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Abstract

The concept of a Cognitive Packet Network (CPN) is
modified in the light of advances in intelligent routing
algorithms. To do so, Cognitive and Acknowledgement
packets are used to update neural networks at each
router with respect to quality of service information.
Data is carried by a third class of packets, thus the
density of data packets is higher than in the original
CPN framework. The system is demonstrated on a LAN
using standard TCP/ IP protocols.

Keywords: Computer networks, neural networks, and
reinforcement learning.

1. INTRODUCTION

Research on flow controls and routing decisions of
communication networks frequently focuses on
improving the intelligence and power of the protocols,
switches or intermediate control nodes. Packets in the
networks are passively processed, whereas many
attempts have recently been made to equip packets with
routing intelligence. Specific examples include the:
AntNet algorithm based on a socia insect metaphor for
control [1]; genetic algorithm routing controllers [2];
and active networks [3]. All methods naturally provide
a different series of design tradeoffs. Both AntNet and
genetic approaches make use of forms of global
information. Active networks incur a processing
overhead on every network packet. Here, we take the
Cognitive Packet Network (CPN) method [4, 5] and
make modifications in the light of approaches taken by
the AntNet agorithm. In addition, the method is
implemented on a LAN using typicad TCP/IP
technology.

The resulting routing algorithm is completely
distributed in operation, making use of location
information collected by a separate class of packets,

denoted cognitive and acknowledgement packets.
Neither packet carries data and has a purpose
synonymous with forward and backward ants in the
AntNet algorithm. Unlike the origind CPN or the
AntNet algorithm, quality of service (QoS) information
collected by these packets is used to update neural
networks residing at the routers using a reinforcement-
learning framework. It is these neural networks that are
responsible for making the routing decisions. To do so,
the concept of mailboxes is introduced, where (routing)
neural networks are responsible for specific (or sets of)
destinations.

In the following, section 2 gives an overview of the
CPN concept. Section 3 describes the design and
implementation of this work. A description of the
simulation testbed, and simulation results are given in
section 4. Finally, discussion and conclusions are
presented in section 5.

2. MODIFIED CPN CONCEPT

The CPN utilized here utilities three major types of
packets. cognitive, data and acknowledgement.
Cognitive packets represent the agent exploring
potential source-destination paths. Upon arrival of a
cognitive packet at its destination, the destination node
creates an acknowledgement packet. This packet is
responsible for initiating the distribution of path quality
of service information. Data packets are delivered
following the paths discovered by the cognitive
packets. Among the three types of packets, cognitive
packets and acknowledgement packets play key routing
roles.

In this work, a cognitive packet (CP) is a data
structure that interacts with routing information to
continuously search for better paths. It provides one
haf of a distributed search  mechanism
(acknowledgement packets form the other half) such
that local routing decisions are able to act on global
information. Each CP is described in terms of two
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fieldss 1) a header that caries administrative
information for handing the padkets, e.g., the type of
padket, the source and cestination addresses, and any
quality of service (QoS) requirements; and 2) a
Cogritive Map (CM) that contains information about
where the padket is currently located, a padket view of
the state of the network, and a recommendation
regarding the next node to visit.

On such a network, routers ®rve & “parking’ aress
where CPs dop to exeaute the ‘code’ contained in
mailboxes. Mailboxes are identified by destination,
thus CPs from different sources use the same mail box
aslongasthey have the same destination. As aresult of
exeauting mailbox code, the next link a CP takes is
identified and the padet is placel in the respedive
output queue. The only exception to this is when a
neighbouring node represents the destination, in which
case the CP is merely placed on the correspondng
output queue. In ead case, the CP colleds time stamp
and rode identifiersin the agnitive map field.

Acknowledgement padkets (AP) are aeaed once a
CPreadesits destination. The purpose of this padet is
to propagate the quality of service information
colleded by the CP bad to the source node & onas
possble. Whilst retradng the path, an AP locaes the
mailbox with corresponding destination and updtes
the exeautable information with the objedive of
improving the route for future padets. In order to
fadlitate & timely an updite & posshble, the AP uses a
high priority queue. APs are destroyed once they read
the original source node.

