
On Naïve Crossover Biases with Reproduction for
Simple Solutions to Classification Problems

M. David Terrio, Malcolm I. Heywood

Dalhousie University, Faculty of Computer Science
6040 University Avenue, Halifax, NS. B3H 1W5 Canada

{mterrio, mheywood}@cs.dal.ca

Abstract. A series of simple biases to the selection of crossover points
in tree-structured genetic programming are investigated with respect to the
provision of parsimonious solutions. Such a set of biases has a minimal
computational overhead as they are based on information already used to es-
timate the fitness of individuals. Reductions to code bloat are demonstrated
for the real world classification problems investigated. Moreover, bloated
solutions provided by a uniform crossover operator often appear to defeat
the application of MAPLE™ simplification heuristics.

1 Introduction

The variable length representation employed by tree-structured Genetic Programming
(GP) [1], whilst satisfying the goal of providing a machine-learning paradigm with a
minimum number of a priori constraints, is also known to lead to approximately
square law increases in code length [2], or what has typically become known as code
bloat [3-7]. The ideal would therefore be to evolve fit – as measured by the applica-
tion performance objective – yet parsimonious solutions. By doing so, the computa-
tional requirements necessary to evolve solutions would be significantly reduced –
fitness evaluation is the most computationally expensive process, where this is pro-
portional to the size of the data set and chromosome length of a candidate solution –
whilst increasing the acceptance rate of GP solutions in the application domain.
Moreover, the causes or biases behind code bloat are known to vary depending on the
GP structure [8]. Here, we concentrate on tree structured as opposed to linearly struc-
tured GP.

In this work our motivation is to investigate the applicability of a series of naïve
biases introduced to the crossover operator using fitness information freely available
during evaluation of individuals. The basic objective is to direct the identification of
crossover points such that parsimonious solutions are identified with minimal impact
on solution performance. In addition, crossover is only allowed to produce one child.
The second is reproduced, the motivation being to let mutation provide further inves-
tigation of the current shape [2]. In relation to previous works, Iba and de Garis con-
sidered the case of collecting information during fitness evaluation to deterministi-
cally select sub-trees for application of mutation and crossover [9]. However, the
principle motivation appears to have been improvements to the fitness of an individ-
ual and not to encourage parsimony in the solutions found.

2 Methodology and Approach

The initial motivation for this work was to provide transparent solutions using tree
structured individuals in medical applications. Such a requirement is particularly
important in this area due to the need to not just solve the problem, but also to win
the confidence of the patient and medical personnel [10]. In practice, however, this
might be seen as a general requirement for all solutions produced by machine learning
systems. As will become apparent from Section 3, it is not in general possible to
apply off-line simplification of GP solutions and expect a succinct solution.

In order to mitigate this effect we introduce two properties. Firstly, a degree of de-
terminism is introduced into the crossover operator such that both stochastic selection
and ‘directed’ selection of crossover points is provided. Figure 1 summarizes this
process in terms of a generic GP algorithm with steady state tournament selection.
Secondly, only one of the children is a result of the crossover operation, the other is
reproduced, Figure 2.

The ‘uniform’ sub-tree crossover operator used here selects a branch of the tree rep-
resenting an individual using a uniform probability density function. In providing
suitable definitions for the selection of crossover operators, we limit ourselves to
investigating the applicability of the following naïve crossover definitions,

Fitness Directed Crossover: This crossover operator selects the node in the
individual with highest fitness. Node fitness is the error between the target value and
node value (including any wrapper). The node value naturally includes the contribu-
tion of any attached sub-tree;

Fitness Difference Directed Crossover: Directed crossover now selects the
node with greatest change in fitness as evaluation progresses from terminal to root
node. This may or may not help protect the individual from repeatedly selecting the
branches near the root node for crossover;

Roulette-Fitness Directed Crossover: In this case each node of an individual
is given space in a roulette wheel in proportion to node fitness. In this way it is
possible to provide an additional path for the stochastic selection of nodes.

