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Abstract 
The AntNet algorithm for adaptive routing is 
implemented on a LAN using the TCP/ IP protocol. A 
study is made of the relative merits of different 
reinforcement parameters central to the stable 
operation of the algorithm. The case of a constant 
reinforcement leads to slow but dependable 
performance whereas adaptive reinforcement appears 
to be sensitive to the window over which statistics are 
estimated. 
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1. INTRODUCTION 
 

Routing plays a critical role in communication 
networks in determining the overall network 
performance in terms of throughput and transmission 
delay. Research in social insect behaviour has provided 
computer scientists with powerful methods for 
designing distributed control and routing algorithms [1, 
2]. The ant routing algorithm, inspired by the indirect 
model of communication observed in ant colonies, has 
received a lot of interest. In such a concept, ant-like 
agents explore the network, exchange collected 
information in an indirect way, and update routing 
tables of the network nodes, where all of these are 
inspired from how ants find the shortest path from their 
nests to their food.  

In nature, ants lay down a thin layer of signaling 
chemicals called pheromones [1], wherever they travel 
to find food. When other ants detect these pheromones, 
they instinctively follow the path the chemicals mark. 
The thicker the pheromone trail , the more likely other 
ants will follow the path. Moreover, the ant itself is not 
a complex insect. For any ant considered individually, 
it has very simple and limited behaviors. In fact, all of 
its movements are based on immediate reactions to its 
surroundings or to its fellow ants. However, ants are 

social insects. By acting as a group, they represent a 
highly structured and complex social organization. Due 
to their social organization, complex tasks are 
performed that cannot be performed by individuals 
alone are solved in a distributed manner. Such general 
properties have resulted in an interest in applying the 
methodology to problems in computer networks and 
telecommunications [1, 2].  

This paper presents the design and implementation 
of an ant routing algorithm in a real IP datagram based 
local area network (LAN) environment. To this end, Di 
Caro and Dorigo’s AntNet routing algorithm [2] is used 
as a starting point and modified to be implemented in a 
real IP based LAN. Moreover, specific cases of ants 
with constant reinforcement and dynamic or adaptive 
reinforcement are investigated and tested under faulty 
network conditions. To the best of our knowledge, this 
will be the first time these algorithms are implemented. 

In section 2, the AntNet routing algorithm of Di 
Caro and Dorigo is introduced. Section 3 presents the 
details of the test environment; whereas results of these 
tests are given in section 4 and conclusions are drawn 
in section 5.  

 
2. DESCRIPTION OF AntNet ROUTING 

ALGORITHMS 
 
There are two types of ants used in these algorithms, 

namely, forward ants and backward ants [2]. Forward 
ants have the same priority as normal data packets. 
They collect the traffic information on the network 
using a time cost with respect to a given destination 
and the routing decisions taken by the forward ant. 
When forward ants reach their destination, they become 
backward ants. Backward ants update routing 
information on all the nodes that the forward ants have 
visited. To do so higher priority queues are used than 
forward ants and data packets, so routing information 
along the path taken is updated as soon as possible. 
Forward ants and backward ants communicate the 
quali ty of paths in an indirect way; through the 
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information they currently read and write in two data 
structures stored in each network node, k, figure 1.  
 

 
Fig. 1. The data structure of a given node [2] 

 
The routing table Tk contains probabilistic entries. 

Each entry Pdn expresses the probability of choosing n 
as next node when the destination node is d. All routing 
table entries conform to the constraint,  

)}({],,1[,1 kneighborNNdP k
Nn

dn

k

=∈=∑
∈

     

A statistical model summarizes the traffic distribution 
over the network as seen by the node, k, using the tuple 
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2 as evaluated across a 
moving observation window length, Wd, with respect to 
destination node, d.  

New forward ants, Fsd, are created periodically, but 
independently of the other nodes, from source, s, to 
destination node, d, in proportion to the destination 
frequency of passing data packets. Forward ants travel 
through the network using the same priority structures 
as data packets, hence are subject to the same delay 
profiles. 