The mailbox code takes the form of a neural
network, updated using reinforcement leaning (sedion
3.2). This provides a very flexible interface for
modifying mailbox operation using minimal amounts
of information reported by APs, whilst also being very
scdablein operation.

The @ove methoddogy is rather different from that
defined in the origina CP framework [3, 4].
Spedficdly, CPs are no longer resporsible for
propagating cdeta or executing ‘programs. By
dewmuging data from CPs the data density of the
network traffic increasses. Moreover, the only
exeautable amde existsin the mailboxes of ead router —
previoudly it was required that a neural network be part
of ead padet, along with the data padket information
[4, 5]. In this cese, the agnitive and adknowledgement
padkets ad together to propagate the quality of service
information bad to routers. This means, we minimize
the anount of additional information propagated acoss
the network (unlike the adive networking paradigm),
whilst providing much more ‘intelligence€ than is

available under current examples of the social insed
metaphar.

3. IMPLEMENTATION OF THE CPN

This ®dion details the various components of the
CPN protocol, and dscusses the alaptive leaning rules
used in this gudy.

3.1 Components of the Test-bed Platform

Figure 1 summarizes the organizaion of mail boxes
and queues residing at ead nock in the network. As
indicated above, there are three types of padets on this
network. Both cogntive, and acknowledgement
padkets have the same padet format. This includes the
header information, and the cogritive map. On the
other hand, the format of a data padket includes only
the header information, and data.

Queue of CP JTTTITIIT1IT
o T % TOIIIIIIIIT
B _> g _>Queu§as of NL
g JTTTITIT1T1IT a :

Queue of ACK T

List of mailboxes

Fig. 1. A CPN noce

In al padkets, the header information is made up o
the following fields: the type of the padket (cognitive,
adknowledgement or data), the source aldress and the
destination address Moreover, in the cae of CPs (CP),
the agnitive map stores the reaords of a CP's path. It
has two fields used to identify the node visited by the
CP and the respedive trip time.

Each mail box stores the aurrent state of nodes onthe
CPN. The state is expressed in terms of a parameter set,
accas®ed by CPs and updited by adknowledgement
padkets. Each mailbox includes an identifier that
shows a destination node, and the weight values (w,
W,,n Vs Vi) FEQUired by the exeautable mde, a neural
network in this case (sedion 3.2).

Finadly, eahh noce has one queue for
adknowledgement packets. That is, APs oud affed
updates to the mailbox routing algorithm as on as
possble. Whereas n queues contain cogritive, and data
padkets, where n corresponds to the number of links
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that the aurrent node has to its neighbours. That is, CPs
colled fealbad (trip time) from the environment, and
therefore, shoud experience the same queuing
properties as the data padets the system is attempting
to route.

3.2 Cognitive Packet ‘ Code

The dgorithm used by mailboxes to make arouting
dedsion is based on an assciative reinforcement
leaning neural network from Gullapalli [6]. The basic
ideabehind this algorithm is that cognitive packets and
data padkets make next link ‘dedsions using a
probability density function (p.d.f) responsible for
predicting payoff and receves feedbadk from the
environment to evaluate those adions. Feedbad is
used to update p.d.f. such that the expedation of
favourable evaluations in the future is increased.
Idedly, a CP should be ale to lean: 1) to associate
with each input pattern, a link selection, for which the
reinforcement signal it recaves, indicaes the highest
degree of success; and 2) to improve its performance
by using geaer degrees of exploratory behaviour,
when the expeded reinforcement is low. The
parameters governing the modificaion of the p.d.f. are
summarized in Table 1.

Table 1. Parameters for the dgorithm

Variable M eaning Initial value
wi(t) wweight of i" | Generated usinga URNG
link at timet
V(1) vweight of i" | Generated usinga URNG
link at time't

W, .. | Weight threshold | Generated using a URNG

Ve Weight threshold | Generated using a URNG

x(t) Input, the length

of thei” queue &
timet

a, B Leaningrate

A positiveinteger

The values are chosen for

ead test, from 0.0to 1.0
Note: URNG — uniform random number generator, it
produces avalue in theinterval [0, 1].

