

TESTING A COGNITIVE PACKET CONCEPT ON A LAN

X. Hu, A. N. Zincir-Heywood, M. I. Heywood
Faculty of Computer Science, Dalhousie University

{xhu@cs.dal.ca, zincir@cs.dal.ca, mheywood@cs.dal.ca}

Abstract

The concept of a Cognitive Packet Network (CPN) is
modified in the light of advances in intelligent routing
algorithms. To do so, Cognitive and Acknowledgement
packets are used to update neural networks at each
router with respect to quality of service information.
Data is carried by a third class of packets, thus the
density of data packets is higher than in the original
CPN framework. The system is demonstrated on a LAN
using standard TCP/ IP protocols.

Keywords: Computer networks, neural networks, and
reinforcement learning.

1. INTRODUCTION

Research on flow controls and routing decisions of
communication networks frequently focuses on
improving the intelligence and power of the protocols,
switches or intermediate control nodes. Packets in the
networks are passively processed, whereas many
attempts have recently been made to equip packets with
routing intelligence. Specific examples include the:
AntNet algorithm based on a social insect metaphor for
control [1]; genetic algorithm routing controllers [2];
and active networks [3]. All methods naturally provide
a different series of design tradeoffs. Both AntNet and
genetic approaches make use of forms of global
information. Active networks incur a processing
overhead on every network packet. Here, we take the
Cognitive Packet Network (CPN) method [4, 5] and
make modifications in the light of approaches taken by
the AntNet algorithm. In addition, the method is
implemented on a LAN using typical TCP/IP
technology.

The resulting routing algorithm is completely
distributed in operation, making use of location
information collected by a separate class of packets,

denoted cognitive and acknowledgement packets.
Neither packet carries data and has a purpose
synonymous with forward and backward ants in the
AntNet algorithm. Unlike the original CPN or the
AntNet algorithm, quality of service (QoS) information
collected by these packets is used to update neural
networks residing at the routers using a reinforcement-
learning framework. It is these neural networks that are
responsible for making the routing decisions. To do so,
the concept of mailboxes is introduced, where (routing)
neural networks are responsible for specific (or sets of)
destinations.

In the following, section 2 gives an overview of the
CPN concept. Section 3 describes the design and
implementation of this work. A description of the
simulation testbed, and simulation results are given in
section 4. Finally, discussion and conclusions are
presented in section 5.

2. MODIFIED CPN CONCEPT

The CPN utilized here utilities three major types of

packets: cognitive, data and acknowledgement.
Cognitive packets represent the agent exploring
potential source-destination paths. Upon arrival of a
cognitive packet at its destination, the destination node
creates an acknowledgement packet. This packet is
responsible for initiating the distribution of path quality
of service information. Data packets are delivered
following the paths discovered by the cognitive
packets. Among the three types of packets, cognitive
packets and acknowledgement packets play key routing
roles.

In this work, a cognitive packet (CP) is a data
structure that interacts with routing information to
continuously search for better paths. It provides one
half of a distributed search mechanism
(acknowledgement packets form the other half) such
that local routing decisions are able to act on global
information. Each CP is described in terms of two

Proceedings of the 2002 IEEE Canadian Conference
on Electrical & Computer Engineering
0-7803-7514-9/02/$17.00 © 2002 IEEE - 1577 -

fields: 1) a header that carries administrative
information for handling the packets, e.g., the type of
packet, the source and destination addresses, and any
quality of service (QoS) requirements; and 2) a
Cognitive Map (CM) that contains information about
where the packet is currently located, a packet view of
the state of the network, and a recommendation
regarding the next node to visit.

On such a network, routers serve as “parking” areas
where CPs stop to execute the ‘code’ contained in
mailboxes. Mailboxes are identified by destination,
thus CPs from different sources use the same mailbox
as long as they have the same destination. As a result of
executing mailbox code, the next link a CP takes is
identified and the packet is placed in the respective
output queue. The only exception to this is when a
neighbouring node represents the destination, in which
case the CP is merely placed on the corresponding
output queue. In each case, the CP collects time stamp
and node identifiers in the cognitive map field.

Acknowledgement packets (AP) are created once a
CP reaches its destination. The purpose of this packet is
to propagate the quality of service information
collected by the CP back to the source node as soon as
possible. Whilst retracing the path, an AP locates the
mailbox with corresponding destination and updates
the executable information with the objective of
improving the route for future packets. In order to
facilit ate as timely an update as possible, the AP uses a
high priority queue. APs are destroyed once they reach
the original source node.

The mailbox code takes the form of a neural
network, updated using reinforcement learning (section
3.2). This provides a very flexible interface for
modifying mailbox operation using minimal amounts
of information reported by APs, whilst also being very
scalable in operation.

