

D

IRECTING

 C

ROSSOVER

FOR

 R

EDUCTION

OF

 B

LOAT

IN

 GP

M. D. Terrio and M. I. Heywood

Faculty of Computer Science, Dalhousie University, Halifax NS, Canada

{mterrio@cs.dal.ca | mheywood@cs.dal.ca}

Abstract

A method is proposed to reduce the amount of inviable
code (or bloat) produced in individuals while searching for
a parsimonious solution under tree structured genetic pro-
gramming. Known as directed crossover, this process
involves the identification of highly fit nodes to use as
crossover points during operator application. Three test
problems, including medical data classification, are used
to assess the performance of directed crossover when
applied at various thresholds. Results, collected over
1260 independent runs, identify conditions under which
directed crossover reduces code bloat.

Keywords:

Code bloat; directed crossover.

1.Introduction

1.1 Tree Based Genetic Programming

Originally introduced in 1992 by Koza [1], Genetic Pro-
gramming is a generic data driven machine learning tech-
nique, providing solutions in the form of a computer
program that satisfies some predefined criterion of success
for a set of inputs. The solution program is typically repre-
sented by the best one of all the individual chromosomes,
which constitute the population of a GP run. Unlike
Genetic Algorithms, where individuals are made up of
fixed length binary strings, individuals in GP are variable
in length and are often represented by tree like structures.
Thus, when genetic operators such as crossover and selec-
tion are applied, the lengths of individual genomes are
often changed.

One possible outcome is a continuous, uncontrollable
increase in the length of individuals, known as “bloat” [2].
Because individual fitness calculation is the most computa-
tionally expensive process of a GP trial, the presence of
large individuals naturally detracts from the efficiency of
the GP method [3]. In addition, bloated individuals will
then stagnate the overall cycle of evaluate-select-modify.
Finally, as increases in resource allocation are often not
proportional to performance increase [4], it is evident that
the current GP process is less than optimal.

1.2 Introns and Inoperative Code

One of the chief contributors to code bloat are introns or
nocs - segments of code that make no contribution to the
functional completeness of the individual [5]. In explaining
their existence, Soule refers to both a removal bias, created
by the difference in importance between the subtrees added
and removed during crossover, and the Destructive
Hypothesis [4]. The basis of the Hypothesis states that
code growth occurs to preserve vitally important sections
of code from the potentially destructive effects of applying
genetic operators [6]. In a similar, more general theory,
Miller and McPhee state that a Replication Accuracy Force
(RAF) is at work in GP, which causes evolution to favor
programs which replicate with semantic accuracy [7]. The
result of the force is a general flow towards deeper pro-
grams.

Regardless of its origin, it is a widely held view that the
removal of redundant code and the subsequent generation
of a parsimonious solution is one of the keys to improving
GP. To accomplish this, methods such as parsimony pres-
sure, code modification and operator modification have
been suggested and tested with varying results [4,8,9]. In
addition to these works, complexity based fitness measures
have been incorporated into GP runs [3,10] to overcome
the fact that simple Koza style GP incorporates fitness
functions which fail to consider parsimony.

In our work, we investigate a strategy for implementing
chromosome crossover at points determined

a priori

 to
their selection, hereafter referred to as directed crossover.
The objective being to alleviate some of the pitfalls of bloat
while not hampering the generation of a parsimonious
solution.

2.Method

2.1 Tree-Structured GP

GP utilizes Darwin’s notion of survival of the fittest to
instigate a competition between individuals in the popula-
tion. Search operators are then used to provide exploitation

Proceedings of the 2002 IEEE Canadian Conference
on Electrical & Computer Engineering
0-7803-7514-9/02/$17.00 © 2002 IEEE - 1111 -

and exploration of the solution space. A search operator
determines how individuals propagate between populations
[1].

