsections, an overview of the
system is given followed by a detailed description of the specific algorithm steps.

3.1 Coevolutionary Bid-Based Learning Algorithm: Overview

Unbalanced class distributions may adversely affect training by favouring learners based only
on their action. For this reason, the learner population is partitioned so that selection and
search operators are applied to learners with the same action. In addition, since distinctions
between learners of different actions are not meaningful in this setup, a separate coevolu-
tionary test population is maintained for each learner partition during training. As such,

2As opposed to the test data employed for assessing the generalization performance of the trained classifier.

8

1. S = ∅

2. for each a ∈ L

(a) initialize(Lpop, a)

(b) initialize(Tpop)

(c) while not max generation

i. Lpop = generate(Lpop)

ii. Tpop = generate(Tpop)

iii. for each tk ∈ Tpop

A. bid(Lpop, tk)

iv. normalize(Lpop)

v. Lpop = select(Lpop)

vi. Tpop = select(Tpop)

(d) Lpop = reduce(Lpop)

(e) S = S ∪ Lpop

Figure 1: Generic coevolutionary training algorithm. S is the final solution output by the
system, Lpop and Tpop are the learner and test populations, and L is the set of exemplar class
labels.

for a given action, a learner partition and its associated test population are independent of
any other partition and population. To simplify implementation the learner populations can
therefore be trained in series3 and this is the approach taken here, Figure 1.

The algorithm returns a solution set of learners S which is initialized to be empty in
Step 1. Training then iterates on a class by class basis, Step 2. The learner population
Lpop is initialized with random bid programs and action matching the current class a under
consideration, Step 2a. The test population Tpop is initialized to contain non-duplicated
indices into the training dataset, Step 2b. The learner and test populations are then evolved
in a series of generations, Step 2c. Here, in contrast to the learners which already exist at
the beginning of each generation, new learners are those members explicitly generated in
Step 2(c)i (analogous terminology is used for tests). Once training of the learners for the
current action a is complete, some individuals in the population may be deemed redundant
and eliminated by means of a reduction procedure, Step 2d. The learners in the reduced
population are added to the solution set S in the final step, Step 2e.

At the start of each generation Lpop and Tpop are augmented with the new learners and
tests, Steps 2(c)i and 2(c)ii respectively, after which each learner in Lpop is applied to each
test in Tpop in a series of bidding rounds, Step 2(c)iiiA. During a bidding round each learner
li has its outcome on test tk calculated and recorded in an associated outcome vector oli .
Once the bidding rounds are completed, the outcome vectors are normalized in Step 2(c)iv.

3Compared to a parallel implementation, training overhead increases minimally as Step 2(c)ii in Figure
1 is executed |L| times more often where L is the set of class labels.

9

Using these normalized outcome vectors, the algorithm determines if a new learner should
remain in the population, Step 2(c)v. A new learner can remain in the population only by
displacing an old learner introduced in an earlier generation: this will happen if the outcome
vector of the new learner dominates the outcome vector of the old learner, Eq. 1. Similarly
these outcome vectors are used to calculate the distinctions which determine whether any of
the new tests should remain in the population, Step 2(c)vi.

A normalization step was performed to reduce the contribution of the outcome values for
learners if they showed a tendency towards a degenerate bidding behaviour. For example, on
tests not matching its action, a learner could achieve maximum reward by always bidding as
low as possible. Since Pareto-dominance is used for selection, these learners would otherwise
persist in the population; a more discriminating (and more desirable) learner may not have
evolved an effective policy for bidding on the out-of-class tests and thus never dominate such
a degenerate that maximizes ‘reward’ by always bidding the minimum. The normalization
step is one way to prevent this4.

3.2 Coevolutionary Bid-Based Learning Algorithm: Detailed De-
scription

Specific algorithm steps are detailed sequentially with regard to the main loop, Step 2, of
the learning algorithm.

Learner initialization, Step 2a. Each learner in the initial population Lpop is created
by generating a random bid program and associating it with the current class a under
consideration.

Test initialization, Step 2b. The test population Tpop is initialized to contain non-
duplicate indices into the training dataset. A post-condition of the test initialization step is
that each of the possible training labels is represented by at least one exemplar, therefore, for
each possible training label an exemplar is first selected with uniform probability and added
to Tpop. Thereafter, indices into the training dataset are selected with uniform probability,
irrespective of label, and added to Tpop.

Learner generation, Step 2(c)i. Each learner li ∈ Lpop is considered in turn. With
probability % a new learner is created from li through a series of search operators (Section
3.3), otherwise, a random learner is created. The new learners are added to the population
doubling its size.

Test generation, Step 2(c)ii. Test points are generated without assuming any par-
ticular bias. New tests are therefore generated by uniform sampling of the training dataset
and eliminating duplicates until the size of Tpop is doubled. Such a model is assumed as test
points represent indexes into the training data, thus, there is no context on which variation
operators such as crossover and mutation can be based.

4An alternative approach might take the form of an auction-based model for credit assignment. Such
models are based on the concept of ‘wealth’ [34]. However, it becomes increasingly difficult to establish
robust mechanisms for deriving the ‘wealth’ property when the subset of exemplars from which wealth-based
performance metrics are derived is continuously varying – as is the case of the competitive coevolutionary
paradigm central to scaling the BGP model to large problem domains.

10

Bid, Step 2(c)iiiA. The input test tk is presented to each learner li which executes its
bid program on tk and outputs a bid b ∈ (0, 1). Bids are restricted to the unit interval by
applying a sigmoid to the raw real-valued results of program execution, Section 3.3. The
outcome of applying li to tk is then calculated as

G(li, tk) =

{
b if action of li matches label of tk

1− b otherwise
(5)

and appended to an initially empty outcome vector oli Following the bidding round, each
learner li has an associated outcome vector, Eq. 2.

Outcome normalization, Step 2(c)iv. Given a learner li let Mi denote the set of
tests in Tpop whose class matches the action of li and let M̄i = Tpop −Mi, the set containing
all the other (non-matching) tests. Scaling factors µi and µ̄i are then calculated with respect
to the outcome vector oli as

µi =
1 + Σtk∈Mi

oli [k]

1 + |Mi|
(6)

and

µ̄i =
1 + Σtk∈M̄i

oli [k]

1 + |M̄i|
(7)

thus considering in-class and out-of-class exemplars respectively. Since each outcome falls
in (0, 1) both µi and µ̄i are limited to the unit interval. The outcome vector oli is then
normalized as

oli [k]←
{

µ̄i · oli [k] if tk in Mi

µi · oli [k] otherwise.
(8)

This normalization is performed to prevent individuals from indiscriminately bidding always
the minimum or always the maximum where this is significant on multi-class or unbalanced
datasets. For example, if a learner li always bids the minimum it will achieve maximum
outcomes on all tests in M̄i and as such will be difficult to dominate. However, such a
learner clearly exhibits degenerate behaviour and should be eliminated from the population.
Since this learner will also achieve minimum outcomes on tests in Mi, the normalization
factor µi will be very low. In this way, the outcomes on tests in M̄i will be reduced from
their initially maximum values facilitating the removal of the individual.

Learner selection, Step 2(c)v. The learner population Lpop is composed of two sets
of learners: the set of new learners C created in the current generation, Step 2(c)i, and the
set of learners P already present at the start of the generation. Each new learner li ∈ C is
then compared to each learner lj ∈ P . If oli is found to dominate olj according to Eq. 1
then lj is removed from P , li is marked for selection, and the next learner in C is considered.

As learner selection proceeds and new learners in C displace learners in P , P may shrink
and it may become more difficult for new learners in C to dominate learners in P . Thus, the
order in which the learners in C are considered is randomized, and for each learner in C that
is considered, the order in which the learners in P are considered is randomized. Once all
the learners in C are processed, Lpop in the next epoch is formed by combining the remaining
learners in P with the learners in C marked for selection.