With respect to single child crossover with reproduction of one parent, our princi-
ple motivation is to let the reproduced individual be modified by mutation, so empha-
sizing the further investigation of the current shape [2]. Note that mutation is applied
in addition to crossover in the algorithm of Figure 1, and at a relatively high prob-
ability of 50%, Table 1. The test for producing a single child is summarized by Fig-
ure 2, and affects both the directed and undirected process for sub-tree crossover.

1. Initialize Population of size M.
2. Uniform random selection of N individuals (N<<M).
3. Evaluate fitness of the N individuals.
4. Rank the N individuals in descending order of fitness.
5. IF one of the N individuals satisfies the stop criteria, END.
6. Overwrite worst N/2 individuals from tournament with best N/2.
7. Call these the children.
8. For each N/4 pair of child individuals,
9. IF (apply crossover == TRUE)
10. THEN IF (apply directed crossover == TRUE)

THEN (apply directed crossover)
ELSE (apply uniform crossover)

11. For each of the N/2 child individuals
12. IF (apply mutation == TRUE)
13. THEN (apply mutation operator)
14. Replace worst N/4 members selected from population with children of N/4 best.
15. Return to point (2).
Fig. 1. Basic algorithm for Genetic Program with Steady-State Tournament selection and
directed crossover.

identify crossover points.
IF (number of nodes[child#1] > K)
THEN (use child#2 and parent#1)
ELSE (use child #1 and parent#2)

Fig. 2. Single child crossover with reproduction.

In each case, the directed form of crossover is applied in conjunction with the uni-
form selection of crossover points, Figure 1, point 10. That is to say, by adjusting
the ratio governing the application of uniform verses directed crossover, it is possible
to empirically assess the sensitivity of the approach to different problems. This issue
in particular will be investigated in Section 3. Should the directed crossover defini-
tions prove appropriate in practice, the principle benefit of such operators is that they
do not require any additional information than that calculated during the course of
fitness evaluation.

Mutation may take one of two forms: single-point or multi-point (applied with
equal likelihood should the test for mutation prove true, Figure 1, point 12). A sin-
gle-point mutation selects a node with uniform probability and replaces it with an
alternative operator with the same arity. The multi-point mutation operator selects a
node with uniform probability and recursively applies the single-point operator over
the sub-tree. Neither mutation operator therefore changes the size or shape of the
parent.

3 Evaluation

Two benchmark problems are used for the purpose of evaluating the forms of naïve
directed crossover: Breast Cancer and Liver Disease Classification [11], where the
latter is known to be particularly difficult. Table 1 summarizes the problem and GP
parameters used. In all the experiments the parameter K from Figure 2 remains at

200, where no particular significance appears to be attached to different values for ‘K’
i.e. the parents are chosen uniformly. The data for the classification problems are
separated into training and test data, where test data are only used to evaluate perform-
ance once the termination criterion is met.

As indicated in Section 2 one of the purposes of the following study is to identify
the significance of applying different degrees of directed crossover. To this end we
conduct 50 trials for each of the following crossover conditions,

• Uniform selection of crossover points – represents the performance baseline
against which crossover points are selected with uniform probability. Here-
after this is referred to as ‘Uniform’;

• Fitness Directed (FD) crossover – applied at a ratio to the uniform selection
of crossover points: 25%, 50%, 75% and 100%; Figure 1, point 10;

• Fitness Difference Directed (FDD) crossover – applied at a ratio to the uni-
form selection of crossover points: 25%, 50%, 75% and 100%; Figure 1,
point 10;

• Roulette-Fitness Directed (R-FD) crossover – applied at a ratio to the uni-
form selection of crossover points: 25%, 50%, 75% and 100%; Figure 1,
point 10.

Thus, Fitness Directed crossover applied at a ratio of 25% results in the application
of uniform crossover 75% of the time, when the test for crossover returns true. Natu-
rally, the case of a 100% ratio implies that only the directed crossover operator is
applied.

