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Abstract
 
The concept of a Cognitive Packet Network (CPN) is 
modified in the light of advances in intelligent routing 
algorithms. To do so, Cognitive and Acknowledgement 
packets are used to update neural networks at each 
router with respect to quality of service information. 
Data is carried by a third class of packets, thus the 
density of data packets is higher than in the original 
CPN framework. The system is demonstrated on a LAN 
using standard TCP/ IP protocols. 
 
Keywords:  Computer networks, neural networks, and 
reinforcement learning. 

 
 

1. INTRODUCTION 
 

Research on flow controls and routing decisions of 
communication networks frequently focuses on 
improving the intelligence and power of the protocols, 
switches or intermediate control nodes.  Packets in the 
networks are passively processed, whereas many 
attempts have recently been made to equip packets with 
routing intelligence.  Specific examples include the: 
AntNet algorithm based on a social insect metaphor for 
control [1]; genetic algorithm routing controllers [2]; 
and active networks [3]. All methods naturally provide 
a different series of design tradeoffs. Both AntNet and 
genetic approaches make use of forms of global 
information. Active networks incur a processing 
overhead on every network packet. Here, we take the 
Cognitive Packet Network (CPN) method [4, 5] and 
make modifications in the light of approaches taken by 
the AntNet algorithm. In addition, the method is 
implemented on a LAN using typical TCP/IP 
technology. 

The resulting routing algorithm is completely 
distributed in operation, making use of location 
information collected by a separate class of packets, 

denoted cognitive and acknowledgement packets. 
Neither packet carries data and has a purpose 
synonymous with forward and backward ants in the 
AntNet algorithm. Unlike the original CPN or the 
AntNet algorithm, quality of service (QoS) information 
collected by these packets is used to update neural 
networks residing at the routers using a reinforcement-
learning framework. It is these neural networks that are 
responsible for making the routing decisions. To do so, 
the concept of mailboxes is introduced, where (routing) 
neural networks are responsible for specific (or sets of) 
destinations.  

In the following, section 2 gives an overview of the 
CPN concept.  Section 3 describes the design and 
implementation of this work.  A description of the 
simulation testbed, and simulation results are given in 
section 4.  Finally, discussion and conclusions are 
presented in section 5. 

 
2. MODIFIED CPN CONCEPT 

 
The CPN utilized here utilities three major types of 

packets: cognitive, data and acknowledgement. 
Cognitive packets represent the agent exploring 
potential source-destination paths.  Upon arrival of a 
cognitive packet at its destination, the destination node 
creates an acknowledgement packet.  This packet is 
responsible for initiating the distribution of path quality 
of service information.  Data packets are delivered 
following the paths discovered by the cognitive 
packets.  Among the three types of packets, cognitive 
packets and acknowledgement packets play key routing 
roles.  

In this work, a cognitive packet (CP) is a data 
structure that interacts with routing information to 
continuously search for better paths.  It provides one 
half of a distributed search mechanism 
(acknowledgement packets form the other half) such 
that local routing decisions are able to act on global 
information. Each CP is described in terms of two 
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fields: 1) a header that carries administrative 
information for handling the packets, e.g., the type of 
packet, the source and destination addresses, and any 
quality of service (QoS) requirements; and 2) a 
Cognitive Map (CM) that contains information about 
where the packet is currently located, a packet view of 
the state of the network, and a recommendation 
regarding the next node to visit. 

On such a network, routers serve as “parking” areas 
where CPs stop to execute the ‘code’ contained in 
mailboxes.  Mailboxes are identified by destination, 
thus CPs from different sources use the same mailbox 
as long as they have the same destination. As a result of 
executing mailbox code, the next link a CP takes is 
identified and the packet is placed in the respective 
output queue. The only exception to this is when a 
neighbouring node represents the destination, in which 
case the CP is merely placed on the corresponding 
output queue. In each case, the CP collects time stamp 
and node identifiers in the cognitive map field. 

Acknowledgement packets (AP) are created once a 
CP reaches its destination. The purpose of this packet is 
to propagate the quality of service information 
collected by the CP back to the source node as soon as 
possible. Whilst retracing the path, an AP locates the 
mailbox with corresponding destination and updates 
the executable information with the objective of 
improving the route for future packets. In order to 
facilit ate as timely an update as possible, the AP uses a 
high priority queue. APs are destroyed once they reach 
the original source node. 