11

The above process also ensures that a new learner is selected only if its outcome vector
is unique relative to the contents of the current population. It reduces the size of Lpop to
what it was after initialization, Step 2a.

Test selection, Step 2(c)vi. With two exceptions, test selection is exactly the same as
learner selection. That is, new tests are compared to tests that were carried over from the
previous generation to see if any of the new tests dominate an old test. The two exceptions are
as follows. First, the decision of whether or not to replace a test carried over from a previous
generation with a new test is made based on Pareto-dominance with respect to the tests’
distinction vectors. Thus, tests are favoured if they provide more information about relative
learner performance. Second, a test is not removed from the population if it is the last one
of its class. This was done to ensure that an exemplar was available to represent each class
in the test population at all times, thus complementing the test population initialization
heuristic (this was not relevant in learner selection because all learners were of the same
class).

Reduction, Step 2d. Reduction is done after the last generation for the current action
a, Step 2, is complete. The outcome vectors for the learners are therefore updated to reflect
the remaining tests in Tpop. Based on these updated outcome vectors any dominated or
duplicate learners are then discarded from Lpop. Given that Tpop is coevolved to distinguish
between the learners, this step is designed to identify and remove redundant individuals.

Given a test set, setting outcomes as in Eq. 5 it is possible for all learners, including
learners of different classes, to have vectors of unity outcomes. If the learners were not
partitioned based on their action, the selection and reduction mechanisms would consider
all but one of these learners to be redundant. This assertion would be incorrect because, at
minimum, at least one learner of each action should be present in the final solution. This is
another reason for performing the partitioning as in the proposed approach, Step 2.

Whenever outcomes were compared, as in Eq. 1, the equality operator was deliberately
made imprecise. Two outcomes would be considered equal if their absolute difference was
less than δ for relatively high values of δ such as 0.1. This was done to reduce the number
of ways in which outcome vectors could vary and prevent situations where two learners were
both selected despite their behaviour being virtually the same. Such a scheme is similar to
the concept of ε-dominance in Evolutionary Multi-Objective Optimization [31]. However, the
definition of ε-dominance in [31] cannot be applied directly to the competitive coevolutionary
model: in particular, for two learners li and lj and test tk, that definition could result in
unity for both dtk [n · i + j] and dtk [n · j + i] suggesting a preference for li over lj and at the
same time a preference for lj over li.

3.3 Linear Genetic Programming

Linear GP [8] was used to evolve the learners’ bid procedures. Each program consisted of
a sequence of binary instructions representing one- and two-operand operations applied to
inputs and a set of null-initialized registers. Following program execution, the real-value GP
output y was extracted from a predefined register. To obtain bid values, b, in the unit interval,
the Sigmoid function f(y) = (1 + e−y)−1 was applied. Such an operator provides a smooth
transition between the two asymptotic limits of zero and one. Individuals are therefore

12

encouraged to ‘focus’ their bidding behaviour on one of three regions – zero, transition, one
– where this is the same for all individuals. Without this, individuals would have to identify
the common bidding region first and then evolve relevant bid strategies within these regions.

Four stochastic search operators were applied to the bid program of an existing learner
to generate a candidate (training Step 2(c)i): (1) delete removed an arbitrary instruction,
(2) add inserted a random instruction at an arbitrary location, (3) mutate flipped an arbi-
trarily selected bit in the program, and (4) swap exchanged the location of two arbitrary
instructions. These operators were applied independently with a predefined probability. In
all cases, a uniform distribution was used to select bits/instructions and to set bit values
during the generation of random individuals.

Whenever a learner was generated (training Steps 2a and 2(c)i), its bid program size was
selected from a predefined range with uniform probability. The delete and add operators were
included to allow varying program complexity within this fixed-length representation. The
swap operator was added to remedy situations where the correct instructions were present
but in the wrong order, and the mutate operator was included to alter a single field of an
existing instruction.

4 Evaluation and Results

BGP was evaluated on nine large datasets of varying complexity. A performance compar-
ison was made against the XCS model on account of its use of a bid-based mechanism for
problem decomposition as well as its ability to evolve this decomposition without an a priori
assignment of team memberships. XCS was shown to evolve general and accurate classifiers
[52] making it a leading LCS formulation and especially suitable for classification [5, 40].
The two bid-based algorithms, BGP and XCS, were compared using a baseline defined by
the LIBSVM [12] support vector machine implementation (version 2.85).

Section 4.1 presents a description of the XCS implementation, the datasets, the param-
eterization used in the experiments as well as a methodology established for comparing
deterministic and stochastic models of classifications. Section 4.2 present the empirical eval-
uation from the perspective of classification performance, computational requirements, and
an assessment of the degree to which problem decomposition is facilitated.

4.1 Experimental Setup

The following empirical evaluation will compare BGP with the XCSR and SVM models of
classification under multiple datasets and performance criteria. In the following we establish
the specific configuration of the XCSR classifier, Section 4.1.1, characterize the benchmark
datasets, Section 4.1.2, and establish performance criteria for the post-training test set eval-
uation, Section 4.1.3. Parameterization for each of the models is then presented in Section
4.1.4. The results of the benchmarking study characterize classification, problem decom-
position, model complexity, classwise classifier decomposition, competitive coevolutionary
behaviour, and computational requirements in Sections 4.2.1 through 4.2.6 respectively.

13

4.1.1 XCS Implementation

The proposed approach was compared against a real-valued variant of the XCS+TS 1.2 clas-
sifier system implementation [11] which is based on the description of XCS in [10]. This
implementation was selected because it represents a reliable code base and it is well docu-
mented and openly available. In addition to the original XCS algorithm [51], XCS+TS 1.2
makes available several optional enhancements. In the following, the XCS system used is
specified emphasizing the particular design choices that were made including any modifica-
tions to the original XCS+TS 1.2 code. Basic knowledge of XCS is assumed but additional
information can be found in [10, 11, 51].

A population [P] of at most N micro-classifiers5 is evolved where the action in each
condition-action rule is selected from the set of possible class labels. Each classifier cl has
the following set of learning parameters: prediction pcl and prediction error εcl (both in the
same units as the payoff), fitness fcl, experience expcl, GA time stamp tscl, and action set
size estimate ascl. The classifier population is initialized to be empty relying instead on
covering and the GA for classifier generation. To train the system, a sequence of ‘explore
trials’ is performed where each explore trial consists of the following steps:

1. A training pattern σ is randomly selected with uniform probability.

2. A match set [M] is calculated as the set of classifiers in [P] whose conditions match σ.
Covering is performed if not every class is represented in [M]. For each class not present
in [M], a matching classifier cl with the corresponding action is created. Parameters
expcl and ascl are set to 1, parameters pcl, εcl, and fcl are set to initial values pI , εI , and
fI respectively, and tscl is set to the current time step. Classifier cl is then added to
[M]. If the population size limit N is reached, deletion is performed using the fitness
and action set size bias method [26].

3. A pure explore strategy is followed whereby an action act is selected from those present
in [M] with uniform probability. Since [M] represents all classes all actions are possible.
The classifiers in [M] advocating act are recorded in the action set [A].

4. The action act is executed resulting in a payoff P . Here, P depends on whether the
class corresponding to act matches the true class of σ.

5. The learning parameters for each classifier cl in [A] are updated in the following order:
expcl, εcl, pcl, ascl, and fcl. The experience expcl counts the number of times cl par-
ticipates in [A] so it is simply incremented. The update to fcl is done as in [51] using
the Widrow-Hoff delta rule except here the intermediate calculation of the absolute
accuracy is performed as

κcl =

{
1 if εcl ≤ E

α(E/εcl)
ν otherwise

(9)

5For efficiency, micro-classifiers representing identical condition-action rules are recorded as a single
macro-classifier. Each macro-classifier has an associated numerosity which is used to weigh calculations
accordingly. Here, the algorithm is described in terms of micro-classifiers.