Performance is expressed in terms of training and test classification accuracy of the
best individual in the last tournament, resulting in each of the 50 trials contributing
to the classification accuracy. By way of comparison the c5.0 Induction System [12]
produced best-case classification errors on test data of 4.6% in the Beast Cancer Clas-
sification problem and 34.9% in the Liver Disease Classification problem. From
Tables 2 and 3 it is apparent that the medians of all GP solutions are better than
those from c5.0 for the two problems. Moreover, c5.0 produced solutions with 8
rules for Breast Cancer and 27 rules for Liver Disease. The median of all biased GP
solutions for Liver Disease using FD and FDD were significantly simpler whilst
retaining lower median error rates. Under Breast c5.0 solution was simpler, albeit at
the expense of classification accuracy.

Table 1. Tableau of GP parameters.

Objective Find a program that classifies the Breast Cancer (Liver Disease)
Classification problem.

Terminal Set x0, …, x8 (x0, …, x5)
Functional Set +, –, *, %, sin, cos, sqrt
Fitness Cases 524 training, 175 test (259 training, 86 test)
Fitness (and Hits) Number of correct classifications.
Selection Steady State Tournament of size 4.
Wrapper IF GP output > 0.0 and data label is ‘1’

THEN correct classification
ELSE IF output £ 0.0 and data label is ‘0’

THEN correct classification
Population size 500
Initial Population Created using “ramped half and half” with depths between 2 and 6.
Parameters: 90% crossover, 50% mutation.
Termination: 15,000 tournaments.
Experiments: 50 independent trials.

3.1 Breast Cancer Classification Problem

Table 2 summarizes performance of uniform sub-tree crossover and the three forms of
naïve directed crossover on the Breast Cancer Classification problem. It is apparent
that the application of fitness directed crossover, irrespective of the form, results in
decreases to code bloat while classification accuracy remains within one percent of the
(median) baseline established by uniform sub-tree crossover. It is also apparent that
Fitness Directed (FD) and Fitness Difference Directed (FDD) crossover provide the
greatest levels of bloat reduction. Roulette-Fitness Directed (R-FD) crossover ap-
peared to be the least sensitive to specific ratios of directed and uniform sub-tree
crossover, but also never improved on the nodes per solution provided by uniform
crossover.

Table 2. Breast Cancer Classification Performance.

Crossover Type Median Test
Error

Median depth
per solution

Median #
nodes per
solution

Average #
nodes per
individual

Uniform (baseline) 1.41 7 22 18.23

0.25 1.15 7 20 16.35

0.5 1.15 6.5 21 19.59

0.75 1.73 6 16 15.76
FD

1.0 2.3 4 10 9.654

0.25 1.15 8 21.5 18.68

0.5 1.73 7 20.5 18.3

0.75 1.73 7 24 17.76
R-FD

1.0 1.15 7 20.5 16.29

0.25 1.15 7 20 18.53

0.5 1.15 7 21 18.19

0.75 1.15 7 24 20.97
FDD

1.0 1.44 5 12 11.97

3.2 Liver Disease Classification

Table 3 summarizes performance of uniform sub-tree crossover and the three forms of
naïve directed crossover on the Liver Disease Classification problem.

The pattern of performance remains consistent with that experienced for the Breast
Cancer problem. Fitness Directed and Fitness Difference Directed crossover still pro-
vide the highest levels of bloat reduction, with increasing cost to classification accu-
racy as the ratio of directed crossover increases. Roulette-Fitness Directed crossover
again provides the most competitive classification performance (with respect to the
sub-tree crossover baseline), but does not appear to provide a particular trend in terms
of code bloat reduction with increasing ratios of directed crossover (clarified further in
next sub-section).

Table 3. Liver Disease Classification Performance.