The mailbox code takes the form of a neural 
network, updated using reinforcement learning (section 
3.2). This provides a very flexible interface for 
modifying mailbox operation using minimal amounts 
of information reported by APs, whilst also being very 
scalable in operation. 

The above methodology is rather different from that 
defined in the original CP framework [3, 4]. 
Specifically, CPs are no longer responsible for 
propagating data or executing ‘programs’ . By 
decoupling data from CPs the data density of the 
network traff ic increases. Moreover, the only 
executable code exists in the mailboxes of each router – 
previously it was required that a neural network be part 
of each packet, along with the data packet information 
[4, 5]. In this case, the cognitive and acknowledgement 
packets act together to propagate the quality of service 
information back to routers. This means, we minimize 
the amount of additional information propagated across 
the network (unlike the active networking paradigm), 
whilst providing much more ‘ intelli gence’ than is 

available under current examples of the social insect 
metaphor. 
 

3. IMPLEMENTATION OF THE CPN 
 
This section details the various components of the 

CPN protocol, and discusses the adaptive learning rules 
used in this study.   

 
3.1 Components of the Test-bed Platform 

 
Figure 1 summarizes the organization of mailboxes 

and queues residing at each node in the network. As 
indicated above, there are three types of packets on this 
network. Both cognitive, and acknowledgement 
packets have the same packet format. This includes the 
header information, and the cognitive map. On the 
other hand, the format of a data packet includes only 
the header information, and data. 

 

Fig. 1. A CPN node 
 

In all packets, the header information is made up of 
the following fields: the type of the packet (cognitive, 
acknowledgement or data), the source address, and the 
destination address. Moreover, in the case of CPs (CP), 
the cognitive map stores the records of a CP’s path. It 
has two fields used to identify the node visited by the 
CP and the respective trip time. 

Each mailbox stores the current state of nodes on the 
CPN. The state is expressed in terms of a parameter set, 
accessed by CPs and updated by acknowledgement 
packets.  Each mailbox includes an identifier that 
shows a destination node, and the weight values (w, 
wthresh, v, vthresh) required by the executable code, a neural 
network in this case (section 3.2). 

Finally, each node has one queue for 
acknowledgement packets. That is, APs should affect 
updates to the mailbox routing algorithm as soon as 
possible. Whereas n queues contain cognitive, and data 
packets, where n corresponds to the number of links 
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that the current node has to its neighbours. That is, CPs 
collect feedback (trip time) from the environment, and 
therefore, should experience the same queuing 
properties as the data packets the system is attempting 
to route.  

  
3.2 Cognitive Packet ‘Code’  

 
The algorithm used by mailboxes to make a routing 

decision is based on an associative reinforcement 
learning neural network from Gullapalli [6]. The basic 
idea behind this algorithm is that cognitive packets and 
data packets make next link ‘decisions’ using a 
probabili ty density function (p.d.f) responsible for 
predicting payoff and receives feedback from the 
environment to evaluate those actions. Feedback is 
used to update p.d.f. such that the expectation of 
favourable evaluations in the future is increased.  
Ideally, a CP should be able to learn: 1) to associate 
with each input pattern, a link selection, for which the 
reinforcement signal it receives, indicates the highest 
degree of success; and 2) to improve its performance 
by using greater degrees of exploratory behaviour, 
when the expected reinforcement is low. The 
parameters governing the modification of the p.d.f. are 
summarized in Table 1. 
 

Table 1. Parameters for the algorithm 
Var iable Meaning Initial value 

wi(t) w weight of i th 
link at time t 

Generated using a URNG 

vi(t) v weight of i th 
link at time t 

Generated using a URNG 

wthresh Weight threshold Generated using a URNG 
vthresh Weight threshold Generated using a URNG 
xi(t) Input, the length 

of the i th queue at 
time t 

 
A positive integer 

α, β Learning rate The values are chosen for 
each test, from 0.0to 1.0 

Note: URNG – uniform random number generator, it 
produces a value in the interval [0, 1]. 

 
Such a model learns to produce real-valued outputs 

by estimating the mean, µ, and standard deviation, σ, of 
the Gaussian p.d.f., ψ(µ, σ), used to make a link 
selection. The reinforcement, r(t), received from the 
environment is limited to the unit interval, with 1.0 
denoting the maximum attainable reward.  Expected 
reinforcement, )(ˆ tr , is therefore employed to provide 

a more informative measure of performance. 