14

where E is the error threshold (as a function of ε0 but in the same units as the payoff)
below which cl is considered maximally accurate and α and ν parameterize the shape
of the error function. Parameters εcl and pcl are also updated as in [51] using Widrow-
Hoff, as is the action set size estimate ascl. All Widrow-Hoff updates are done using
the same learning rate β.

6. If, based on the mean value of the time stamps tscl of each classifier cl in [A], the
GA has acted on the classifiers in [A] more than θGA trials ago, the GA is applied
to the current action set. First, the time stamps in [A] are set to the current time
step (i.e., trial number in single-step problems). Two parents are then selected from
[A] using fitness-based tournament selection [9] using two independent tournaments of
size τ × |[A]|. One offspring is generated from each parent as an exact copy with the
exception of the experience and action set size estimates which are both reset to 1. The
two offspring are crossed-over with probability χ then mutated with probability µ. If
crossover does occur, prediction, prediction error, and fitness values in the offspring are
set to the mean of the corresponding parent values. GA subsumption [52] is performed
whereby if a parent’s condition is more general than that of its offspring a copy of
the parent is inserted instead of the offspring provided that the parent is sufficiently
experienced and accurate. Insertions into [P] may increase the size of the population
beyond N and in that case deletion using fitness and action set size bias is again
performed.

In classifier systems, exploit trials are used for performance monitoring (i.e., the GA is turned
off and the learning parameters are not adapted) and here were turned off during training.
To measure system performance on the test data post training, an exploit trial is performed
on each test exemplar by deterministically selecting the action predicted to yield the highest
payoff and assigning the associated class to the exemplar (the prediction array is calculated
using fitness-weighed averaging).

XCS+TS classifier conditions were originally represented as strings constructed over the
alphabet {0, 1, #} and therefore applicable only to problems with binary inputs. To con-
struct classifier conditions that can support real-valued inputs, the Unordered Bound Rep-
resentation [46] was used. This representation was selected because, compared to other
representations such as the Center-Spread representation [53], it introduces the least bias in
the intervals that are produced by the system. Given d-dimensional real-valued input pat-
terns, the Unordered Bound Representation constructs a classifier condition by associating
each input feature with an interval predicate. Specifically, the ith input feature is associated
with the ith interval predicate [li, ui) in the classifier condition. The interval itself is encoded
as the ordered pair (pi, qi) and the genotype to phenotype mapping defined as li = min(pi, qi)
and ui = max(pi, qi). Thus, for all li 6= ui, each phenotype can be encoded as one of two
genotypes. For a classifier condition to match an exemplar, every interval in the condition
must contain its associated feature value.

The real-valued implementation of XCS+TS, XCSR, represented each classifier condition
as the sequence of ordered pairs ((p1, q1), (p2, q2), . . . (pd, qd)). The elements of each ordered
pair were encoded as floating point data types (i.e., a one-of-m representation was not used as
suggested in [46]). Exemplar feature and intervals in the range [0, 1) were assumed therefore
‘don’t care’ predicates were encoded as the maximally general interval. Two-point crossover

15

was used whereby points p1 and p2 were selected from {1, 2, . . . , d} with uniform probability
thus defining a contiguous range of ordered pairs which was then swapped between two
individuals. Mutation was performed with probability µ on each ordered pair by adding
to or subtracting (with equal likelihood) from each element an independently derived value
U [0, Vm). Here, U [a, b) denotes a number selected with uniform probability from the range
[a, b). Finally, an input feature xi was covered by generating the interval li = pi = xi−U [0, s0)
and ui = qi = xi + U [0, s0) and encoding it as either the tuple (pi, qi) or (qi, pi) with equal
probability.

4.1.2 Datasets

The datasets used in the evaluation are summarized in Table 1. The Census Income (CEN)
and KDD Cup ’99 (KDD) datasets were obtained from the UCI KDD Archive [19]. The
remaining datasets were obtained from the UCI Machine Learning Repository [38] and in-
clude the ANN Thyroid Disease (THY), Forest Covertype (COV), Pen-Based Recognition
(PEN), Statlog Shuttle (SHU), Poker (POK), Optical Recognition (OPT), and Statlog Land-
sat (SAT) datasets. This selection was made to contain problems with varying numbers of
classes and features, unbalanced class distributions, and large numbers of training exem-
plars. Thus, there are four datasets with fewer than 5000 training exemplars, two with
11000 to 25000, and two with over 100000. Feature counts vary from 9 to 64 whereas class
distributions vary from equal to extremely unbalanced with cases of minority class counts
representing less than 0.1% of the data. Moreover, POK, COV, and KDD utilize test sets
with different distributions under training and test conditions. On all datasets, the original
training and test partitions included in the distribution were used. On KDD, several choices
are possible and here the ‘10% subset’ dataset was selected for training and testing was done
on the ‘corrected’ dataset (as is the norm on this domain).

Preprocessing was done to enumerate nominal attributes for all three approaches under
consideration. Since XCSR assumes input values in the range [0, 1), feature values in the
training patterns were linearly scaled to fall into this range with respect to the minimum and
maximum values in each dimension. On the test partition, this scaling was also performed,
however, the minimum and maximum values as determined from the training partition were
used6. This could result in test patterns whose values fell outside the maximally general
interval [0, 1) and therefore would not be matched by any classifier. The normalization of
data for use with the SVM algorithm was the same as for XCSR whereas the BGP model
retained the original definition of numerical features.

4.1.3 Test Set Classification Performance Criteria

Classifier performance is typically quantified using accuracy defined as the fraction of all
instances that are labeled correctly. However, such a metric is very misleading under unbal-
anced datasets or even balanced multi-class datasets [24, 50]. To this end, we make use of

6Otherwise the test data would have been used to build the model compromising the independence of the
test partition.

16

Table 1: Summary of the datasets used in the evaluation. Shown are and the class distri-
butions on the training and test partitions. The value in parentheses following each dataset
label indicates the number of features. A ‘-’ denotes the class is not present in a dataset.

Classwise pattern counts
Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 All

THY (21)
Train 93 191 3488 - - - - - - - 3772
Test 73 177 3178 - - - - - - - 3428

CEN (41)
Train 187141 12382 - - - - - - - - 199523
Test 93576 6186 - - - - - - - - 99762

KDD (41)
Train 97277 1126 391458 4107 52 - - - - - 494020
Test 60593 16347 229853 4166 70 - - - - - 311029

COV (54)
Train 1620 1620 1620 1620 1620 1620 1620 - - - 11340
Test 210220 281681 34134 1127 7873 15747 18890 - - - 569672

PEN (16)
Train 780 779 780 719 780 720 720 778 719 719 7494
Test 363 364 364 336 364 335 336 364 336 336 3498

SHU (9)
Train 34108 37 132 6748 2458 6 11 - - - 43500
Test 11478 13 39 2155 809 4 2 - - - 14500

POK (10)
Train 12493 10599 1206 513 93 54 36 6 5 5 25010
Test 501209 422498 47622 21121 3885 1996 1424 230 12 3 1000000

OPT (64)
Train 376 389 380 389 387 376 377 387 380 382 3823
Test 178 182 177 183 181 182 181 179 174 180 1797

SAT (36)
Train 1072 479 961 415 470 1038 - - - - 4435
Test 461 224 397 211 237 470 - - - - 2000

17

Table 2: BGP parameter settings.

Parameter Value
minimum program size 1
maximum program size 48

delete/add/mutate/swap prob. 0.5
number of registers 8

function set {cos, exp, log,+,×,−,÷,%}
Lpop size 25
Tpop size 25

% 0.9
number of generations 50000

δ 0.1

classwise detection rates defined as

DETc =
TPc

FNc + TPc

(10)

where DETc is the detection rate for class c, and TPc and FNc refer to the true-positive and
false-negative counts with respect to class c. We summarize the classwise detection rates by
defining a score for a classifier i over all classes as

SCOREi =
1

|C|
∑
c∈C

DETc(i) (11)

where C is the set of class labels and DETc(i) returns the detection rate of classifier i on class
c. This classwise analysis of performance was performed because on unbalanced datasets7 a
model can achieve high raw accuracy by ignoring minority classes. In applications where its
the minority classes that are of interest, such degenerate solutions are of limited use.