Crossover Type Median Test
Error

Median depth
per solution

Median #
nodes per
solution

Average #
nodes per
individual

Uniform (baseline) 33.33 8 34.5 26.77

0.25 33.33 6.5 19.5 18.89

0.5 33.33 6 21 18.84

0.75 34.52 5.5 18 15.98

FD

1.0 33.33 3 10 10.17

0.25 30.95 8 22.5 18.71

0.5 32.14 8 28 21.79

0.75 33.33 8 24 21.03

R-FD

1.0 32.14 9 29.5 24.62

0.25 31.55 9 24 20.48

0.5 32.14 7 21 19.414

0.75 32.14 6 17.5 15.68

FDD

1.0 34.52 4 11.5 11.2

3.3 Analysis of Dynamic Properties

Given the encouraging results for the classification benchmark problems an analysis
is conducted into the evolution of fitness and node count on a tournament-by-
tournament basis. To do so, the classification accuracy and node count of each tour-
nament winner is averaged over a 300-tournament window for each of the 50 trials.
This information is then plotted as an average with respect to tournament for the
15,000 tournaments comprising a trial. For conciseness we will consider the case of
Liver Disease alone, with similar results being produced for Breast Cancer.

Figures 3, 4 and 5 summarize the evolution of training classification accuracy for
Fitness Directed, Fitness Difference Directed, and Roulette-Fitness Directed crossover
respectively. In each case the uniform crossover classification accuracy is included to
establish the base line (¥). The clear distinction between increasing ratios of directed
crossover and classification accuracy is readily apparent for Fitness Directed and Fit-
ness Difference Directed crossover, Figures 3 and 4; whereas Roulette-Fitness Di-
rected crossover closely mimics the performance of uniform sub-tree crossover
throughout, Figure 5.

Figures 6, 7 and 8 repeat the analysis in terms of average node counts as evolution
progresses. Here again, the contrast between different forms of directed crossover is
readily apparent. Each increase in the ratio of Fitness Directed and Fitness Difference
Directed crossover results in step reductions to the rate of bloat, such that by the
100% application of directed crossover, (average) node count is constant with increas-
ing evolutionary cycles, Figures 6 and 7. Moreover, even in the case of Roulette-
Fitness Difference crossover, the contribution of each increase to the directed cross-
over ratio provides a clear decrease to the rate of average node count, Figure 8.

Fig. 3. Average Training Classification Accuracy – Fitness Directed Crossover. Crossover types: ¥ -
100% uniform; ° - 25% directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

Fig. 4. Average Training Classification Accuracy – Fitness-Difference Directed Crossover. Crossover
types: ¥ - 100% uniform; ° - 25% directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

Fig. 5. Average Training Classification Accuracy – Roulette Fitness Directed Crossover. Crossover
types: ¥ - 100% uniform; ° - 25% directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

Fig. 6. Average Node Count – Fitness Directed Crossover. Crossover types: ¥ - 100% uniform; ° - 25%
directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

Fig. 7. Average Node Count – Fitness-Difference Directed Crossover. Crossover types: ¥ - 100% uni-
form; ° - 25% directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

Fig. 8. Average Node Count – Roulette-Fitness Directed Crossover. Crossover types: ¥ - 100% uniform;
° - 25% directed; ® - 50% directed; ◊ - 75% directed; s - 100% directed

3.4 Solution Transparency

As indicated in the introduction, one of the desired properties assumed to coincide
with parsimonious solutions is an increased transparency in programs provided by
GP. In order to assess this hypothesis we utilize the simplification engine provided as
part of the MAPLE‘ system for symbolic math [13]. The motivation is to use the
MAPLE‘ symbolic simplification tool to represent the case of an average user who
is used to judge the solutions provided by GP.

A scatter plot is used to summarize the effect of applying the simplification en-
gine of MAPLE‘ to each of the 50 solutions to the Liver Disease data set for both
uniform sub-tree crossover and the Fitness Directed crossover (100%), Figure 6. That
is, we compare solutions from 100% uniform selection of crossover points with
100% deterministic selection of crossover points. Any points along a line “y = x”
indicate that no simplification took place; points above this line indicate that an
expression became more complicated after application of MAPLE‘; and points
below indicate that an expression was simplified after application of MAPLE‘. Note
also that a log scale is employed on both axes.

