

AGENT-BASED ROUTING ALGORITHMS ON A LAN

Y. Yang, A. N. Zincir-Heywood, M. I. Heywood, S. Srinivas
Faculty of Computer Science, Dalhousie University

{yang@cs.dal.ca, zincir@cs.dal.ca, mheywood@cs.dal.ca, srini@cs.dal.ca}

Abstract
The AntNet algorithm for adaptive routing is
implemented on a LAN using the TCP/ IP protocol. A
study is made of the relative merits of different
reinforcement parameters central to the stable
operation of the algorithm. The case of a constant
reinforcement leads to slow but dependable
performance whereas adaptive reinforcement appears
to be sensitive to the window over which statistics are
estimated.

Keywords: Computer networks, routing algorithms,
reinforcement learning, ants routing algorithms.

1. INTRODUCTION

Routing plays a critical role in communication
networks in determining the overall network
performance in terms of throughput and transmission
delay. Research in social insect behaviour has provided
computer scientists with powerful methods for
designing distributed control and routing algorithms [1,
2]. The ant routing algorithm, inspired by the indirect
model of communication observed in ant colonies, has
received a lot of interest. In such a concept, ant-like
agents explore the network, exchange collected
information in an indirect way, and update routing
tables of the network nodes, where all of these are
inspired from how ants find the shortest path from their
nests to their food.

In nature, ants lay down a thin layer of signaling
chemicals called pheromones [1], wherever they travel
to find food. When other ants detect these pheromones,
they instinctively follow the path the chemicals mark.
The thicker the pheromone trail , the more likely other
ants will follow the path. Moreover, the ant itself is not
a complex insect. For any ant considered individually,
it has very simple and limited behaviors. In fact, all of
its movements are based on immediate reactions to its
surroundings or to its fellow ants. However, ants are

social insects. By acting as a group, they represent a
highly structured and complex social organization. Due
to their social organization, complex tasks are
performed that cannot be performed by individuals
alone are solved in a distributed manner. Such general
properties have resulted in an interest in applying the
methodology to problems in computer networks and
telecommunications [1, 2].

This paper presents the design and implementation
of an ant routing algorithm in a real IP datagram based
local area network (LAN) environment. To this end, Di
Caro and Dorigo’s AntNet routing algorithm [2] is used
as a starting point and modified to be implemented in a
real IP based LAN. Moreover, specific cases of ants
with constant reinforcement and dynamic or adaptive
reinforcement are investigated and tested under faulty
network conditions. To the best of our knowledge, this
will be the first time these algorithms are implemented.

In section 2, the AntNet routing algorithm of Di
Caro and Dorigo is introduced. Section 3 presents the
details of the test environment; whereas results of these
tests are given in section 4 and conclusions are drawn
in section 5.

2. DESCRIPTION OF AntNet ROUTING

ALGORITHMS

There are two types of ants used in these algorithms,

namely, forward ants and backward ants [2]. Forward
ants have the same priority as normal data packets.
They collect the traffic information on the network
using a time cost with respect to a given destination
and the routing decisions taken by the forward ant.
When forward ants reach their destination, they become
backward ants. Backward ants update routing
information on all the nodes that the forward ants have
visited. To do so higher priority queues are used than
forward ants and data packets, so routing information
along the path taken is updated as soon as possible.
Forward ants and backward ants communicate the
quali ty of paths in an indirect way; through the

- 1442 -

Proceedings of the 2002 IEEE Canadian Conference
on Electrical & Computer Engineering
0-7803-7514-9/02/$17.00 © 2002 IEEE

information they currently read and write in two data
structures stored in each network node, k, figure 1.

Fig. 1. The data structure of a given node [2]

The routing table Tk contains probabilistic entries.

Each entry Pdn expresses the probability of choosing n
as next node when the destination node is d. All routing
table entries conform to the constraint,

)}({],,1[,1 kneighborNNdP k
Nn

dn

k

=∈=∑
∈

A statistical model summarizes the traffic distribution
over the network as seen by the node, k, using the tuple

),,(2
dddk WM σµ . The model contains sample

means µd and variances σd

2 as evaluated across a
moving observation window length, Wd, with respect to
destination node, d.