Such a model leans to produce red-valued outputs
by estimating the mean, u, and standard deviation, o, of
the Gaussan p.d.f., Y(u, 0), used to make a link
seledion. The reinforcement, r(t), receved from the
environment is limited to the unit interval, with 1.0
denoting the maximum attainable reward. Expeded
reinforcement, (t), is therefore employed to provide

amore informative measure of performance

The &ove description conforms to the ACTION-
CRITIC reinforcement model in which the AcTION
network models the mean resporse, and the CRITIC
models the variance In the cae of the ACTION
network, the mean, u(t), is modeled as a weighted sum
of n queue lengths, x, at update/nodet,

um:iwaWﬁme@m m

The expected reinforcement, F(t), as modeled by the

CRITIC network is then computed as a weighted sum of
the inputs using a diff erent set of weightsv,

=S OKO Ve @

Moreover, for a given input, the standard deviation,
a(t), depends on how close the aurrent output is to the
expeded reward/reinforcement, f(t). If the expeaed
reinforcement is high, the packet is performing well for
that input, hence o(t) shoud be small. On the other
hand, if the expeaed reinforcement is low, o(t) shoud

be larger so that the padket explores a wider interval in
its output range. The standard deviation is computed

as,

1.0-r(t

o= max«—c:()), 0.0) ®
The recmmendation, a(t), is computed based on u(t)

and o(t), defining a Gausdan distribution [6],
at) = yu(), ot))
=g (t) * GaussianFunction + u(t) (4)

The output, y(t), merely maps the recommended adion
to the unit interval for the purpases of interpreting it as
alink seledion.

y(© = (1 -exp(-a(t))* (5)

Table 2 gives an example of amapping case. Findly, in
the @ove dgorithm, the input, x(t), is a positive
integer, so it also neels to be mapped to a value
between 0to 1cf. (5).

Table 2. Mappingto alink

Outputs Link O Link 1 Link 2
Nodewith 1 | [0.0, 1.0]

neighbour
Nodewith 2 | [0.0, 0.76] | (0.76, 1.0]

neighbours
Nodewith 3 | [0.0, 0.52) |[0.52, 0.54)| [0.54, 1.0]
neighbours
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Once a CP readies its destination, exerna
reinforcement (reinforcement from the environment -
QoS) is cdculated in terms of trip time, r(t), where this
is also mapped to the unit interval. Moreover, eah
node dong a route has a unigue reinforcement value
foll owing the information propagated by the AP. Thus,

r(t) = (1 —exp(-log(trip time))* (6)
An AP provides for weight updating in the adion
network of eah noce & follows:
w(t+1) = w(t) + ae,(t) X(t) @)
thresh(t+ 1) - thr&m(t) + o (t) (8)
where a isaleaning rate and [6],

0= () — Pty B HO (t’; ),

The updating of the weights for the expeded
reinforcement has a similar form,

v(t+ 1) = (D) + B OX(0) (10)
()= r(t)=r(t) (11)

where Bisthe leaning rate parameter[6].

In summary, CPs sled a degtination wsing (1) to
(5), i.e, y(t) is mapped to the set of integers
representing ougoing links at the aurrent node. On the
way to a destination, the CP records the intermediate
nocke identity and trip time. When a CP reades the
overall destination, an adknowledgement padket is
creaed that retraces the explored path badkwards. On
the way bad to the source node, the ad&nowledgement
padket updates the weights, defining neural networks,
at ead mailbox. To do so, the red-time milli seaond
delay valueistransformed into the unit interval (6), and
weights updated using (7) to (11).

9)

4. EXPERIMENTAL SETTINGSAND
SIMULATION RESULTS

Figure 2 shows the topdogy d the locd area
network (LAN) that is used as a testbed in this study.
On this testbed, the main hardware cnfiguration o
eah noct is an AMD K6-266MHz CPU with 32
Mbytes RAM. The operating systems on these nodes
are dl Windowvs 95. The network communication
protocols used are standard TCP/IP. Multi ple network
cards of 10M/100M are installed onead computer. All
the computers on the testbed are grouped into sub-
networks, and asdgned dfferent IP addresses
acording to the sub-network divisions. Each network
card is configured to work in full dugex mode.