4.1.4 Parameterization

The parameters used in evaluating the proposed BGP approach are shown in Table 2. Here,
the population sizes refer to the counts before generation, Steps 2(c)i and 2(c)ii of the training
algorithm. Given that 50 learners are evaluated on 50 tests in each of the 50000 epochs for
each class, each run requires |C|× 1.25× 108 program evaluations where C is the set of class
labels.

With the exception of the maximum population size N , the error threshold ε0 (as a
fraction of the maximum payoff), and the number of explore trials nrExp, all the XCSR
parameters remained fixed throughout the experiments. For these three parameters, however,
values were determined on a dataset-by-dataset basis. Initially, a set of exploratory runs
using ε0 = 0.001 and population sizes 1000 and 10000 was made. The results were inspected

7All datasets with more than two classes will be ‘unbalanced’ since each class can at best (i.e., when the
number of exemplars belonging to each class is the same) account for 1

#ofclasses of all exemplars.

18

Table 3: Parameter values used in evaluating XCSR.

Dataset N nrExp ε0

THY 1000 375000 0.001
CEN 1000 250000 0.001
KDD 10000 62500 0.001
COV 10000 87500 0.001
PEN 10000 125000 0.001
SHU 1000 875000 0.001
POK 10000 125000 0.001
OPT 10000 125000 0.001
SAT 10000 75000 0.001

to determine the more suitable population size (by considering overall accuracy as well as
classwise detection), and using this setting for N and ε0 = 0.0001, another set of runs was
completed. This was done to determine if the system would do better at detecting classes
that accounted for less than 0.1% of the dataset. Throughout, nrExp was set so that the total
number of times a classifier condition was evaluated equaled the number of times a program
was evaluated using the BGP approach (i.e., larger populations were allocated fewer trials
so that the computational effort remained roughly the same). The best settings for N and ε0

that were found using this procedure, as well as the associated number of explore trials, are
summarized in Table 3. The results that follow were reported for runs using these settings.

The remaining XCSR parameters were set as follows: β = 0.05, α = 0.1, ν = 5, θGA =
50, χ = 0.8, µ = 0.04, θdel = 50, δ = 0.1, θsub = 50, P# = 0.33, pI = 10, εI = 0,
fI = 0.01, pexp = 1.0, θmna = |C|, doGASubsumption = true, doActionSetSubsumption =
false. Detailed parameter descriptions can be found in [10]. Some of the parameters,
and in particular β and θGA, were set according to the suggestions in [40] to account for
unbalanced class distributions. Tournament selection was performed using τ = 0.4. The
system received payoffs of 0 and 1000 for incorrect and correct classification respectively and
the error threshold E in Eq. 9 was set to 1000ε0. Finally, the Unordered Bound Parameters
s0 and Vm were set to 1.0 and 0.1 respectively.

Version 2.85 of LIBSVM was used in the experiments. This release of LIBSVM supports
the use of second-order information to provide a more robust convergence model in addition
to the widely utilized Sequential Minimal Optimization model [15]. In common with most
SVM models, the principal learning parameters take the form of penalty function ‘C’ and
declaration of an appropriate kernel function. In the latter case, both radial (Gaussian)
and sigmoid kernels were considered, with the performance of the radial model dominating
that of the sigmoid, thus, in the following, we only report results under the radial kernel.
Three values for C were tried for each dataset resulting in three possible SVM classifiers: the
one yielding the highest score value on the training data was selected for comparison (i.e.,
post-training, the metric of Eq. 11 on the training partition was used to select the most
appropriate SVM model).

For each dataset, thirty runs using different initial conditions were performed using BGP

19

and XCSR. Since the SVM training algorithm does not depend on the initialization, only
three LIBSVM runs, one for each value of C, were performed on each problem. Given
this disjunction between distributions of results under BGP and XCSR versus a single per-
formance point under the SVM model, we assume the following basis for comparison. The
performance point from the SVM model is used to normalize the distribution of performance
points from the BGP and XCSR models. Specifically, a normalized BGP/XCSR score is ob-
tained by dividing the raw BGP/XCSR score by the SVM score for the given dataset. If
a normalized score is greater (less) than 1, it means the associated initialization was better
(worse) than the SVM score. XCSR and BGP results are therefore characterized in terms of
a distribution of results (one for each of the thirty initializations per model) relative to the
SVM baseline on each dataset.

4.2 Results

4.2.1 Classification Performance

Figure 2 compares the distribution of BGP and XCSR score values with respect to the SVM
baseline, Section 4.1.4. Figure 2 thus summarizes the spread in the BGP and XCSR scores
and at the same time compares them with the scores obtained using the SVM algorithm. Ta-
ble 4 lists the SVM test scores that were used to normalize the BGP and XCSR scores, hence
providing the baseline for the comparison. Based on Figure 2, the following observations can
be made:

1. Both BGP and XCSR manage to outperform the SVM model on some of the datasets.
XCSR substantially outperforms the SVM model on THY where all but two of the
XCSR initializations yield higher scores. BGP substantially outperforms the SVM
model on SHU but also does well on THY and CEN yielding third quartile values that
beat the SVM score. On KDD, BGP manages to better the SVM baseline in four of
the thirty initializations.

2. With respect to the training partition, THY, CEN, KDD, SHU, and POK are con-
sidered to be unbalanced datasets while COV, PEN, OPT, and SAT are balanced.
Compared to XCSR, BGP appears to do better on the unbalanced datasets. The one
exception appears to be THY where XCSR typically is able to better BGP even though
the highest BGP scores do match the highest XCSR scores. On POK, both BGP and
XCSR do poorly compared to the SVM baseline but the BGP scores still represent an
improvement over the XCSR scores. With the exception of OPT, XCSR tends to do
better on the balanced datasets.

3. The observation that BGP performs relatively well on unbalanced problems is further
supported by the observation that, compared to the SVM baseline, it also tends to do
well on this subset of datasets.

4. When BGP outperforms XCSR, it tends to do so by a considerable margin such as
on CEN, SHU, OPT, and to a lesser degree KDD. The margins observed when XCSR
outperforms BGP are not as high, with the best BGP results falling within or above
the XCSR interquartile range.

20

BGP XCSR BGP XCSR BGP XCSR BGP XCSR BGP XCSR BGP XCSR BGP XCSR BGP XCSR BGP XCSR

0.4

0.6

0.8

1

1.2

1.4

1.6

no
rm

al
ize

d
sc

or
e

KDD COV PEN SHU POK OPT SATTHY CEN

Figure 2: Overall comparison between the BGP and XCSR scores as normalized with respect
to the SVM baseline. The top and bottom of each box represent the first and third quartile
values over the thirty initializations, while the horizontal line through the middle of each box
represents the median. The whiskers extend from the top/bottom of each box to the farthest
value that is within 1.5 times the distance between the first and third quartile values. Any
other scores represent extreme outliers and are denoted by a ‘+’. On a given dataset, each
BGP and XCSR score is normalized by the single SVM score on that dataset so normalized
scores greater than 1 represent values exceeding the SVM score.

5. XCSR is susceptible to producing degenerate results. On CEN, the median detection
rate of XCSR on class 1 is 0.006 implying that the XCSR solutions tend to indiscrimi-
natingly label all instances as belonging to class 0. On POK, XCSR labels all instances
as belonging to either class 0 or 1 and on SHU the median detection rates on classes
1, 2, 5, and 5 are all 0.000.

6. Compared to XCSR, the BGP scores are subject to greater variance. On all the
datasets, the difference between first and third quartile values is always greater for the
BGP approach. This implies that a greater degree of exploration is present under the
BGP model, where we will return to this property in future work.