The next link in the forward ant route is selected 
stochastically, p
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where p(j) is the probabilit y of selecting node j as the 
next hop; α weights the significance given to local 
queue length verses global routing information, p(j); lj 
is the queue length of destination ‘ j’ normalized to the 
unit interval; and Nk is the number of links from node k. 

On visiting a node different from the destination, a 
forward ant checks for a buffer with the same identifier 
as itself. If such a buffer exists the ant must be entering 
a cycle and dies. If this is not the case, then the ant 
saves the previously visited node identifier and time 
stamp at which the ant was serviced by the current 
node in a buffer with the forward ant’s identifier. The 
total number of buffers at a node is managed by 
attaching “an age” to buffer space and allowing 
backward ants to free the corresponding buffer space. 

When the current node is the destination, k = d, then 
the forward ant is converted into a backward ant, Bds. 
The information recorded at the forward ant buffer is 
then used to retrace the route followed by the forward 
ant. 

At each node visited by the backward ant, routing 
table probabiliti es are updated using the following rule, 

IF (node was in the path of the ant) 
THEN p(i) = p(i) + r { 1 – p(i)}  
ELSE p(i) = p(i) + r P(i) 

where r ∈ [0, 1] is the reinforcement factor central to 
expressing path quality (length), congestion and 
underlying network dynamics. 

The selection of reinforcement parameter r is of 
particular interest in this work. Two different methods 
are considered: 1) set the value of r to a constant; or 2) 
change the value of r dynamically.  

Setting r to a constant implies that the significance 
of ant arrival rates remains unchanged irrespective of 
the network conditions. Ants traveling along better 
paths will arrive at a higher rate than other ants, thus 
their paths will have a higher probabilit y than other 
paths. Naturally, every backward ant has the same 
effect on the routing table no matter how good the path 
that it finds is. To solve this problem, Di Caro and 
Dorigo recommended the dynamic reinforcement 
method [2]. 

According to this, the reinforcement factor should 
be a factor of trip time and the local statistical model of 
the node neighborhood. To this end, the following 
relationship is introduced [2]; 
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In the above equation, c1 and c2 are constants that 
weigh the importance of each term and tant is the actual 
trip time taken by the ant. Moreover; 

I inf = Wbest; 
Isup = µkd + W0.5{ σkd / (1 - γ)} . 

where γ is a constant, determining the confidence 
interval; Wbest is the best case trip time to destination d 
over a suitable temporal horizon, W. 

The estimates for mean, µkd, and variant, σkd, of the 
trip time are also made iteratively, using the trip time 
information. Thus, 

µd = µd + η(okd – µd) 
(ρd)

2 = (ρd)
2 + η{(okd – µd)

2 – (ρd)
2} 

The reinforcement value r obtained from the above 
equation is finally transformed by a monotonic function 
over the unit interval. This makes the system more 
sensitive to a high value of r, less sensitive to a low 
value of r, s(r)/s(1): 
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Here, a, is a positive real number, and |Nk| is the 
number of neighborhood nodes of the current node, k.  

From the above algorithm, it is, therefore, apparent 
that by dynamic reinforcement, ants are able to make 
decisions under more uncertainty than was previously 
the case.  

 
3. IMPLEMENTATION OF AntNet  

 
In this study, both versions – the constant 

reinforcement learning and the dynamic reinforcement 
learning – of AntNet are implemented (in C on an IP-
based LAN, figure 2). As stated above, the objective is 
to study the applicabili ty/implement-abili ty of the 
algorithms on a real network, and compare their 
performances under different experimental conditions.  

In order to study/explore, how ant routing 
algorithms work on a real network environment, five 
multi-homed computers are connected to each other to 
form a local area network. Each node runs Windows 
and standard TCP/IP and is an AMD K6-266MHz 

processor, with a 32MB RAM and up to 3 10M/100M 
NICs.  

As it can be seen in figure 2, each computer on the 
LAN has one or more network cards, where the ones, 
which are directly connected by cable, are grouped into 
the same sub-network. In this topology, links or cables 
are all i n different sub-networks, and each one works in 
full duplex mode.  