 In this work, steady state tournament selection is
employed, in which four individuals from the population
are sampled, without bias for fitness. From here, they are
sorted in order of descending fitness with the best two
being singled out as the representative parents for potential
operator application. Next, sequential/stochastic tests are
made for applying crossover and mutation. In the case of
applying crossover, a further test is made regarding cross-
over type - directed or standard. The decision to apply
crossover or mutation is made against thresholds (c.f. clas-
sical GP) where as the type of crossover is determined as a
percentage (e.g. 50:50, 40:60, etc.). Once again, this per-
centage is selected stochastically using a uniformly distrib-
uted probability function. However, for runs involving
medical data, the final stages of this process are slightly
altered.

 Specifically, we reinsert only one of the two chromo-
somes produced by crossover back into the population. The
chromosome, to which the shorter subtree is adjoined dur-
ing crossover, serves this purpose, while the other child is a
duplication of the parent from which this subtree origi-
nates. This helps to further minimize the potential for
extreme bloat caused when index points are identified at
depths, whose difference is significant. In other words, the
possibility of joining a large subtree to a tree already large
in terms of node count is reduced.

2.2 Directed Crossover

As previously mentioned, the application of directed
crossover is put into play with the objective of investigat-
ing shorter, more parsimonious solutions. The specifics of
the process involve the identification of individual nodes
whose contribution to the overall fitness of the individual is
maximal. In order to do so, the fitness of each individual is
measured and recorded at each individual node, regardless
of whether it is a functional or terminal. The number of the
node whose fitness value exceeds that of all others is

tagged as being the “index” node for that chromosome. It
was our hypothesis that using these index values as cross-
over points for the individuals would aid in reducing bloat
by exchanging highly operative segments of code from one
individual to another. Figure 1 portrays this idea.

The application of this process is conducted in two sep-
arate groups of tests. In the first, directed crossover always
takes place at the “index” points of the chromosomes. We
refer to this as “biased directed crossover”. In the second, a
roulette wheel is used to allow for the possibility of cross-
ing over at nodes other than the index node. In this way,
weight is given to nodes in relation to the percentage of
their fitness, compared to that of the overall individual. In a
sense, it represents a mix between a greedy and a purely
stochastic incorporation of the crossover information. We
refer to this type as “roulette-style directed crossover”.

3.Testing Process

3.1 Parameters

In all cases a modification of [11] was used to imple-
ment our GP process. In each test, a population of 500 indi-
viduals was initialized using the ramped half and half
technique [1]. The makeup of individuals created con-
tained nodes of functionals and terminals (inputs) in rela-
tion to those listed in Table I. In keeping with the
consistency of all test runs, the rate of crossover was set at
90%, while probability of mutation of individuals was set
at 50%. For the majority of the runs conducted, trial runs
continued until an optimal solution was found or until a
limit of 50,000 tournaments was reached. For the remain-

Table 1: Functional and terminal set of problems
used in directed crossover trials.

Problem
Name

Functional
Set

Terminal Set

Symbolic
Regression

{+,-,*,%,sin,cos,exp,rlog} X

Two Boxes

{+,-,*,%} L

0

,W

0

, H

0

, L

1

,W

1

, H

1

Medical
Classification

{+,-,*,%,sin,cos,sqrt} Problem Dependant

Fig. 1. The process of directed
crossover.

- 1112 -

ing runs, involving medical data classification, this param-
eter was set at 15,000 as fitness convergence was found to
occur quite rapidly. The only other parameter that was
altered throughout was the rate of directed crossover (2.2).

3.2 Test Problems

The testing process involved applying the directed
crossover process to three different types of test problems.
The first two, symbolic regression and the two boxes prob-
lem, are commonly used in GP research. The third
involved the generation of solutions to correctly classify
the presence of Liver Disease and Breast Cancer in individ-
uals, using benchmark medical data sets [12].