The above description conforms to the ACTION-
CRITIC reinforcement model in which the ACTION 
network models the mean response, and the CRITIC 
models the variance. In the case of the ACTION 
network, the mean, µ(t), is modeled as a weighted sum 
of n queue lengths, xi, at update/node t,   

µ(t) =∑
=

+
n

i
threshii twtxtw

1

)()()(  (1) 

The expected reinforcement, )(ˆ tr , as modeled by the 

CRITIC network is then computed as a weighted sum of 
the inputs using a different set of weights vi, 

∑
=

+=
n

i
threshii tvtxtvtr

1

)()()()(ˆ  (2) 

Moreover, for a given input, the standard deviation, 
σ(t), depends on how close the current output is to the 
expected reward/reinforcement, )(ˆ tr .  If the expected 

reinforcement is high, the packet is performing well for 
that input, hence σ(t) should be small .  On the other 
hand, if the expected reinforcement is low, σ(t) should 
be larger so that the packet explores a wider interval in 
its output range.  The standard deviation is computed 
as,   

σ (t) = max((
0.5

(t)ˆ0.1 r−
), 0.0)  (3)  

The recommendation, a(t), is computed based on µ(t) 
and σ(t), defining a Gaussian distribution [6], 

a(t)  =  ψ(µ(t), σ(t))      

        = σ (t) * GaussianFunction + µ(t)      (4) 

The output, y(t), merely maps the recommended action 
to the unit interval for the purposes of interpreting it as 
a link selection. 

y(t) = (1 – exp(-a(t))-1    (5) 

Table 2 gives an example of a mapping case. Finally, in 
the above algorithm, the input, xi(t), is a positive 
integer, so it also needs to be mapped to a value 
between 0 to 1 c.f. (5).   
 

Table 2.  Mapping to a link 
Outputs Link 0 Link 1 Link 2 

Node with 1 
neighbour 

[0.0, 1.0]   

Node with 2 
neighbours 

[0.0, 0.76] (0.76, 1.0]  

Node with 3 
neighbours 

[0.0, 0.52) [0.52, 0.54) [0.54, 1.0] 
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Once a CP reaches its destination, external 

reinforcement (reinforcement from the environment - 
QoS) is calculated in terms of trip time, r(t), where this 
is also mapped to the unit interval. Moreover, each 
node along a route has a unique reinforcement value 
following the information propagated by the AP. Thus, 

r(t) = (1 – exp(-log(trip time))-1  (6) 

An AP provides for weight updating in the action 
network of each node as follows: 

wi(t+1) = wi(t) + α•w(t) xi(t)  (7) 
wthresh(t+1) = wthresh(t) + α•w(t)  (8) 

where α is a learning rate and [6], 

•w(t) = (r(t) – )(ˆ tr ) )
)(

)()(
(

t

tta

σ
µ−

     (9) 

The updating of the weights for the expected 
reinforcement has a similar form, 

vi(t + 1) = vi(t) + β•v(t)xi(t)  (10) 
•v(t) =  r(t) – )(ˆ tr    (11) 

where β is the learning rate parameter[6]. 
In summary, CPs select a destination using (1) to 

(5), i.e., y(t) is mapped to the set of integers 
representing outgoing links at the current node. On the 
way to a destination, the CP records the intermediate 
node identity and trip time.  When a CP reaches the 
overall destination, an acknowledgement packet is 
created that retraces the explored path backwards.  On 
the way back to the source node, the acknowledgement 
packet updates the weights, defining neural networks, 
at each mailbox. To do so, the real-time milli second 
delay value is transformed into the unit interval (6), and 
weights updated using (7) to (11). 

 
4. EXPERIMENTAL SETTINGS AND 

SIMULATION RESULTS 
 
Figure 2 shows the topology of the local area 

network (LAN) that is used as a testbed in this study.  
On this testbed, the main hardware configuration of 
each node is an AMD K6-266MHz CPU with 32 
Mbytes RAM.  The operating systems on these nodes 
are all Windows 95. The network communication 
protocols used are standard TCP/IP. Multiple network 
cards of 10M/100M are installed on each computer. All 
the computers on the testbed are grouped into sub-
networks, and assigned different IP addresses 
according to the sub-network divisions.  Each network 
card is configured to work in full duplex mode.  