Furthermore, the time synchronization software 
AboutTime [3] is installed on each node to enable ants 
to collect the trip time information in order to calculate 
dynamic reinforcement values, hence real 
environmental feedback. AboutTime uses Simple 
Network Time Protocol (SNTP) to synchronize time on 
the Internet or in a local network. The Simple Network 
Time Protocol (SNTP) is described in RFC 1769 [4]. 
It’s an adaptation version of the Network Time 
Protocol (NTP), which is used to synchronize computer 
clocks on the Internet. With AboutTime, one can 
achieve synchronization accuracies of +50 milli seconds 
typically [3]. 
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 Fig. 2.  The network topology of the testbed 
 

4. TEST RESULTS  
 

Since the aim of our experiments is to explore how 
the ants’ routing algorithms (constant reinforcement 
and dynamic reinforcement) behave and compare their 
performances, we therefore performed tests under three 
different traffic load conditions (different generating 
rates of data packets) for both algorithms. Moreover, 
under each condition, four different generating rates of 
forward ants (F-Ants) are used. Table 1 gives the 
details for these test scenarios. 
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Table 1. Different test scenarios 

No Data 
Packets 

Data Packets 
10/sec 

Data Packets 
20/sec 

F-Ants 1/min F-Ants 1/min F-Ants 1/min 
F-Ants 2/min F-Ants 2/min F-Ants 2/min 
F-Ants 1/sec F-Ants 1/sec F-Ants 1/sec 
F-Ants 2/sec F-Ants 2/sec F-Ants 2/sec 

 
In the results presented below, 100% stacked area 

charts are used to display the changes/trends of 
choosing a link in a routing table for a particular 
destination. The changes are represented as 
probabilities over time. Different colors (white, gray 
and black) represent different percentage values in the 
same column of a routing table on a network node. This 
indicates the probability of selecting that link as the 
next hop for a given destination. Parameters 
configuring the AntNet algorithm follow the 
recommendations in [2], and are summarized in Tables 
2 and 3. 

 
Table 2. Parameters for Constant Reinforcement 

Learning 

Constant Reinforcement Ants’ Algor ithm 
Parameters Value 

Reinforcement value r 0.1 
Next hop selection Uniform distribution [0..1] 

 
Table 3. Parameters for Dynamic Reinforcement 

Learning 

Dynamic Reinforcement Ants’ Algor ithm 
Parameters Value 

C1 0.7 
C2 0.3 
Z 1.7 
A 2.5 
η 0.05 

Sliding window size (|W|) 100 

Next hop selection 
Uniform distribution 

[0..1] 
 

Figures 3 to 6, demonstrate that ants can actually 
adapt to the environment much better as the load on the 
network increases. On the other hand, if the load is kept 
the same but the generation rate of forward ant is 
decreased then the ants working with the dynamic 
reinforcement algorithm perform much better, figures 7 
and 8. 
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 Fig. 3. Routing table for Aj on Nick (constant r, no 
data packet, F-Ant rate = 1/sec.) 

 

Routing Table for Aj on Nick (Dynamic r )
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 Fig. 4. Routing table for Aj on Nick (dynamic r, no 
data packet, F-Ant rate = 1/sec.) 

 

Routing Table for Aj on Nick (Constant r)
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 Fig. 5. Routing table for Aj on Nick (constant r, data 
packet rate = 20/sec, F-Ant rate = 1/sec.) 

 
 

 
 

- 1445 - 



 

Routing Table for Aj on Nick (Dynamic r)
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 Fig. 6. Routing table for Aj on Nick (dynamic r, data 
packet rate = 20/sec, F-Ant rate = 1/sec.) 

 
 

Routing Table for Aj on Nick (Constant r)
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 Fig. 7. Routing table for Aj on Nick (constant r, data 
packet rate = 20/sec, F-Ant rate = 1/min.) 

 

Routing Table for Aj on Nick (Dynamic r)
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 Fig. 8. Routing table for Aj on Nick (dynamic r, data 
packet rate = 20/sec, F-Ant rate = 1/min.) 