In summary, of the three approaches, no single one clearly dominates the other two with
respect to the score values. However, BGP tends to do better when the class distributions

21

Table 4: SVM score results. For each dataset, the values for the complexity parameter C
yielding the highest training score is shown along with the associated test score. The test
score shown for each dataset is used in normalizing the BGP and XCSR test scores on that
dataset in Figure 2.

THY CEN KDD COV PEN SHU POK OPT SAT

C 100 10 100 100 100 100 100 100 100
Test 0.806 0.658 0.611 0.735 0.979 0.631 0.157 0.971 0.851

in the training dataset are skewed, a reflection of the utility of the normalization applied to
the outcome vectors, Eq. 8.

4.2.2 Problem Decomposition

Given a solution set S of learners returned by the BGP algorithm, Figure 1, a ‘win count
distribution’ is used to illustrate how the learners in S decompose the set of problem in-
stances. In particular, by way of the bidding process, each learner in S is associated with a
subset of exemplars, i.e., the cases for which it is the highest bidder. Since each exemplar
is associated with a single learner, the union of these subsets, one for each learner, forms a
partition on the exemplar space. The win count distribution then refers to the cardinalities
of these subsets. They are analyzed because they provide information about the solutions
that are evolved, which in turn may provide insight into properties underlying the problem
domain.

An overview of the BGP win count distributions on the test partition of each dataset is
shown in Figure 3. The distributions are presented by histograms showing counts (on the
y-axis) of the number of learners that win a particular fraction of the test dataset (on the
x-axis, normalized by the size of the test dataset). For example, on PEN, the distribution is
strongly skewed to the right as most learners tend to win a small fraction of the test dataset
and no learners win more that about 50% of the dataset. It should be noted that for each
dataset these histograms show counts summed over all initializations.

Based on Figure 3, two types of behaviours are observed. On THY, CEN, KDD, and SHU,
small peaks towards the right-hand side of the histograms are seen indicating that a small
fraction of learners in the final solution provide the label for a large number of exemplars.
On the other five datasets, the distributions are seen to be skewed to the right indicating
that the win counts for the learners in a solution tend to be more similar with each learner
suggesting a label for a small fraction of examples. This behaviour for the members of the
same solution can be deduced even though the histograms consider win counts summed over
all thirty initializations: for example, as is observed on THY, if a learner is seen to win 90%
of the bidding rounds the other learners in the same solution can win at most 10% of the
bidding rounds.

The pattern of behaviour we identify in this is that THY, CEN, KDD, and SHU all
have a single ‘major’ class, with all other classes denoting a minor contribution to the
training exemplar counts, Table 1. Conversely, COV, PEN, OPT, and SAT are based on
training datasets with a much more equal distribution of exemplars per class. The only

22

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

fraction of dataset

co
un

t

THY

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

fraction of dataset

co
un

t

CEN

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

fraction of dataset

co
un

t

KDD

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

fraction of dataset

co
un

t

COV

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

fraction of dataset

co
un

t

PEN

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

fraction of dataset

co
un

t

SHU

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

fraction of dataset

co
un

t

POK

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

fraction of dataset

co
un

t

OPT

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

fraction of dataset

co
un

t

SAT

Figure 3: Overview of the win count distributions on each dataset over all initializations. For
each initialization, the final solution (S) was applied to the test partition and the number of
times each learner won a bidding round recorded. These counts were linearly scaled to fall
between 0 (representing no rounds) and 1 (representing all rounds). The normalized counts
across all initializations were then used to construct the histograms in this figure: the x-axis
denotes the range [0, 1] partitioned into 10 equal-sized bins corresponding to fractions of the
test dataset and the y-axis denotes the number of learners winning the number of rounds
associated with each bin (i.e., the sum of counts across to the bins equals the total number
of learners in all thirty solutions).

23

exception to this is POK in which two of the nine classes dominate the training exemplar
distribution. Based on these observations, one could conclude that BGP seeks out the
most general individuals producing win counts that are proportional to the distribution
of the underlying dataset (i.e., individuals representing classes with more instances have
proportionally higher win counts). In addition, it is on THY, CEN, KDD, and SHU where the
BGP model provides the strongest classification performance relative to the SVM baseline,
Figure 2.

In the case of datasets with the more uniform win count distributions, OPT and PEN
stand apart from the other two as their associated histograms show the most uniform distri-
bution of win counts. With respect to the class distributions in the underlying dataset, Table
1, OPT and PEN also stand apart because they represent well balanced training datasets.
Although the COV training partition is also balanced, its win count distribution is not as
uniform (especially taking into account the scale on the y-axis) because unlike OPT and PEN
the distribution of the COV training exemplars does not match that of the test exemplars
(and Figure 3 is based on the test partition). This further supports the assertion that BGP
favours learners that win many exemplars because with balanced datasets it is not possible
for a learner to behave correctly and win ‘most’ of the dataset.

4.2.3 Model Complexity Results

The number of learners used in the final solution for the BGP approach is shown in Figure
4. The datasets for which the fewest individual were used are THY, CEN, KDD, and SHU,
the same problems for which the win counts distributions, Figure 3, are highly skewed and
for which BGP returns the strongest classification results. In fact, on these four datasets it
is not uncommon to see solutions consisting of one learner per class (particularly on KDD
and SHU). This is consistent with the observations made in Section 4.2.2 suggesting that
BGP seeks out maximally general individuals. For example, the THY individuals in the
right-hand side peak in Figure 3 likely correspond to learners matching class 2; since class 2
accounts for roughly 93% of the dataset and the detection rate on class 2 (not shown) is in
the mid- to high-nineties, each of these learners can be expected to win close to 90% of the
THY instances. Also, given that the number of learners that can potentially participate in
the solution is twenty-five per class, the reduction procedure based on the Pareto-dominance
with respect of the outcome vector is shown to be an effective way to reduce the complexity
of the solution.

There appears to be a significant difference between the number of learners in the THY,
CEN, KDD, and SHU solutions and the number of learners in the COV, PEN, POK, OPT,
and SAT solutions. Relative to the SVM baseline classification performance, it is interesting
to note that the four datasets on which BGP excels in terms of classification correspond
to the problems where simpler BGP solutions are observed. Thus, from the BGP model
perspective, on datasets found to be more difficult, more learning resource is assigned. It is
clear however that this is a learning bias, with the SVM model clearly finding CEN, KDD,
and SHU more difficult than COV, PEN, and OPT, Table 4.

For comparison, the number of classifiers and support vectors in the solutions returned
by XCSR and the SVM baseline is shown in Table 5. The XCSR solutions are expressed
in terms of the number of macro-classifiers. The population size values indicate that for

24

THY CEN KDD COV PEN SHU POK OPT SAT
0

5

10

15

20

25

30

35

40

45

le
ar

ne
rs

 in
 fi

na
l s

ol
ut

io
n

Figure 4: Number of learners in the final solution for each problem using the BGP approach.
Shown is the spread across the thirty initializations where the elements of the boxplot are
as described in Figure 2.

25

Table 5: XCSR and SVM solution complexities. For XCSR, the mean number of macro-
classifiers over all thirty initializations is shown along with the associated standard deviation
in parentheses. For the SVM baseline, the number of support vectors is detailed for the C
value as in Table 4 (and the Guassian kernel).

XCSR LIBSVM
THY 881.2 (14.3) 479
CEN 965.5 (6.0) 23856
KDD 9825.1 (15.4) 2048
COV 9890.7 (9.6) 7073
PEN 9131.8 (36.8) 576
SHU 644.8 (39.4) 3966
POK 8364.8 (51.4) 22625
OPT 9864.9 (13.1) 663
SAT 9753.5 (17.0) 1294

the most part the classifier population contains many unique conditions (i.e., numerosities
tend to be low). On all problems, the classifier population size limit N was always reached
(not shown). The SVM solution complexities are shown in terms of the number of support
vectors.