Furthermore, AboutTime [7], time synchronization 
software is installed on each computer to enable CPs to 
collect the trip time information in order to calculate 
the real environmental feedback. AboutTime uses 
Simple Network Time Protocol (SNTP) to synchronize 
time on the Internet or on a local area network. The 
Simple Network Time Protocol (SNTP) is described in 
RFC 1769 [8]. It is an adapted version of the Network 
Time Protocol (NTP), which is used to synchronize 
computer clocks on the Internet. AboutTime, achieves 
typical synchronization accuracies of ± 50 milli seconds 
on a local area network [7]. 
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192.168.1.2
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192.168.4.2
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192.168.3.2

192.168.5.1

192.168.3.1

192.168.5.2

 Fig. 2. The network topology of the testbed 
 
In this study, two major scenarios are tested: 1) CPN 

has no data packets; and 2) CPN has data packets.  
Indeed, different learning parameters are used for these 
scenarios, table 3.  

 
Table 3.  The learning parameters that are used  

  Parameters 1st run 2nd run 3rd run 
α 0.71 0.71 0.71 

β 0.91 0.71 0.97 
CPCR 2 5 5 

DPCR-TL1 No DP No DP No DP 
DPCR-TL2 20 20 20 

CPCR: CP creating rate (packets/second) 
DPCR: data packet generating rate (packets/second) 
TL:       Traff ic Load 

 
Since the aim of our experiments is to explore how 

the CPs find routes to their destinations, and adapt to 
the changes in the environment, the percentage of 
arrived packets (to their target destinations) are 
collected during these tests to explore the performance 
of the CPN. Therefore, below, all the figures’  results 
report measurements from node Brian for the packets 
targeting to go to Howie. As depicted in figure 4, when 
learning rates (α, β) are decreased, even though the CP 
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generating rate is increased, the system cannot learn the 
routes and its performance decreases compared to 
figure 3. On the other hand, when the learning rate is 
increased as well as the CP generating rate, figure 5, 
the performance of the system stays the same – 
approximately 84% - compared to the 1st run, figure 3.  
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Fig. 3. Percentage of arrived packets from Brian to 
Howie during the 1st run without any data packets 
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 Fig. 4. Percentage of arrived packets from Brian to 
Howie during the 2nd run without any data packets 
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 Fig. 5. Percentage of arrived packets from Brian to 
Howie during the 3rd run without any data packets 

 
When data packets are introduced to the system, the 

performance of the system is compatible in the first 
run, figure 6, although it takes longer for it to converge. 
However, it decreases by approximately 4% in the 
second, figure 7, and third, figure 8, runs compared to 

the respective results (figures 4 and 5) of the first 
scenario.   
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Fig. 6. Percentage of arrived packets from Brian to 

Howie during the 1st run with data packets 
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Fig. 7. Percentage of arrived packets from Brian to 
Howie during the 2nd run with data packets 
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 Fig. 8. Percentage of arrived packets from Brian to 
Howie during the 3rd run with data packets 

 
These results indicate that the CPs are able to find 

the correct paths with approximately 84% accuracy 
(where there is 2 CPs for every 20 DPs – 1st run), and 
to adapt to the traffic load conditions over time under 
different scenarios. 
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5. CONCLUSIONS AND FUTURE WORK 
 
In this study, we designed and implemented a CP 

Network (CPN) on a LAN environment, and modeled 
three types of packets: CPs, APs and data packets.  CPs 
and APs work together to propagate QoS information 
into ‘mailboxes’ responsible for making routing 
decisions.  

Two sets of test scenarios are investigated, where 
one contains data packets and the other does not. For 
each of these scenarios, three runs of data are collected, 
each with different learning parameters. It is observed 
that the learning rate plays a critical role in the routing 
of packets. The higher the rate is, the better the traff ic 
load distributions are. Moreover, with CPs and APs 
working together to explore paths, data packets can be 
delivered to their destinations with high performance.  

The studies reported are naturally of a preliminary 
nature. Future work is expected to test the system for 
its reliabili ty and robustness. Tests on different network 
topologies and bigger networks as well as using 
different synchronization methods need to be 
performed. In effect, the algorithm is sensitive to 
different learning parameters and quali ty of service 
requirements; hence different tests under different 
conditions and learning algorithms are of future 
interest. 
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