For symbolic regression, the goal follows that found in
[13]. That is, we were attempting to find a solution to fit to
the

 x

 and

y

 values of 20 pairs of data points for the equation

y

=

x

4

+

x

3

+

x

2

+

x

 where

x

 was uniformly sampled over the
interval [-1,1]. Our fitness function incorporated the sum-
squared error (SSE) of the output of the chromosome being
evaluated [1,13]. Tournament selection and subsequent
operator application continued to take place until an indi-
vidual was evaluated where the number of “hits”, or data
points mapped with less than 0.01 error, equaled 20. The
sum squared error was also calculated at each individual
node and recorded until all 20 data points had been tested.
Once this was complete, the node of minimal SSE was
marked as the “index” node for that individual. Work on
the two boxes problem also involved minimizing the sum
squared error. However, in searching for solutions to the
difference between the volumes of two boxes (L

1

H

1

W

1

-
L

2

H

2

W

2

), we used a success predicate of 10 hits while
sampling from the set of integer values {1,...,10}. Identifi-
cation of the index node was also done in a similar fashion.

In addition, performance under real world data sets was
evaluated using the two benchmark medical classification
data sets mentioned above. The first data set comprised of
699 patterns, constituting 9 columns of input and a single
column of classification values related to the diagnosis of
Breast Cancer. The second, related to Liver Disease, and
contained 345 patterns of 6 inputs in addition to a single
classification value. In both cases the classification value
was a Boolean which pertained to the existence (1) and
nonexistence (0) of the disease. Using this data, it was our
overall goal to discover solutions which would produce
classifications in resemblance to those given in the data. To
do so, we set out by designating 75% of each data set as a
training set, with the remaining 25% allocated for a test set.
Fitness was calculated as the percentage of input patterns
in the training set correctly classified by an individual.
Because the probability of finding a solution that correctly

classified 100% of the training set was next to none, our tri-
als had no termination criteria with the exception of the
15,000-tournament limit previously mentioned. The last
descendant chromosome generated after this time (which
we deemed representative of the entire population) was
then introduced to the test set in order to see how well it
would perform with new data.

4.Results

The gathering of results involved repeating tests for dif-
ferent rates of both biased, and roulette-style directed
crossover. Probabilistic intervals of 25% were used in
hopes of determining a pattern in the ratio of directed vs.
standard crossover.

For both the symbolic regression problem and the two
boxes problem, 50 runs were conducted at biased directed
crossover probability levels of 0 (no directed crossover),
25, 50, 75, and 100 percent. Similar parameters were also
used for roulette-style directed crossover. Table 2 displays
results derived from these tests.

The above process was then duplicated for medical clas-
sification on the Breast and Liver data sets. However, time
constraints dictated that only 20 runs were made. Results
tabulated from these runs are also found in Table 2

In measuring the effect of directed crossover on the
given suite of problems, we identified a number of key sta-
tistics to incorporate into our comparative analysis. The
two most pertinent were the average number of nodes
found in chromosomes generated within an entire set of 50
runs, and the average length of the solutions evolved. In
general, we correlate the node count as an indication of
code bloat, while solution length acts as a measure of solu-
tion parsimony.

From the information portrayed in Table 2, it is obvious
that directed crossover was detrimental when applied to the
symbolic regression problem. This fact is especially evi-
dent when biased directed crossover was used. With
minor exceptions, values for median computational effort,
average solution length, and average number of nodes con-
tinuously increased as the threshold value grew. Further-
more, the number of solutions found as the threshold
values increased, rapidly declined. While the application of
roulette style directed crossover was not as harmful, results
were still not considered promising.

In the two boxes problem, varying levels of success
were met. When applied 75% of the time, runs involving
biased directed crossover showed optimal results. At this
level, the number of convergent solutions (18) far exceeded
any of the corresponding values at other threshold levels.
While the median computational effort value (2548) was
also optimal, the values for average solution lengths

- 1113 -

(26.77) and average number of chromosomes (11.7577)
were anything but. As was the case in runs on symbolic
regression, these values increased with increasing levels of
biased directed crossover. In terms of results for the appli-
cation of roulette style directed crossover, most figures
were quite not significant, as the number of solutions found
at each level was quite small. However, it was a positive
sign to see that average solution length and average num-
ber of nodes remained constant throughout. Thus, it seems
that success in the two box problem comes at the expense
of increased bloat. While biased crossover led to far more
solutions than any other method, the nature of these solu-
tions were not parsimonious.