In the case of uniform sub-tree crossover it is apparent that on this problem, solu-
tions actually became more complicated following application of MAPLE‘. Spe-
cifically, an average increase to term count of 168.7, over the 33 cases that increased
after simplification, verses an average reduction in term count of 6.2 over 5 cases,
with respect to the GP solution provided before simplification. In the case of 100%
Fitness Directed crossover there is an average increase of 6.8 terms over 30 cases
whereas no cases produced a decrease in code length with respect to the GP solution
before simplification. It is also apparent that cases resulting in an increase following
‘simplification’ also predominate instances of longer programs with uniform cross-
over. Thus, the uniform application of crossover appears to result in individuals that
are both ‘bloated’ and do not simplify on application of our ‘base user’ (the
MAPLE‘ symbolic simplification tool).

1

10

100

1000

10000

1 10 100

Fig. 9. Scatter plot – Solution Simplicity on Liver Disease Classification Problem. x-axis denotes before
simplification; y-axis after simplification; ¥ - case of 100% fitness directed crossover; o - uniform cross-
over.

4 Conclusion

Several naïve biases were defined to provide a set of directed crossover operators using
only the fitness information readily available during fitness evaluation. Increasing
levels of determinism associated with selection of crossover points steadily reduces
the complexity of an individual at the same time that absolute fitness may also de-
crease. Moreover, in the case of the classification problems investigated, it appears
that node count was proportional to the ratio of uniform to directed crossover opera-
tors. Finally, it is also apparent that ‘bloated’ GP solutions (case of no crossover
bias) did not necessarily result in significant post evolution simplification when
using the simplification heuristics of the MAPLE‘ symbolic simplification tool.
Future work will evaluate the biases under a wider range of problems.

Acknowledgements

The authors gratefully acknowledge the support of a Discovery Grant from the Natu-
ral Sciences and Engineering Research Council (NSERC) of Canada.

References

1. Koza J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, ISBN 0-262-11170-5 (1992)

2 . Langdon W.B., Poli R.: Foundations of Genetic Programming. Springer-Verlag.
ISBN 3-540-42451-2 (2002)

3 . Blickle T., Thiele L.: Genetic Programming and Redundancy, Genetic Algorithms
within the Framework of Evolutionary Computation. Workshop at KI-94, Max-
Planck-Institut fur Informatik, MPI-1-94-241 (1994) 33-38

4 . McPhee N.F., Miller J.D.: Accurate Replication in Genetic Programming, Proceed-
ings of the 6th International Conference on Genetic Algorithms, Morgan Kaufmann,
(1995) 303-309

5. Soule T., Foster J.A., Dickinson J.: Code Growth in Genetic Programming, Proceed-
ings of the 1st Annual Conference on Genetic Programming, MIT Press (1996) 215-
223

6. Langdon W.B., Poli R.: Fitness Causes Bloat, 2n d On-line World Conference on Soft
Computing in Engineering Design and Manufacturing (WSC2) 1997.

7. Soule T., Foster J.A.: Effects of Code Growth and Parsimony Pressure on Populations
in Genetic Programming, Evolutionary Computation, 6(4) (1998) 293-309

8. Smith P.W.H., Harries K.: Code Growth, Explicitly Defined Introns, and Alternative
Selection Schemes, Evolutionary Computation, 6(4) (1998) 339-360

9. Iba H., de Garis H.: Extending Genetic Programming with Recombinative Guidance.
In: Angeline P.J., and Kinnear K.E., eds., Chapter 4, Advances in Genetic Program-
ming II, MIT Press, (1996) 69-88

1 0 . Borjarczuk C.C., Lopes H.S., Freitas A.A.: Genetic Programming for Knowledge
Discovery in Chest-Pain Diagnosis, IEEE Engineering in Medicine and Biology
Magazine. 19(4), July-August (2000) 38-44

1 1 . Universal Problem Solvers Inc., Machine Learning Data Sets.
http://pages.prodigy.com/upso/datasets.htm

1 2 . Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman. ISBN 1-
55860-238-0. (1993) (for c4.5 v c5.0 comparison see http://www.rulequest.com/)

13. Waterloo Maple, Maple 8. http://www.mapleapps.com/