Comparing the complexity of the BGP solutions to the complexities of the XCSR and
SVM solutions is not straightforward because each is expressed in different terms (learners,
macro-classifiers, and support vectors). However, even if learners are viewed as the most
complex ‘unit of measurement’ each containing at most 48 instructions including introns8,
the BGP solutions are clearly much more succinct. In many cases, the counts differ by
several orders of magnitude.

Finally, we note that unlike the BGP model, for the other two approaches there is no
correlation between model simplicity (complexity) and classification performance. Both
XCSR and SVM models return good and bad results under both simple and complex solutions
alike.

4.2.4 BGP Solution Breakdown by Class

To provide a more complete picture of the solutions evolved using the BGP approach the
classwise solution breakdown is determined, Figure 5. To express such a breakdown, the
number of learners of each class in the final solution was recorded and the mean value over
all initializations is reported. The problems with the most balanced training partitions,
COV, PEN, and OPT, result in breakdowns that tend to be more unbalanced (i.e., the
classes are less equally represented in the final solution). On the other hand, the problems
with the most skewed training partitions, THY, CEN, KDD, and SHU, yield more balanced
breakdowns (as well as better classification results and lower solution complexity). The
exception to this is POK where it is observed that the mean counts for all but classes 0
through 3 are virtually one – this is not surprising given that the total number of training

8The removal of introns, which were found to account for between 60% to 90% of instructions in linear
GP [6], was not performed .

26

exemplars of classes 4 through 9 is negligible. Such a distribution in classifier allocation
indicates that the unbalanced datasets contain a significant number of redundant exemplars.
Thus, as is also evident from Figure 4, the behaviour embodied in the major classes can be
expressed effectively using a small number of classifiers. This indeed matches the scenario
on KDD data where nearly 79% of the dataset corresponds to the denial of service style of
attack; a behavioural characteristic that is not particularly inconspicuous.

A key factor in this property is probably the competitive coevolutionary element of the
BGP framework. In scenarios such as THY, CEN, KDD, and SHU the competitive model
appears to be particularly effective at weeding out exemplars that do not contribute to
classifier development at each generation. The role of the competitive model is investigated
in more detail for the THY dataset in Section 4.2.5.

4.2.5 Competitive Coevolution and Test Point Discovery

With the exception of THY, BGP was shown to achieve better performance than XCSR on
the datasets with unbalanced class distributions in the training partition, Figure 2. THY was
also found to be the exception in previous work [35] where it was suggested that the problem
was due to the replacement policy. In particular, the Pareto-dominance relation, which is
used to select learners, does not distinguish between learners of different ‘usefulness’. For
example, a learner that solves just one objective that no other learner solves is considered
equivalent to a learner that solves many objectives that no other learner solves since the
two form a non-dominated set. In this way, the learner population may fail to generalize
(in the sense that the total number of solved objectives is small) leading to a coevolutionary
dynamic referred to as focusing [49]. A side-effect of focusing are low turnover rates as the
over-specialized learners tend to persist in the population.

Figure 6 shows the cumulative counts for the number of times a learner carried over from
the previous generation is dominated by a new learner (i.e., the new replaces the old in the
population) on THY and CEN. The CEN results were included for comparison because like
THY this dataset has an unbalanced class distribution yet BGP performs well on it. From
Figure 6, it is apparent that compared to CEN the THY turnover rates are lower9. The
problem is not focusing, however, as this would imply more individuals in the final solution
than are observed, Figure 4. Specifically, if a learner in the population over-specializes it is
not likely to dominate other learners (otherwise it would do well not on a few but on many
objectives). As such, other learners are likely to remain in the solution after reduction, Step
2d of the learning algorithm. This is in contrast to the learner counts in Figure 4 where
most solutions on THY contain one learner per action.

The precise reason for the relative breakdown of the proposed algorithm on THY is
undoubtedly multifaceted. Pareto-coevolution has been used to coevolve poker hands [39],
cellular automata and initial condition densities [16], and real-valued vectors [14]. In these
problem domains, there is structure which can be exploited by the search operators that
generate offspring from parents. For example, real-valued vectors can be mutated to generate
offspring in the neighbourhood of their parents. Within the BGP framework, this can be

9Given that 1250000 new learners are generated when training learners of each action for 50000 genera-
tions, Step 2 of the learning algorithm, on THY roughly one in 127, 116, and 173 new learners is accepted
into the population when training for action 0, 1, and 2 respectively.

27

THY

25%

39%

36%

CEN

59%

41%

KDD

22%

21%

20%

19%

19%

COV
15%

21%

13% 8%

18%

17%

8%
PEN

6%

15%

10%

13%

7% 11%

7%

10%

9%

13%

SHU
15%

14%

14%

15%

14%

14%

14%

POK

22%

23%

13%

9%

6%

5%

6%

5%
5%

5%
OPT

4%
13%

10%

11%

12% 7%
7%

7%

13%

15%

SAT
11%

11%

16%

26%

11%

25%

0 1 2 3 4 5 6 7 8 9

Figure 5: Solution breakdown by class. For each problem, the mean number of learners
of each class participating in the final solution is calculated over all thirty initializations.
These are shown in a pie chart format where classes 0 through 9 are allocated slices counter-
clockwise from 12 o’clock.

28

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

0.5

1

1.5

2

2.5

3

3.5
x 104

epoch

do
m

in
at

ed
 le

ar
ne

rs

THY 0 THY 1 THY 2 CEN 0 CEN 1

Figure 6: Classwise learner turnover rates on THY and CEN. Every 5000 epochs, denoted
on the x-axis, the cumulative number of learners of each class carried over from the previous
generation that were dominated by new learners is shown, y-axis. For each class and epoch,
the plotted point represents the median value over all thirty initializations.

29

done on the learner side10 but not on the test side. Here, tests are represented as indices into
the dataset and as such mutation and crossover have no interpretation. The genetic material
present in the test population thus cannot be used to guide the search for progressively better
tests, i.e., offspring tests that make the same distinctions as their parents plus additional
distinctions. The test population therefore does not truly evolve but rather it serves purely
as a memory mechanism that saves tests which are encountered and found to be highly
informative. Moreover, the total set of training exemplars is fixed. Thus, if the total set of
training exemplars is disengaged from the ability of the initial set of learners, it will take
longer for the learners to establish appropriate sets of behaviours.

The discovery of informative tests in this way is likely to be infrequent leading to low
turnover rates in the learner population. Indeed, a positive correlation (> 0.5) was found
between the number of dominated tests and the number of dominated learners when training
each action on THY. However, just because the search for test points is inefficient does not
mean that good informative tests will not be found. BGP is able to find good solutions
occasionally, as indicated by the large spread in the BGP results shown in Figure 2, and even
on THY the best BGP score matches the best XCSR score (and 50% of the BGP solutions
match the SVM baseline). Finally, we note that an alternative heuristic for populating the
point population is to enforce an additional constraint for equal representation of each class.
Such a heuristic has proven useful in the wider machine learning literature [50].

4.2.6 BGP Training Times

The training times required to train BGP are shown in Table 6. They were collected using
the C getrusage() function and account for both the user and system time. When total
running times are considered the values for the different datasets show a lot of variation.
When the approximate times required to train each class are considered, however, there is
very little variation. This suggests that as expected, by decoupling the overhead required to
evaluate programs from the size of the dataset, the overall training time is also decoupled
from the size of the dataset. Although there is room for improvement (runs on KDD using
PGPC took minutes, albeit in a binary context [32]) these run times are significantly faster
that GP without coevolution (e.g., on the KDD dataset a single run on one class using
canonical GP takes eleven hours to complete).

Training times using XCSR are not available, however, given that matching a classifier
condition is generally faster than running a GP program training using XCSR is expected
to be faster as well. However, if the system is to be deployed, the advantage that XCSR has
in the matching speed for a single condition may be outweighed by the number of conditions
that have to be evaluated. For example, on KDD, a solution evolved using BGP can be
expected to require five program evaluations, Figure 4, while a solution evolved using XCSR
can be expected to require close to 10000 conditions to be tested on every instance, Table 5.