New forward ants, Fsd, are created periodically, but
independently of the other nodes, from source, s, to
destination node, d, in proportion to the destination
frequency of passing data packets. Forward ants travel
through the network using the same priority structures
as data packets, hence are subject to the same delay
profiles.

The next link in the forward ant route is selected
stochastically, p

� � ���
, in proportion to the routing table

probabiliti es and length of the corresponding output
queue.

()1||1

)(
)('

−+
+

=
k

j

N

ljp
jp

α
α

where p(j) is the probabilit y of selecting node j as the
next hop; α weights the significance given to local
queue length verses global routing information, p(j); lj
is the queue length of destination ‘ j’ normalized to the
unit interval; and Nk is the number of links from node k.

On visiting a node different from the destination, a
forward ant checks for a buffer with the same identifier
as itself. If such a buffer exists the ant must be entering
a cycle and dies. If this is not the case, then the ant
saves the previously visited node identifier and time
stamp at which the ant was serviced by the current
node in a buffer with the forward ant’s identifier. The
total number of buffers at a node is managed by
attaching “an age” to buffer space and allowing
backward ants to free the corresponding buffer space.

When the current node is the destination, k = d, then
the forward ant is converted into a backward ant, Bds.
The information recorded at the forward ant buffer is
then used to retrace the route followed by the forward
ant.

At each node visited by the backward ant, routing
table probabiliti es are updated using the following rule,

IF (node was in the path of the ant)
THEN p(i) = p(i) + r { 1 – p(i)}
ELSE p(i) = p(i) + r P(i)

where r ∈ [0, 1] is the reinforcement factor central to
expressing path quality (length), congestion and
underlying network dynamics.

The selection of reinforcement parameter r is of
particular interest in this work. Two different methods
are considered: 1) set the value of r to a constant; or 2)
change the value of r dynamically.

Setting r to a constant implies that the significance
of ant arrival rates remains unchanged irrespective of
the network conditions. Ants traveling along better
paths will arrive at a higher rate than other ants, thus
their paths will have a higher probabilit y than other
paths. Naturally, every backward ant has the same
effect on the routing table no matter how good the path
that it finds is. To solve this problem, Di Caro and
Dorigo recommended the dynamic reinforcement
method [2].

According to this, the reinforcement factor should
be a factor of trip time and the local statistical model of
the node neighborhood. To this end, the following
relationship is introduced [2];













−+−
−

+





=

)()(infinfsup

infsup
21 ItII

II
c

t

W
cr

antant

best

- 1443 -

In the above equation, c1 and c2 are constants that
weigh the importance of each term and tant is the actual
trip time taken by the ant. Moreover;

I inf = Wbest;
Isup = µkd + W0.5{ σkd / (1 - γ)} .

where γ is a constant, determining the confidence
interval; Wbest is the best case trip time to destination d
over a suitable temporal horizon, W.

The estimates for mean, µkd, and variant, σkd, of the
trip time are also made iteratively, using the trip time
information. Thus,

µd = µd + η(okd – µd)
(ρd)

2 = (ρd)
2 + η{(okd – µd)

2 – (ρd)
2}

The reinforcement value r obtained from the above
equation is finally transformed by a monotonic function
over the unit interval. This makes the system more
sensitive to a high value of r, less sensitive to a low
value of r, s(r)/s(1):

)1(

)(

s

rs
r ←

The definition of function s(x) is

+

−

∈∈











+= Rax

Nx

a
xs

k

],1,0(,
||

exp1)(

1

Here, a, is a positive real number, and |Nk| is the
number of neighborhood nodes of the current node, k.

From the above algorithm, it is, therefore, apparent
that by dynamic reinforcement, ants are able to make
decisions under more uncertainty than was previously
the case.