The above methodology is rather different from that
defined in the original CP framework [3, 4].
Specifically, CPs are no longer responsible for
propagating data or executing ‘programs’ . By
decoupling data from CPs the data density of the
network traff ic increases. Moreover, the only
executable code exists in the mailboxes of each router –
previously it was required that a neural network be part
of each packet, along with the data packet information
[4, 5]. In this case, the cognitive and acknowledgement
packets act together to propagate the quality of service
information back to routers. This means, we minimize
the amount of additional information propagated across
the network (unlike the active networking paradigm),
whilst providing much more ‘ intelli gence’ than is

available under current examples of the social insect
metaphor.

3. IMPLEMENTATION OF THE CPN

This section details the various components of the

CPN protocol, and discusses the adaptive learning rules
used in this study.

3.1 Components of the Test-bed Platform

Figure 1 summarizes the organization of mailboxes

and queues residing at each node in the network. As
indicated above, there are three types of packets on this
network. Both cognitive, and acknowledgement
packets have the same packet format. This includes the
header information, and the cognitive map. On the
other hand, the format of a data packet includes only
the header information, and data.

Fig. 1. A CPN node

In all packets, the header information is made up of
the following fields: the type of the packet (cognitive,
acknowledgement or data), the source address, and the
destination address. Moreover, in the case of CPs (CP),
the cognitive map stores the records of a CP’s path. It
has two fields used to identify the node visited by the
CP and the respective trip time.

Each mailbox stores the current state of nodes on the
CPN. The state is expressed in terms of a parameter set,
accessed by CPs and updated by acknowledgement
packets. Each mailbox includes an identifier that
shows a destination node, and the weight values (w,
wthresh, v, vthresh) required by the executable code, a neural
network in this case (section 3.2).

Finally, each node has one queue for
acknowledgement packets. That is, APs should affect
updates to the mailbox routing algorithm as soon as
possible. Whereas n queues contain cognitive, and data
packets, where n corresponds to the number of links

pr
oc

es
so

r

re
ce

iv
e r

 Queue of CP

Queue of ACK

Queues of NL

List of mailboxes

- 1578 -

that the current node has to its neighbours. That is, CPs
collect feedback (trip time) from the environment, and
therefore, should experience the same queuing
properties as the data packets the system is attempting
to route.

3.2 Cognitive Packet ‘Code’

The algorithm used by mailboxes to make a routing

decision is based on an associative reinforcement
learning neural network from Gullapalli [6]. The basic
idea behind this algorithm is that cognitive packets and
data packets make next link ‘decisions’ using a
probabili ty density function (p.d.f) responsible for
predicting payoff and receives feedback from the
environment to evaluate those actions. Feedback is
used to update p.d.f. such that the expectation of
favourable evaluations in the future is increased.
Ideally, a CP should be able to learn: 1) to associate
with each input pattern, a link selection, for which the
reinforcement signal it receives, indicates the highest
degree of success; and 2) to improve its performance
by using greater degrees of exploratory behaviour,
when the expected reinforcement is low. The
parameters governing the modification of the p.d.f. are
summarized in Table 1.

Table 1. Parameters for the algorithm
Var iable Meaning Initial value

wi(t) w weight of i th
link at time t

Generated using a URNG

vi(t) v weight of i th
link at time t

Generated using a URNG

wthresh Weight threshold Generated using a URNG
vthresh Weight threshold Generated using a URNG
xi(t) Input, the length

of the i th queue at
time t

A positive integer

α, β Learning rate The values are chosen for
each test, from 0.0to 1.0

Note: URNG – uniform random number generator, it
produces a value in the interval [0, 1].

Such a model learns to produce real-valued outputs

by estimating the mean, µ, and standard deviation, σ, of
the Gaussian p.d.f., ψ(µ, σ), used to make a link
selection. The reinforcement, r(t), received from the
environment is limited to the unit interval, with 1.0
denoting the maximum attainable reward. Expected
reinforcement,)(ˆ tr , is therefore employed to provide

a more informative measure of performance.

The above description conforms to the ACTION-
CRITIC reinforcement model in which the ACTION
network models the mean response, and the CRITIC
models the variance. In the case of the ACTION
network, the mean, µ(t), is modeled as a weighted sum
of n queue lengths, xi, at update/node t,

µ(t) =∑
=

+
n

i
threshii twtxtw

1

)()()((1)

The expected reinforcement,)(ˆ tr , as modeled by the

CRITIC network is then computed as a weighted sum of
the inputs using a different set of weights vi,

∑
=

+=
n

i
threshii tvtxtvtr

1

)()()()(ˆ (2)

