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Abstract

The AntNet algorithm for adaptive routing is
implemented on a LAN using the TCP/ IP protocol. A
study is made of the relative merits of different
reinforcement parameters central to the sable
operation of the algorithm. The case of a constant
reinforcement leads to dow but dependable
performance whereas adaptive reinforcement appears
to be sensitive to the window over which statistics are
estimated.
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1. INTRODUCTION

Routing plays a aitical role in communication
networks in determining the overall network
performance in terms of throughput and transmisson
delay. Reseach in social insect behaviour has provided
computer scientists with powerful methods for
designing dstributed control and routing algorithms [1,
2]. The ant routing agorithm, inspired by the indirea
model of communication observed in ant colonies, has
recaved a lot of interest. In such a mncept, ant-like
agents explore the network, exchange lleded
information in an indired way, and update routing
tables of the network nodes, where dl of these are
inspired from how ants find the shortest path from their
nests to their food

In neture, ants lay down a thin layer of signaing
chemicds cdled pheromones [1], wherever they travel
to find food When other ants deted these pheromones,
they ingtinctively follow the path the chemicds mark.
The thicker the pheromone trail, the more likely other
ants will follow the path. Moreover, the ant itself is not
a omplex insed. For any ant considered individually,
it has very simple and limited behaviors. In fact, all of
its movements are based on immediate readions to its
surroundings or to its fellow ants. However, ants are

social inseds. By ading as a group, they represent a
highly structured and complex social organizaion. Due
to their social organizaion, complex tasks are
performed that cannot be performed by individuals
alone ae solved in a distributed manner. Such general
properties have resulted in an interest in applying the
methoddogy to problems in computer networks and
telecmmunications[1, 2].

This paper presents the design and implementation
of an ant routing algorithm in ared IP datagram based
locd areanetwork (LAN) environment. To this end, Di
Caro and Dorigo’s AntNet routing algorithm [2] is used
as a starting point and modified to be implemented in a
red IP based LAN. Moreover, spedfic cases of ants
with constant reinforcement and dynamic or adaptive
reinforcement are investigated and tested under faulty
network conditions. To the best of our knowledge, this
will be the first time these dgorithms are implemented.

In sedion 2, the AntNet routing agorithm of Di
Caro and Dorigo is introduced. Sedion 3 presents the
detail s of the test environment; whereas results of these
tests are given in sedion 4 and conclusions are drawn
in sedion 5.

2. DESCRIPTION OF AntNet ROUTING
ALGORITHMS

There ae two types of ants used in these dgorithms,
namely, forward ants and backward ants [2]. Forward
ants have the same priority as normal data padets.
They collea the traffic information on the network
using a time @st with resped to a given destination
and the routing dedsions taken by the forward ant.
When forward ants read their destination, they become
badkward ants. Backward ants update routing
information o al the nodes that the forward ants have
visited. To do so higher priority queues are used than
forward ants and deta padets, so routing information
aong the path taken is updated as on as possible.
Forward ants and badkward ants communicate the
quality of paths in an indired way; through the
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information they currently read and write in two data
structures stored in each network node, k, figure 1.
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Fig. 1. The data structure of a given node [2]

The routing table Ty contains probabilistic entries.
Each entry Py, expresses the probability of choosing n
as next node when the destination nodeis d. All routing
table entries conform to the constraint,

; P,, =1,d O[1, N], N, ={neighbor (k)}

A statistical model summarizes the traffic distribution
over the network as seen by the node, k, using the tuple

M, (4y,0,%,W,). The model contains sample

means y, and variances g, as evaluated across a
moving observation window length, W,, with respect to
destination node, d.

New forward ants, Fg, are created periodically, but
independently of the other nodes, from source, s, to
destination node, d, in proportion to the destination
frequency of passing data packets. Forward ants travel
through the network using the same priority structures
as data packets, hence are subject to the same delay
profiles.

The next link in the forward ant route is selected
stochastically, p’(j), in proportion to the routing table
probabiliti es and length of the @rresponding output
queue.

p(j) +al,
1+a(N, |-1)

where p(j) is the probability of seleding rode j as the
next hop; a weights the significance given to locd
queue length verses global routing information, p(j); |
is the queue length of destination ‘|’ normalized to the
unit interval; and Ny is the number of links from node k.

p'(j) =

On visiting a node different from the destination, a
forward ant chedks for a buffer with the same identifier
asitself. If such a buffer exists the ant must be entering
a cycle and dies. If this is not the case, then the ant
saves the previoudly visited node identifier and time
stamp at which the ant was serviced by the current
node in a buffer with the forward ant’s identifier. The
total number of buffers at a node is managed by
attaching “an age” to bufer space ad allowing
badkward antsto freethe crresponding buffer space

When the current node is the destination, k = d, then
the forward ant is converted into a backward ant, By,
The information recorded at the forward ant buffer is
then used to retracethe route followed by the forward
ant.

At eat node visited by the backward ant, routing
table probabiliti es are updated using the following rule,

IF (node was in the path of the ant)
THEN p(i) = p(i) +r {1 —p(i)}
ELSE p(i) = p(i) + r P(i)

where r 0 [0, 1] is the reinforcement fador centra to
expresing path quality (length), congestion and
underlying network dynamics.