Furthermore, AboutTime [7], time synchronization
software isinstalled onead computer to enable CPsto
colled the trip time information in order to cdculate
the red environmental feedbadk. AboutTime uses
Simple Network Time Protocol (SNTP) to synchronize
time on the Internet or on a locd area network. The
Simple Network Time Protocol (SNTP) is described in
RFC 1769[8]. It is an adapted version of the Network
Time Protocol (NTP), which is used to synchronize
computer clocks on the Internet. AbouTime, achieves
typicd synchronizaion acaracies of + 50 milli seconds
onalocd areanetwork [7].

192.168.1.2

192.168.2.2

nnnnnnn

Fig. 2. The network topdogy of the testbed

In this gudy, two major scenarios are tested: 1) CPN
has no data packets, and 2) CPN has data padkets.
Indeed, different learning parameters are used for these
scenarios, table 3.

Table 3. Theleaning parameters that are used

Parameters | 1run | 2run | 3“run
a 0.71 0.71 0.71
B 0.91 0.71 0.97
CPCR 2 5 5
DPCR-TL1 | NoDP | NoDP No DP
DPCR-TL2 20 20 20
CPCR: CP creding rate (padets/semnd)
DPCR: data padket generating rate (padets/second)
TL: Traffic Load

Since the am of our experiments is to explore how
the CPs find routes to their destinations, and adapt to
the danges in the environment, the percentage of
arrived packets (to their target destinations) are
colleded during these tests to explore the performance
of the CPN. Therefore, below, all the figures results
report measurements from node Brian for the padets
targeting to go to Howie. As depicted in figure 4, when
leaning rates (a, B) are deaeased, even though the CP
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generating rate is increased, the system cannot learn the
routes and its performance deaeases compared to
figure 3. On the other hand, when the leaning rate is
increased as well as the CP generating rate, figure 5,
the performance of the system stays the same —
approximately 84% - compared to the 1% run, figure 3.
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Fig. 3. Percentage of arrived padets from Brian to
Howie during the 1% run without any data packets

% to Dest.
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Fig. 4. Percentage of arrived padets from Brian to
Howie during the 2" run without any data padkets
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Fig. 5. Percentage of arrived padkets from Brian to
Howie during the 3" run without any data padkets

When data padkets are introduced to the system, the
performance of the system is compatible in the first
run, figure 6, although it takes longer for it to converge.
However, it deaeases by approximately 4% in the
seoond, figure 7, and third, figure 8, runs compared to

the respedive results (figures 4 and 5 of the first
scenario.
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Fig. 6. Percentage of arrived padkets from Brian to
Howie during the 1% run with data padkets
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Fig. 7. Percentage of arrived padets from Brian to
Howie during the 2" run with data padkets
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Fig. 8. Percentage of arrived padkets from Brian to
Howie during the 3" run with data padkets

These results indicae that the CPs are @le to find
the crred paths with approximately 84% accuracy
(where there is 2 CPs for every 20 DPs — 1% run), and
to adapt to the traffic load conditions over time under
different scenarios.
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5. CONCLUSIONS AND FUTURE WORK

In this gudy, we designed and implemented a CP
Network (CPN) on a LAN environment, and modeled
threetypes of padets: CPs, APs and data padkets. CPs
and APs work together to propagate QoS information
into ‘mailboxes resporsible for making routing
dedsions.

Two sets of test scenarios are investigated, where
one mntains data packets and the other does nat. For
ead o these scenarios, threeruns of data ae coll eded,
eat with dfferent leaning parameters. It is observed
that the learning rate plays a aiticd role in the routing
of padets. The higher the rate is, the better the traffic
load dstributions are. Moreover, with CPs and APs
working together to explore paths, data padkets can be
delivered to their destinations with high performance.

The studies reported are naturally of a preliminary
nature. Future work is expeded to test the system for
itsreliability and robustness Tests on diff erent network
topdogies and higger networks as well as using
different synchronizaion methods need to be
performed. In effed, the agorithm is snsitive to
different leaning parameters and quality of service
requirements; hence different tests under different
conditions and leaning algorithms are of future
interest.
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