 
From these results it is apparent that the constant 

reinforcement case provides for a continuous gradual 
change in routing strategy, typically utili zing multiple 
routes at a time. The dynamic reinforcement, under the 
same conditions, appears to provide a bang-bang 
profile with hysteresis. 

In the next scenario, the performances of the two 
algorithms are tested to study how they adapt in terms 
of switching to an alternative path/link, when the link 
with the highest probabili ty becomes blocked or down. 
In this test, at the very beginning, the scenario starts 
with all the links up and running with a 2000-ms time 
delay on the link from node Nick to node Kevin. 
Moreover, about 90 seconds later, we unplug the cable 
from Nick to Brian to see how the ants will behave. 
The changes on the routing tables are given below, 
figures 9 and 10. 

 

Routing Table for Aj on Nick (Constant r with delay to Kevin)
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 Fig. 9. Routing table for Aj on Nick (constant r, no 
data packets, F-Ant rate = 1/sec., link to Brian is down) 
 

Routing Table for Aj on Nick (Dynamic r with delay to Kevin)
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 Fig. 10. Routing table for Aj on Nick (dynamic r, no 
data packets, F-Ant rate = 1/sec., link to Brian is down) 
 

When the same scenario is tested under more loads, 
it is observed that the adaptive method switches to 
‘Kevin’ in a series of discrete steps, figures 11 and 12. 
Thus, constant reinforcement algorithm shows a better 
performance to find a new path than the dynamic 
reinforcement algorithm, when the previously found 
good path/link is down. Constant reinforcement 
learning appears to let ants following longer paths to 
have equal weighting (per backward ant) as the ants 
following shorter paths. Hence, the results are more 
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fluctuant, thus it is easier to find a new path, when the 
old path is blocked. On the other hand, during the 
dynamic reinforcement learning, ants need to compare 
the time cost with the previous short time cost, as well 
as the mean time cost. In other words, since the new 
path is longer than the previous path, it will take more 
time for dynamic reinforcement learning algorithm to 
find an alternative path, i.e., dynamic reinforcement is 
sensitive to the window width, Wd. 
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Fig. 11. Routing table for Aj on Nick (constant r, data 
packet = 20/sec, F-Ant =1/sec., link to Brian is down) 

 

Routing Table for Aj on Nick (Dynamic r)
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Fig. 12. Routing table for Aj on Nick (dynamic r, data 
packet = 20/sec, F-Ant =1/sec., link to Brian is down) 

 
5. CONCLUSION   

 
In this work, ant routing algorithms with constant 

and dynamic reinforcement learning are implemented. 
As indicated before, both of these routing algorithms 
make use of collective behavior arising from the 
interactions between ants to find the shortest path to the 
destination. These two ant routing algorithms are tested 
on an IP based LAN environment under different 
network traffic conditions. These tests demonstrate that 
both algorithms are able to find paths autonomously. 

However, it is observed that a dynamic reinforcement 
algorithm has better performance under heavy network 
traffic than the constant case. It takes approximately 30 
seconds for the dynamic algorithm to adapt to the load 
on the network, and to find a good path with 
approximately 98% accuracy. Thus, a dynamic 
reinforcement algorithm can find the correct path more 
quickly. Moreover, once a good path is found, the 
dynamic reinforcement algorithm provides a more 
stable platform than the constant reinforcement 
algorithm. However, because of this very characteristic, 
it is quicker to switch to an alternative path for the 
constant reinforcement learning than for the dynamic 
reinforcement learning under faulty network 
conditions.  

Furthermore, although, to the best of our knowledge, 
this implementation is the first of its kind, and shows 
that the adaptive ants routing algorithm can work on 
real computer networks, there is more work to be done 
in order to test the system for its reliabil ity and 
robustness. Tests on different network topologies and 
bigger networks as well as using different 
synchronization methods need to be performed. In 
effect both algorithms for defining reinforcement are 
actually sensitive to specific parameters: r in the case 
of a constant reinforcement, Wd in the case of dynamic 
reinforcement. 
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