Moreover, for a given input, the standard deviation,
σ(t), depends on how close the current output is to the
expected reward/reinforcement,)(ˆ tr . If the expected

reinforcement is high, the packet is performing well for
that input, hence σ(t) should be small . On the other
hand, if the expected reinforcement is low, σ(t) should
be larger so that the packet explores a wider interval in
its output range. The standard deviation is computed
as,

σ (t) = max((
0.5

(t)ˆ0.1 r−
), 0.0) (3)

The recommendation, a(t), is computed based on µ(t)
and σ(t), defining a Gaussian distribution [6],

a(t) = ψ(µ(t), σ(t))

 = σ (t) * GaussianFunction + µ(t) (4)

The output, y(t), merely maps the recommended action
to the unit interval for the purposes of interpreting it as
a link selection.

y(t) = (1 – exp(-a(t))-1 (5)

Table 2 gives an example of a mapping case. Finally, in
the above algorithm, the input, xi(t), is a positive
integer, so it also needs to be mapped to a value
between 0 to 1 c.f. (5).

Table 2. Mapping to a link
Outputs Link 0 Link 1 Link 2

Node with 1
neighbour

[0.0, 1.0]

Node with 2
neighbours

[0.0, 0.76] (0.76, 1.0]

Node with 3
neighbours

[0.0, 0.52) [0.52, 0.54) [0.54, 1.0]

- 1579 -

Once a CP reaches its destination, external

reinforcement (reinforcement from the environment -
QoS) is calculated in terms of trip time, r(t), where this
is also mapped to the unit interval. Moreover, each
node along a route has a unique reinforcement value
following the information propagated by the AP. Thus,

r(t) = (1 – exp(-log(trip time))-1 (6)

An AP provides for weight updating in the action
network of each node as follows:

wi(t+1) = wi(t) + α•w(t) xi(t) (7)
wthresh(t+1) = wthresh(t) + α•w(t) (8)

where α is a learning rate and [6],

•w(t) = (r(t) –)(ˆ tr))
)(

)()(
(

t

tta

σ
µ−

 (9)

The updating of the weights for the expected
reinforcement has a similar form,

vi(t + 1) = vi(t) + β•v(t)xi(t) (10)
•v(t) = r(t) –)(ˆ tr (11)

where β is the learning rate parameter[6].
In summary, CPs select a destination using (1) to

(5), i.e., y(t) is mapped to the set of integers
representing outgoing links at the current node. On the
way to a destination, the CP records the intermediate
node identity and trip time. When a CP reaches the
overall destination, an acknowledgement packet is
created that retraces the explored path backwards. On
the way back to the source node, the acknowledgement
packet updates the weights, defining neural networks,
at each mailbox. To do so, the real-time milli second
delay value is transformed into the unit interval (6), and
weights updated using (7) to (11).

4. EXPERIMENTAL SETTINGS AND

SIMULATION RESULTS

Figure 2 shows the topology of the local area

network (LAN) that is used as a testbed in this study.
On this testbed, the main hardware configuration of
each node is an AMD K6-266MHz CPU with 32
Mbytes RAM. The operating systems on these nodes
are all Windows 95. The network communication
protocols used are standard TCP/IP. Multiple network
cards of 10M/100M are installed on each computer. All
the computers on the testbed are grouped into sub-
networks, and assigned different IP addresses
according to the sub-network divisions. Each network
card is configured to work in full duplex mode.

Furthermore, AboutTime [7], time synchronization
software is installed on each computer to enable CPs to
collect the trip time information in order to calculate
the real environmental feedback. AboutTime uses
Simple Network Time Protocol (SNTP) to synchronize
time on the Internet or on a local area network. The
Simple Network Time Protocol (SNTP) is described in
RFC 1769 [8]. It is an adapted version of the Network
Time Protocol (NTP), which is used to synchronize
computer clocks on the Internet. AboutTime, achieves
typical synchronization accuracies of ± 50 milli seconds
on a local area network [7].

howie

nick brian

kevinaj

192.168.1.1

192.168.1.2

192.168.2.1 192.168.2.2

192.168.4.2

192.168.4.1

192.168.3.2

192.168.5.1

192.168.3.1

192.168.5.2

 Fig. 2. The network topology of the testbed

In this study, two major scenarios are tested: 1) CPN

has no data packets; and 2) CPN has data packets.
Indeed, different learning parameters are used for these
scenarios, table 3.