3. IMPLEMENTATION OF AntNet

In this study, both versions – the constant

reinforcement learning and the dynamic reinforcement
learning – of AntNet are implemented (in C on an IP-
based LAN, figure 2). As stated above, the objective is
to study the applicabili ty/implement-abili ty of the
algorithms on a real network, and compare their
performances under different experimental conditions.

In order to study/explore, how ant routing
algorithms work on a real network environment, five
multi-homed computers are connected to each other to
form a local area network. Each node runs Windows
and standard TCP/IP and is an AMD K6-266MHz

processor, with a 32MB RAM and up to 3 10M/100M
NICs.

As it can be seen in figure 2, each computer on the
LAN has one or more network cards, where the ones,
which are directly connected by cable, are grouped into
the same sub-network. In this topology, links or cables
are all i n different sub-networks, and each one works in
full duplex mode.

Furthermore, the time synchronization software
AboutTime [3] is installed on each node to enable ants
to collect the trip time information in order to calculate
dynamic reinforcement values, hence real
environmental feedback. AboutTime uses Simple
Network Time Protocol (SNTP) to synchronize time on
the Internet or in a local network. The Simple Network
Time Protocol (SNTP) is described in RFC 1769 [4].
It’s an adaptation version of the Network Time
Protocol (NTP), which is used to synchronize computer
clocks on the Internet. With AboutTime, one can
achieve synchronization accuracies of +50 milli seconds
typically [3].

howie

nick brian

kevinaj

192.168.1.1

192.168.1.2

192.168.2.1 192.168.2.2

192.168.4.2

192.168.4.1

192.168.3.2

192.168.5.1

192.168.3.1

192.168.5.2

 Fig. 2. The network topology of the testbed

4. TEST RESULTS

Since the aim of our experiments is to explore how
the ants’ routing algorithms (constant reinforcement
and dynamic reinforcement) behave and compare their
performances, we therefore performed tests under three
different traffic load conditions (different generating
rates of data packets) for both algorithms. Moreover,
under each condition, four different generating rates of
forward ants (F-Ants) are used. Table 1 gives the
details for these test scenarios.

- 1444 -

Table 1. Different test scenarios

No Data
Packets

Data Packets
10/sec

Data Packets
20/sec

F-Ants 1/min F-Ants 1/min F-Ants 1/min
F-Ants 2/min F-Ants 2/min F-Ants 2/min
F-Ants 1/sec F-Ants 1/sec F-Ants 1/sec
F-Ants 2/sec F-Ants 2/sec F-Ants 2/sec

In the results presented below, 100% stacked area

charts are used to display the changes/trends of
choosing a link in a routing table for a particular
destination. The changes are represented as
probabilities over time. Different colors (white, gray
and black) represent different percentage values in the
same column of a routing table on a network node. This
indicates the probability of selecting that link as the
next hop for a given destination. Parameters
configuring the AntNet algorithm follow the
recommendations in [2], and are summarized in Tables
2 and 3.

Table 2. Parameters for Constant Reinforcement

Learning

Constant Reinforcement Ants’ Algor ithm
Parameters Value

Reinforcement value r 0.1
Next hop selection Uniform distribution [0..1]

Table 3. Parameters for Dynamic Reinforcement

Learning

Dynamic Reinforcement Ants’ Algor ithm
Parameters Value

C1 0.7
C2 0.3
Z 1.7
A 2.5
η 0.05

Sliding window size (|W|) 100

Next hop selection
Uniform distribution

[0..1]

Figures 3 to 6, demonstrate that ants can actually
adapt to the environment much better as the load on the
network increases. On the other hand, if the load is kept
the same but the generation rate of forward ant is
decreased then the ants working with the dynamic
reinforcement algorithm perform much better, figures 7
and 8.

Routing Table for Aj on Nick (Constant r)

0%

20%

40%

60%

80%

100%

0 18 37 54 73 91 11
0

12
8

14
6

16
4

18
2

20
0

21
9

23
8

25
5

27
4

29
2

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 3. Routing table for Aj on Nick (constant r, no
data packet, F-Ant rate = 1/sec.)