Compared to the LIBSVM implementation of the SVM model, BGP training is expected
to be more costly due to the multiple initializations that are required. However, SVM mod-
els are sensitive to the availability of suitable cache memory provision for the recording of
intermediate results. Indeed, providing more efficient memory models is one of the major

10Although a small mutation in a program’s genotype may yield a disproportionally large change in its
phenotype.

30

Table 6: Running times in hours for the proposed approach. Shown are the first quartile,
median, and third quartile values over thirty initializations. Values in parentheses indicate
the total running time divided by the number of classes in each dataset.

Dataset Q1 MED Q3
THY 1.75 (0.58) 1.77 (0.59) 1.81 (0.60)
CEN 1.22 (0.61) 1.23 (0.61) 1.24 (0.62)
KDD 3.25 (0.65) 3.34 (0.67) 3.38 (0.68)
COV 4.11 (0.59) 4.16 (0.59) 4.19 (0.60)
PEN 6.18 (0.62) 6.23 (0.62) 6.28 (0.63)
SHU 4.21 (0.60) 4.27 (0.61) 4.33 (0.62)
POK 6.05 (0.60) 6.12 (0.61) 6.17 (0.62)
OPT 5.88 (0.59) 5.91 (0.59) 5.96 (0.60)
SAT 3.82 (0.64) 3.85 (0.64) 3.93 (0.65)

research directions for the SVM paradigm. In this case, the larger datasets (CEN, KDD)
required support for 2 GB of RAM. Conversely, evolutionary methods require multiple runs,
but maintain a constant memory model, as defined by the constant learner and test popu-
lation sizes. Finally, from a deployment perspective, the BGP model is still more effective
given the simplicity of the ensuing solutions.

5 Conclusion

This work presented a bid-based approach to classification in which learners evolve a bidding
behaviour relating input exemplars to bids. This is in contrast to traditional approaches to
GP classification where input exemplars are mapped directly to a class label. To allow
the model to scale to large datasets, Pareto-based coevolution was employed whereby the
GP-based learners were evolved alongside a population of training instances. The Pareto-
based framework explicitly recognizes that a single learner may not be able to maximize
every objective simultaneously and instead formulates the solution in the form of a Pareto
front. As such, the learners attempt to decompose the problem by way of their bidding
behaviour while the goal of the tests is to distinguish between the learners. Since the test
population represents a small, fixed-size, subset of the entire training partition, the algorithm
decouples the cost of fitness evaluation from the total number of training exemplars. Problem
decomposition appears as a natural property of the system as individuals are associated with
exemplars on which they provide the winning bid.

The BGP approach was compared to the XCSR classifier system implementation and
to the LIBSVM support vector machine implementation of a second-order SVM model.
Over the nine datasets, no single approach was able to always outperform the other two
with respect to the score values. BGP, however, was found to do better on datasets with
unbalanced training partitions. More generally, the model appears to be particularly effective
at resisting complexity as measured relative to XCSR and the SVM baseline its solutions were
much more succinct. This translated into more transparent solutions and, in all likelihood,

31

much faster response times during deployment.
A major advantage of BGP over other GP-based approaches to teaming is its ability

determine the composition of the teams with respect to the numbers and type of team
members. This was found to provide useful insight regarding the problem domain under
consideration. For example, even though the training KDD partition was by far the largest
the BGP solutions typically contained one learner per class; this reflects the fact that 79% of
the KDD datasets represented denial of service attacks whose characteristics are unsophis-
ticated yet repetitive. Likewise, solutions on the other other large datasets – CEN and SHU
– also benefited from BGP’s ability to find very succinct yet accurate solutions.

Future work will return to the problem of incorporating structure that could be utilized
by the search operators in the test population. If tests that distinguish between learners
cannot be found efficiently, selection of learners is not likely to be effective. In classification,
structure relating parent tests to offspring could be discovered by including a preprocessing
step such as clustering. Other domains may already be structured in such a way so as
to allow the search operators to act more naturally (e.g., mutating a vector of angles and
velocities in the pole balancing problem).

Finally, we are interested in alternate approaches to identifying the team members com-
prising the final solution. That is to say, currently the BGP model evolves a population of
learners that, following reduction, are included in the final solution; in contrast, it might be
more fruitful to utilize a symbiotic relation between a learner population and team identifi-
cation population with the goal of simplifying the identification of relevant credit assignment
paths and reducing the resulting variation in the solutions.

Acknowledgments

This work was conducted while Peter Lichodzijewski held a Precarn Graduate Scholarship
and a Killam Postgraduate Scholarship. Malcolm. I. Heywood would like to thank the Natu-
ral Sciences and Engineering Research Council of Canada, The Mathematics of Information
Technology and Complex Systems network, and the Canadian Foundation for Innovation for
their financial support.

References

[1] P. J. Angeline and J. B. Pollack. The evolutionary induction of subroutines. In Pro-
ceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pages
236–241. Hillsdale, NJ: Lawrence Erlbaum, 1992.

[2] D.-Y. Cho B.-T. Zhang. Genetic Programming with active data selection. In B. McKay,
X. Yao, C. S. Newton, J.-H. Kim, and T. Furuhashi, editors, Simulated Evolution and
Learning: Second Asia-Pacific Conference on Simulated Evolution and Learning, pages
146–153. London, UK: Springer-Verlag, 1998.

[3] A. J. Bagnall and G. C. Cawley. Learning Classifier Systems for data mining: A com-
parison of XCS with other classifiers for the forest cover data set. In D. C. Wunsch,

32

M. Hasselmo, K. Venayagamoorthy, and D. Wang, editors, Proceedings of the Interna-
tional Joint Conference on Neural Networks, volume 3, pages 1802–1807. Oxford, UK:
Elsevier Science, 2003.

[4] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36(1-2):105–139, 1999.

[5] E. Bernado-Mansilla and J. M. Garrell-Guiu. Accuracy-based Learning Classifier Sys-
tems: Models, analysis and applications to classification tasks. Evolutionary Computa-
tion, 11:209–238, 2003.

[6] M. Brameier and W. Banzhaf. A comparison of Linear Genetic Programming and Neural
Networks in medical data mining. IEEE Transactions on Evolutionary Computation,
5(1):17–26, 2001.

[7] M. Brameier and W. Banzhaf. Evolving teams of predictors with Linear Genetic Pro-
gramming. Genetic Programming and Evolvable Machines, 2(4):381–407, 2001.

[8] M. Brameier and W. Banzhaf. Linear Genetic Programming. New York, NY: Springer,
2007.

[9] M. Butz, K. Sastry, and D. E. Goldberg. Tournament selection in XCS. In E. Cant-
Paz, J.A. Foster, K. Deb, L.D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, J. Wegener, D. Dasgupta, M.A. Potter, and A.C. Schultz, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, pages 1857–1869.
Berlin: Springer-Verlag, 2003.

[10] M. Butz and S. W. Wilson. An algorithmic description of XCS. In P. L. Lanzi, W. Stolz-
mann, and S. W. Wilson, editors, IWLCS ’00: Revised Papers from the Third Inter-
national Workshop on Advances in Learning Classifier Systems, pages 253–272. Berlin:
Springer-Verlag, 2001.

[11] M. V. Butz. Documentation of XCS+TS C-Code 1.2. IlliGAL Technical Report 200323,
2003.

[12] C.-C. Chang and C.-J. Lin. LIBSVM: A library for Support Vector Machines (Version
2.85), 2007. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[13] R. Curry, P. Lichodzijewski, and M. I. Heywood. Scaling Genetic Programming to large
datasets using hierarchical dynamic subset selection. IEEE Transactions on Systems,
Man and Cybernetics – Part B: Cybernetics, 37(4):1065–1073, 2007.

[14] E. D. De Jong and J. B. Pollack. Ideal evaluation from coevolution. Evolutionary
Computation, 12:159–192, 2004.