Results for the medical data classification problems
painted a different picture. In viewing the data given in
Table 2, high thresholds of biased directed crossover led to
optimal results for both node count and average solution
length. For breast data classification, the average number
of nodes in all chromosomes produced when using biased
directed crossover was 13.82. The corresponding figure for
liver data classification was 13.12. Both values represent

the minimum of all other values for node count amongst
the runs completed at each threshold level. Code bloat was
therefore minimized using our biased directed crossover
method 100% of the time.

Further support for the benefits resulting from the appli-
cation of directed crossover came from the average length
of solutions found at each threshold level. Once again,
optimal values were found when biased directed crossover
was applied at a rate of 100%. (15.5 for breast and 12.9 for
liver). While roulette style directed crossover did not con-
tribute further to our case, we believe the results show suf-
ficient evidence as to the benefits of directed crossover.

5. Conclusions

From the results, it is obvious to see that directed cross-
over was detrimental in both the symbolic regression and
two boxes problem. On the other hand, the reduction of
code bloat and solution length were clearly evident when
directed crossover was used in the classification domain.

Table 2: Results of all runs conducted.

Parameter Rate of Biased Crossover Rate of Roulette Crossover

0.0 .25 .5 .75 1.0 .25 .5 .75 1.0

Symbolic Regression

Number of convergent solutions

48 44 38 28 2

47

47 50 44

Average number of tournaments

5462 6668 12080 17431 13593

4610

7547 5324 6860

Median computational effort of all
solutions (*10

4

)

120 163 312 845 7,274

108

160 107 157

Average length of all solutions

15.1667 16.1818 18 18.3571 15.5

14.6808

15.2765 16.18 16.9772

Average number of nodes in chro-
mosomes of all 50 runs

8.0743 9.7362 12.6599 13.8857 11.8025

7.95847

9.19127 8.221289 10.4835

Two Boxes

Number of convergent solutions

2 0 6

18

9 1 2 0 2

Average number of tournaments

1435 No soln’s 23635

30730

27295 13763 9577 No soln’s 19591

Median computational effort of all
solutions (*10

4

)