Routing Table for Aj on Nick (Dynamic r)

0%

20%

40%

60%

80%

100%

0 17 32 48 65 81 98 11
3

13
0

14
6

16
2

17
7

19
4

21
0

22
6

24
2

25
8

27
4

29
1

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 4. Routing table for Aj on Nick (dynamic r, no
data packet, F-Ant rate = 1/sec.)

Routing Table for Aj on Nick (Constant r)

0%

20%

40%

60%

80%

100%

0 42 68 87 10
4

14
8

19
5

22
5

24
9

27
1

32
2

33
9

39
0

42
2

47
8

52
9

55
9

57
8

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 5. Routing table for Aj on Nick (constant r, data
packet rate = 20/sec, F-Ant rate = 1/sec.)

- 1445 -

Routing Table for Aj on Nick (Dynamic r)

0%

20%

40%

60%

80%

100%
0 23 71 11
1

13
2

16
6

20
3

22
5

24
9

29
5

35
5

40
6

42
7

48
4

52
1

55
0

55
9

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 6. Routing table for Aj on Nick (dynamic r, data
packet rate = 20/sec, F-Ant rate = 1/sec.)

Routing Table for Aj on Nick (Constant r)

0%

20%

40%

60%

80%

100%

0

63
0

93
4

26
05

36
33

59
25

75
45

89
48

10
51

9

12
81

4

13
10

8

13
52

1

14
36

5

14
87

7

17
25

5

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 7. Routing table for Aj on Nick (constant r, data
packet rate = 20/sec, F-Ant rate = 1/min.)

Routing Table for Aj on Nick (Dynamic r)

0%

20%

40%

60%

80%

100%

0

16
54

20
41

30
84

37
43

42
46

55
40

73
61

77
33

10
94

6

11
68

2

14
08

1

14
84

5

15
64

7

16
72

8

17
40

2

17
98

1

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Kevin Prob. To Brian Prob. To Howie

 Fig. 8. Routing table for Aj on Nick (dynamic r, data
packet rate = 20/sec, F-Ant rate = 1/min.)

From these results it is apparent that the constant

reinforcement case provides for a continuous gradual
change in routing strategy, typically utili zing multiple
routes at a time. The dynamic reinforcement, under the
same conditions, appears to provide a bang-bang
profile with hysteresis.

In the next scenario, the performances of the two
algorithms are tested to study how they adapt in terms
of switching to an alternative path/link, when the link
with the highest probabili ty becomes blocked or down.
In this test, at the very beginning, the scenario starts
with all the links up and running with a 2000-ms time
delay on the link from node Nick to node Kevin.
Moreover, about 90 seconds later, we unplug the cable
from Nick to Brian to see how the ants will behave.
The changes on the routing tables are given below,
figures 9 and 10.

Routing Table for Aj on Nick (Constant r with delay to Kevin)

0%

20%

40%

60%

80%

100%

0 14 28 44 67 78 87 12
1

16
2

20
3

24
5

28
4

32
6

36
6

40
7

44
8

48
9

52
9

57
4

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Brian Prob. To Kevin Prob. To Howie

 Fig. 9. Routing table for Aj on Nick (constant r, no
data packets, F-Ant rate = 1/sec., link to Brian is down)

Routing Table for Aj on Nick (Dynamic r with delay to Kevin)

0%

20%

40%

60%

80%

100%

0 18 38 50 68 88 14
6

18
2

22
0

25
9

29
5

33
5

37
2

41
0

44
6

48
2

51
9

55
6

59
3

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Brian Prob. To Kevin Prob. To Howie

 Fig. 10. Routing table for Aj on Nick (dynamic r, no
data packets, F-Ant rate = 1/sec., link to Brian is down)