[15] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order infor-
mation for training Support Vector Machines. Journal of Machine Learning Research,
6:1889–1918, 2005.

33

[16] S. G. Ficici and J. B. Pollack. Pareto optimality in coevolutionary learning. In J. Kele-
men and P. Sosik, editors, Proceedings of the 6th European Conference on Advances in
Artificial Life, pages 316–325. Berlin: Springer-Verlag, 2001.

[17] G. Folino, C. Pizzuti, and G. Spezzano. GP ensembles for large-scale data classification.
IEEE Transactions on Evoluationary Computation, 10(5):604–616, 2006.

[18] C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning
in Genetic Programming. In Y. Davidor, H.-P. Schwefel, and R. Mnner, editors, Pro-
ceedings the Third Conference on Parallel Problem Solving from Nature, pages 312–321.
Berlin: Springer-Verlag, 1994.

[19] S. Hettich and S. D. Bay. The UCI KDD Archive [http://kdd/ics/uci/edu]. Irvine, CA:
University of California, Dept. of Information and Comp. Science, 1999.

[20] J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms.
Pattern Directed Inference Systems, 1978.

[21] H. Iba. Bagging, boosting and bloating in Genetic Programming. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, pages 1053–1060.
San Francisco, CA: Morgan Kaufmann, 1999.

[22] F. H. Bennett III, J. R. Koza, J. Shipman, and O. Stiffelman. Building a parallel
computer system for $18,000 that performs a half peta-flop per day. In Banzhaf W,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, pages 1484–1490.
San Francisco, CA: Morgan Kaufmann, 1999.

[23] K. Imamura, T. Soule, R. B. Heckendorn, and J. A. Foster. Behavioral diversity and a
probabilistically optimal GP ensemble. Genetic Programming and Evolvable Machines,
4(3):235–253, 2003.

[24] N. Japkowicz. Why question machine learning evaluation methods? (An illustrative
review of the shortcomings of current methods). In C. Drummond, W. Elazmeh, and
N. Japkowicz, editors, AAAI-2006 Workshop on Evaluation Methods for Machine Learn-
ing, Technical Report WS-06-06, pages 6–11. Menlo Park, CA: AAAI Press, 2006.

[25] H. Juillé and J. B. Pollack. Massively parallel Genetic Programming. Advances in
Genetic Programming, 2:339–357, 1996.

[26] T. Kovacs. Deletion schemes for classifier systems. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation Conference, pages 329–336. San Francisco,
CA: Morgan Kaufmann, 1999.

[27] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press, 1992.

34

[28] W. B. Langdon and R. Poli. Foundations of Genetic Programming. Berlin: Springer-
Verlag, 2002.

[29] P. L. Lanzi and R. L. Riolo. Recent trends in Learning Classifier Systems research.
Advances in Evolutionary Computing: Theory and Applications, pages 955–988, 2003.

[30] C. W. G. Lasarczyk, P. W. G. Dittrich, and W. W. G. Banzhaf. Dynamic subset
selection based on a fitness case topology. Evolutionary Computation, 12(2):223–242,
2004.

[31] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity
in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–282,
2002.

[32] M. Lemczyk and M. I. Heywood. Pareto-coevolutionary Genetic Programming classifier.
In M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz,
C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby,
H. Lipson, P. McMinn, J. Moore, G. Raidl, Franz R., C. Ryan, and D. Thierens, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, pages 945–946.
New York, NY: ACM Press, 2006.

[33] M. Lemczyk and M. I. Heywood. Training binary GP classifiers efficiently: A Pareto-
coevolutionary approach. In M. Ebner, M. O’Neill, A. Ekrt, L. Vanneschi, and A. I.
Esparcia-Alczar, editors, Proceedings of the European Conference on Genetic Program-
ming, pages 229–240. Berlin: Springer-Verlag, 2007.

[34] P. Lichodzijewski and M. I. Heywood. GP classifier problem decomposition using first-
price and second-price auctions. In M. Ebner, M. O’Neill, A. Ekrt, L. Vanneschi,
and A. I. Esparcia-Alczar, editors, Proceedings of the European Conference on Genetic
Programming, pages 137–147. Berlin: Springer-Verlag, 2007.

[35] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary Genetic Programming for
problem decomposition in multi-class classification. In D. Thierens, H.-G. Beyer, J. Bon-
gard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs,
S. Kumar, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O.
Stanley, T. Stutzle, R. A. Watson, and I. Wegener, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, pages 464–471. New York, NY: ACM Press,
2007.

[36] A. McIntyre and M. I. Heywood. Multi-objective competitive coevolution for efficient
GP classifier problem decomposition. In Proceedings of the International Conference on
Systems, Man and Cybernetics, pages 1930–1937. IEEE Press, 2007.

[37] A. R. McIntyre and M. I. Heywood. MOGE: GP classification problem decomposition
using multi-objective optimization. In M. Keijzer, M. Cattolico, D. Arnold, V. Babovic,
C. Blum, P. Bosman, M. V. Butz, C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster,
A. Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, Franz

35

R., C. Ryan, and D. Thierens, editors, Proceedings of the Genetic and Evolutionary
Computation Conference, pages 863–870. New York, NY: ACM Press, 2006.

[38] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of Machine
Learning Databases [http://www.ics.uci.edu/∼mlearn/mlrepository.html]. Irvine, CA:
University of California, Dept. of Information and Comp. Science, 1998.

[39] J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved
opponents in a game as dimensions for Pareto selection. In L. Spector, E. D. Goodman,
A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Gar-
zon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, pages 493–500. San Francisco, CA: Morgan Kaufmann, 2001.

[40] A. Orriols-Puig and E. Bernado-Mansilla. Bounding XCS’s parameters for unbalanced
datasets. In M. Keijzer, M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman,
M. V. Butz, C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-
Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, Franz R., C. Ryan,
and D. Thierens, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1561–1568. New York, NY: ACM Press, 2006.

[41] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[42] L. Panait, S. Luke, and R. P. Wiegand. Biasing coevolutionary search for optimal
multiagent behaviors. IEEE Transactions on Evolutionary Computation, 10(6):629–
645, 2006.

[43] M. Potter and K. de Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

[44] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training Genetic Programming
on half a million patterns: An example from anomaly detection. IEEE Transactions on
Evolutionary Computation, 9(3):225–239, 2005.

[45] T. Soule. Cooperative evolution on the intertwined spirals problem. In E. Cant-Paz,
J.A. Foster, K. Deb, L.D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, J. Wegener, D. Dasgupta, M.A. Potter, and A.C. Schultz, edi-
tors, Proceedings of the European Conference on Genetic Programming, pages 434–442.
Berlin: Springer-Verlag, 2003.

[46] C. Stone and L. Bull. For real! XCS with continuous-valued inputs. Evolutionary
Computation, 11(3):299–336, 2003.

[47] R. Thomason and T. Soule. Novel ways of improving cooperation and performance
in ensemble classifiers. In D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A.
Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle,
R. A. Watson, and I. Wegener, editors, Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1708–1715. New York, NY: ACM Press, 2007.

36

[48] K. Tumer and D. Wolpert. A survey of collectives. Collectives and the Design of Complex
Systems, pages 1–42, 2004.

[49] R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal substrate. In
L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, pages 702–709. San Francisco, CA: Morgan
Kaufmann, 2001.

[50] G. Weiss and F. Provost. The effect of class distribution on classifier learning. In
Technical Report ML-TR 43, Department of Computer Science, Rutgers University,
2001.

[51] S. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149–175,
1995.

[52] S. W. Wilson. Generalization in the XCS classifier system. In J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 665–674. San Francisco, CA: Morgan Kaufmann, 1998.

[53] S. W. Wilson. Get real! XCS with continuous-valued inputs. In L. Lanzi P, W. Stolz-
mann, and S. W. Wilson, editors, Learning Classifier Systems, From Foundations to
Applications, pages 209–222. Berlin: Springer-Verlag, 2000.

37