9690 No soln’s 6479

2548

5095 12549 6511 No soln’s 12309

Average length of all solutions

15 No soln’s 17

26.7777

20.7777 19 22 No soln’s 24

Average number of nodes in chro-
mosomes generated in all 50 runs

3.3983 3.3981 5.16154

11.7577

21.2237 3.782 3.266811 3.23599 3.4685

Breast Cancer Data

Median classification accuracy of
final solutions on test data

.9827 .9855 .9827 .9856

.977

.977 .9885 .9741 .9885

Median classification accuracy of
final solutions on training data

.9494 .9675 .9666 ,9666

.9456

.9627 .9637 .9465 .9599

Average length of all solutions

26.15 20.35 25.95 22.3

15.5

24.95 20.95 23.25 22.75

Average number of nodes in chro-
mosomes of all 20 runs

16.09 14.93 19.16 17.59

13.82

17.52 16.42 18.70 16.75

Liver Disease Data

Median classification accuracy of
final solutions on test data

.6627 .6511 .6395 .6337

.6511

.6570 .6570 .6511 .6628

Median classification accuracy of
final solutions on training data

.7200 .7374 .7297 .7162

.7123

.6969 .7085 .7142 .6757

Average length of all solutions

24.85 32.65 24.5 24

12.9

26.66 26.45 32.75 37.85

Average number of nodes in chro-
mosomes generated in all 20 runs

16.68 20.87 16.53 17.83

13.12

19.62 16.78 19.74 20.10

- 1114 -

While the effectiveness of directed crossover was
clearly shown, the results produced on the medical data
sets may partly be accredited to the reduction in the tourna-
ment limit from 50,000 (as in regression and two boxes) to
15,000. In preliminary testing, we observed a tendency for
solution fitness to converge somewhere in the range of
seven to ten thousand tournaments. Additional fitness
increases after this time were few and far between, thus
provoking us to decrease the longevity, and therefore the
computational effort required for the runs. However, this in
itself may have aided the reduction of code bloat. It is our
belief that the probability of the root node being identified
as the index node (maximal fitness) for directed crossover
increased once fitness plateaued. This, in turn, caused rapid
increase in tree size as the subtrees being joined were
themselves entire individuals. In a preventative measure,
we modified the process to only reinsert the child node to
which the smallest subtree was attached (section 2.1).
However, in future work, we would like to explore differ-
ent avenues.

More specifically, we hope to modify the process such
that on reaching a fitness plateau, a different functional set
is employed for the remaining tournaments. By applying
different functional operators, such as ‘if” statements and
ADF’s [14], the objective would be to not only emphasize
further problem solving, but also code reuse.

Finally, rather than crossing over at nodes of maximal
fitness, we plan to implement processes that take into
account the changes in fitness from one node to the next.

6.Acknowledgements

Mr. Terrio would like to take this opportunity to thank
Omid Banyasad for his assistance in the formatting of this
paper. Additionally, the authors would both like to express
their appreciation to NSERC for its ongoing support of our
research endeavours.

7.References

[1] J.R. Koza,

Genetic Programming: On the Programming of
Computers by Means of Natural Selection

. Cambridge,
MA: MIT Press, 1992.

[2] W. Banzhaf, P. Nordin, R. E. Keller, & Frank D. Francone,

Genetic Programming: An Introduction

. San Fransisco,
CA: Morgan Kaufmann, 1998.

[3] B. Zhang, H. Muhlenbein, “Adaptive Fitness Functions for
Dynamic Growing/Pruning of Program Trees,”

Advances
in Genetic Programming

, vol. 2, pp.241-255, 1996.

[4] T. Soule, “

Code Growth in Genetic Programming,

” Ph. D.
dissertation, University of Idaho, May 1998.

[5] Daida et al., “What makes a Problem GP-Hard? Analysis
of a tunably Difficult Problem in Genetic Programming,”

Genetic Programming and Evolvable Machines

, vol. 2, pp.
165-191, 2001.

[6] P. Nordin, W. Banzhaf, “Complexity compression and evo-
lution,”

Proceedings of the Sixth International Conference
on Genetic Algorithms

, pp. 310-317, 1995.

[7] N.F. McPhee, J.D. Miller, “Accurate Replication in
Genetic Programming,”

Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms

, pp.303-309,
1995.

[8] P. W. H. Smith, K. Harries, “Code Growth, Explicitly
Defined Introns, and Alternative Selection Schemes,”

Evo-
lutionary Computation

, vol. 6, no. 4, pp 339-360, 1999.

[9] P.W.H. Smith, K.Harries, “Exploring Alternative Opera-
tors and Search Strategies in Genetic Programming,”

Genetic Programming 1997: Proceedings of the Second
annual Conference,

 pp. 147-155, 1997

.

[10] H. Iba, H. de Garis, T. Sato, “Genetic Programming Using
a Minimum Description Length Principle,”

Advances in
Genetic Programming

, vol. 1, pp. 265- 284, 1994.

[11] A. Singleton, GPQUICK: A Simple Genetic Programming
System in C++.

Available at:ftp://ftp.krl.caltech.edu/pub/
EC/GP/src/gpquick-1.2.tar.gz

,

[12] Universal Problem Solver Inc., Machine Learning Data
Sets.

http://www.upso.net/td1_frames.html

.

[13] K. Chellapilla, “Evolving Computer Programs Without
Subtree Crossover,” in

IEEE Transactions On Evolution-
ary Computation

, vol. 1, no. 3, pp. 209-216, September
1997.

[14] J.R. Koza,

Genetic Programming II: Automatic Discovery
of Reusable SubPrograms

. Cambridge MA: MIT Press,
1994.

- 1115 -