When the same scenario is tested under more loads,
it is observed that the adaptive method switches to
‘Kevin’ in a series of discrete steps, figures 11 and 12.
Thus, constant reinforcement algorithm shows a better
performance to find a new path than the dynamic
reinforcement algorithm, when the previously found
good path/link is down. Constant reinforcement
learning appears to let ants following longer paths to
have equal weighting (per backward ant) as the ants
following shorter paths. Hence, the results are more

- 1446 -

fluctuant, thus it is easier to find a new path, when the
old path is blocked. On the other hand, during the
dynamic reinforcement learning, ants need to compare
the time cost with the previous short time cost, as well
as the mean time cost. In other words, since the new
path is longer than the previous path, it will take more
time for dynamic reinforcement learning algorithm to
find an alternative path, i.e., dynamic reinforcement is
sensitive to the window width, Wd.

Routing Table for Aj on Nick (Constant r)

0%

20%

40%

60%

80%

100%

0 47 83 11
7

18
3

22
5

26
1

33
0

46
3

55
6

68
0

75
8

85
0

95
0

10
90

13
00

17
36

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Brian Prob. To Kevin Prob. To Howie

Fig. 11. Routing table for Aj on Nick (constant r, data
packet = 20/sec, F-Ant =1/sec., link to Brian is down)

Routing Table for Aj on Nick (Dynamic r)

0%

20%

40%

60%

80%

100%

0 35 63 83 11
5

17
4

22
4

28
4

52
5

11
20

14
07

17
02

17
89

17
94

17
98

18
00

Time (Sec.)

P
ro

ba
bi

lit
y

Prob. To Brian Prob. To Kevin Prob. To Howie

Fig. 12. Routing table for Aj on Nick (dynamic r, data
packet = 20/sec, F-Ant =1/sec., link to Brian is down)

5. CONCLUSION

In this work, ant routing algorithms with constant

and dynamic reinforcement learning are implemented.
As indicated before, both of these routing algorithms
make use of collective behavior arising from the
interactions between ants to find the shortest path to the
destination. These two ant routing algorithms are tested
on an IP based LAN environment under different
network traffic conditions. These tests demonstrate that
both algorithms are able to find paths autonomously.

However, it is observed that a dynamic reinforcement
algorithm has better performance under heavy network
traffic than the constant case. It takes approximately 30
seconds for the dynamic algorithm to adapt to the load
on the network, and to find a good path with
approximately 98% accuracy. Thus, a dynamic
reinforcement algorithm can find the correct path more
quickly. Moreover, once a good path is found, the
dynamic reinforcement algorithm provides a more
stable platform than the constant reinforcement
algorithm. However, because of this very characteristic,
it is quicker to switch to an alternative path for the
constant reinforcement learning than for the dynamic
reinforcement learning under faulty network
conditions.

Furthermore, although, to the best of our knowledge,
this implementation is the first of its kind, and shows
that the adaptive ants routing algorithm can work on
real computer networks, there is more work to be done
in order to test the system for its reliabil ity and
robustness. Tests on different network topologies and
bigger networks as well as using different
synchronization methods need to be performed. In
effect both algorithms for defining reinforcement are
actually sensitive to specific parameters: r in the case
of a constant reinforcement, Wd in the case of dynamic
reinforcement.

Acknowledgements

The authors gratefully acknowledge the support of
NSERC for funding provided by the research grants of
Drs. Zincir-Heywood, Heywood, and Srinivas.

References

[1] R. Schoonderwoerd, O. Holland, J. Bruten, L.
Rothkrantz, “Ant-Based Load Balancing in
Telecommunications Networks” , Adaptive Behavior, 5,
169-207, 1997.

[2] G. Di Caro, M. Dorigo, “AntNet: Distributed Stigergetic
Control for Communication Networks” . Artificial
Intelligence. 9, 317-365, 1998.

[3] The web site of the AboutTime software,
http://www.arachnoid.com/abouttime/

[4] D. Mill s, “Simple Network Time Protocol (SNTP)” ,
RFC 1769, University of Delaware, March 1995

- 1447 -