Table 3. The learning parameters that are used

 Parameters 1st run 2nd run 3rd run
α 0.71 0.71 0.71

β 0.91 0.71 0.97
CPCR 2 5 5

DPCR-TL1 No DP No DP No DP
DPCR-TL2 20 20 20

CPCR: CP creating rate (packets/second)
DPCR: data packet generating rate (packets/second)
TL: Traff ic Load

Since the aim of our experiments is to explore how

the CPs find routes to their destinations, and adapt to
the changes in the environment, the percentage of
arrived packets (to their target destinations) are
collected during these tests to explore the performance
of the CPN. Therefore, below, all the figures’ results
report measurements from node Brian for the packets
targeting to go to Howie. As depicted in figure 4, when
learning rates (α, β) are decreased, even though the CP

- 1580 -

generating rate is increased, the system cannot learn the
routes and its performance decreases compared to
figure 3. On the other hand, when the learning rate is
increased as well as the CP generating rate, figure 5,
the performance of the system stays the same –
approximately 84% - compared to the 1st run, figure 3.

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec.)

%
 t

o
 D

es
t.

Fig. 3. Percentage of arrived packets from Brian to
Howie during the 1st run without any data packets

0
10
20
30
40
50
60
70
80
90

0 500 1000 1500 2000 2500

Time (sec.)

%
 t

o
D

es
t.

 Fig. 4. Percentage of arrived packets from Brian to
Howie during the 2nd run without any data packets

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

Time (sec.)

%
 t

o
D

es
t.

 Fig. 5. Percentage of arrived packets from Brian to
Howie during the 3rd run without any data packets

When data packets are introduced to the system, the

performance of the system is compatible in the first
run, figure 6, although it takes longer for it to converge.
However, it decreases by approximately 4% in the
second, figure 7, and third, figure 8, runs compared to

the respective results (figures 4 and 5) of the first
scenario.

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

Time (sec.)

%
 t

o
D

es
t.

Fig. 6. Percentage of arrived packets from Brian to

Howie during the 1st run with data packets

0
10
20
30
40
50
60
70
80

0 500 1000 1500 2000 2500 3000

Time (sec.)
%

 t
o

D
es

t.

Fig. 7. Percentage of arrived packets from Brian to
Howie during the 2nd run with data packets

0

20

40

60

80

100

0 500 1000 1500 2000

Time (sec.)

%
 t

o
D

es
t.

 Fig. 8. Percentage of arrived packets from Brian to
Howie during the 3rd run with data packets

These results indicate that the CPs are able to find

the correct paths with approximately 84% accuracy
(where there is 2 CPs for every 20 DPs – 1st run), and
to adapt to the traffic load conditions over time under
different scenarios.

- 1581 -

5. CONCLUSIONS AND FUTURE WORK

In this study, we designed and implemented a CP

Network (CPN) on a LAN environment, and modeled
three types of packets: CPs, APs and data packets. CPs
and APs work together to propagate QoS information
into ‘mailboxes’ responsible for making routing
decisions.

Two sets of test scenarios are investigated, where
one contains data packets and the other does not. For
each of these scenarios, three runs of data are collected,
each with different learning parameters. It is observed
that the learning rate plays a critical role in the routing
of packets. The higher the rate is, the better the traff ic
load distributions are. Moreover, with CPs and APs
working together to explore paths, data packets can be
delivered to their destinations with high performance.

The studies reported are naturally of a preliminary
nature. Future work is expected to test the system for
its reliabili ty and robustness. Tests on different network
topologies and bigger networks as well as using
different synchronization methods need to be
performed. In effect, the algorithm is sensitive to
different learning parameters and quali ty of service
requirements; hence different tests under different
conditions and learning algorithms are of future
interest.

Acknowledgements

We gratefully acknowledge the funding provided by
NSERC individual research grants for Drs. Zincir-
Heywood, and Heywood.

References

[1] G. Di Caro, M. Dorigo, “AntNet: Distributed Stigergetic

Control for Communication Networks” . Artificial
Intelligence. 9, 317-365, 1998.

[2] Munetomo M., Takai Y., Sato Y., “An Adaptive
Network Routing Algorithm Employing Path Genetic
Operators,” Proceedings of the 7th International
Conference on Genetic Algorithms, pp 643-649, 1997.

[3] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall ,
G. Minden, “A Survey of Active Network Research” ,
IEEE Communications, 35(1), pp 80-86, Jan 1997.

[4] E. Gelenbe, Z. Xu and E. Seref, “Cognitive packet
networks” , Proceedings of the IEEE, pp. 47-54, 1999.

[5] E. Gelenbe, E. Seref and Z. Xu, “Simulation with
learning agents” , Proceedings of the IEEE, vol. 89, no.
2, pp. 148-157, February 2001.

[6] V. Gullapall i, “A stochastic reinforcement learning
algorithm for learning real-valued functions” , Neural
Networks, vol. 3, pp. 671-692, 1990.

[7] The web site for the AboutTime Software,
http://www.arachnoid.com/abouttime/

[8] D.Mill s, “Simple Network Time Protocol (SNTP)” , RFC
1769, University of Delaware, 1995.

- 1582 -