The seledion of reinforcement parameter r is of
particular interest in this work. Two different methods
are onsidered: 1) set the value of r to a constant; or 2)
change the value of r dynamically.

Setting r to a constant implies that the significance
of ant arrival rates remains unchanged irrespedive of
the network conditions. Ants traveling along better
paths will arrive at a higher rate than other ants, thus
their paths will have a higher probability than other
paths. Naturaly, every backward ant has the same
effect on the routing table no matter how good the path
that it finds is. To solve this problem, Di Caro and
Dorigo recommended the dynamic reinforcement
method [2].

According to this, the reinforcement fador should
be afador of trip time and the locd statisticd model of
the node neighborhood To this end, the following
relationship isintroduced [2];

r = sup_linf E
E%% E(Isup |nf)+(tant _Iinf)%
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In the &ove euation, c; and ¢, are nstants that
weigh the importance of each term and t, is the adual
trip time taken by the ant. Moreover;

lint = Whes;
laup = Hia + W Oia / (L1 - )}

where y is a constant, determining the onfidence
interval; Wies is the best case trip time to destination d
over a suitable temporal horizon, W.

The estimates for mean, g, and variant, oyq, of the
trip time ae dso made iteratively, using the trip time
information. Thus,

Ma = g+ N(Oxa — Ha)
(Pa)* = (pa)* + Nf (O — Ha)* — (P0)’}

The reinforcement value r obtained from the above
equation is finally transformed by a monotonic function
over the unit interval. This makes the system more
sensitive to a high value of r, less snsitive to a low
value of r, s(r)/s(1):

s(r)
~ )

The definition of function s(X) is

S(X) = E+ex%% ,x0(0],a00R"

Here, a, is a positive red number, and |N| is the
number of neighborhood nodes of the current node, k.

From the dove dgorithm, it is, therefore, apparent
that by dynamic reinforcement, ants are ale to make
dedsions under more uncertainty than was previoudy
the cese.

3. IMPLEMENTATION OF AntNet

In this gudy, both versions — the nstant
reinforcement leaning and the dynamic reinforcement
leaning — of AntNet are implemented (in C on an IP-
based LAN, figure 2). As dated above, the objedive is
to study the gplicability/implement-ability of the
algorithms on a red network, and compare their
performances under diff erent experimental conditi ons.

In order to study/explore, how ant routing
algorithms work on a red network environment, five
multi-homed computers are conneded to ead other to
form a locd area network. Each node runs Windows
and standard TCP/IP and is an AMD K6-266MHz

processor, with a 32MB RAM and up to 3 10M/100M
NICs.

As it can be seen in figure 2, eat computer on the
LAN has one or more network cards, where the ones,
which are diredly conneded by cable, are grouped into
the same sub-network. In this topdogy, links or cables
are dl in different sub-networks, and each one worksin
full duplex mode.

Furthermore, the time synchronization software
AbouTime [3] isinstalled on ead node to enable ants
to colled the trip time information in order to cdculate
dynamic  reinforcement  values, hence red
environmental feedbadk. AbouTime uses Simple
Network Time Protocol (SNTP) to synchronize time on
the Internet or in alocd network. The Simple Network
Time Protocol (SNTP) is described in RFC 1769 [4].
I's an adaptation version o the Network Time
Protocol (NTP), which is used to synchronize mmputer
clocks on the Internet. With AbouTime, one can
achieve synchronizaion aacurades of +50 milli seconds

typicdly [3].
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Fig. 2. The network topdogy d the testbed

4. TEST RESULTS

Since the am of our experiments is to explore how
the ants' routing algorithms (constant reinforcement
and dynamic reinforcement) behave and compare their
performances, we therefore performed tests under three
different traffic load conditions (different generating
rates of data padkets) for both agorithms. Moreover,
under each condition, four different generating rates of
forward ants (F-Ants) are used. Table 1 gives the
detail sfor these test scenarios.

- 1444 -



Table 1. Different test scenarios

No Data Data Packets Data Packets
Packets 10/sec 20/sec
F-Ants 1/min F-Ants 1/min F-Ants 1/min
F-Ants 2/min F-Ants 2/min F-Ants 2/min
F-Ants 1/sec F-Ants 1/sec F-Ants 1/sec
F-Ants 2/sec F-Ants 2/sec F-Ants 2/sec

Routing Table for Aj on Nick (Constant r)

OProb. To Kevin EProb. To Brian MProb. To Howie ‘

100%

80%

60%

40%

Probability

In the results presented below, 100% stacked area
charts are used to display the changes/trends of
choosing a link in a routing table for a particular
destination. The changes are represented as
probabilities over time. Different colors (white, gray
and black) represent different percentage values in the
same column of arouting table on a network node. This
indicates the probability of selecting that link as the
next hop for a given destination. Parameters
configuring the AntNet algorithm follow the
recommendations in [2], and are summarized in Tables
2and 3.

Table 2. Parameters for Constant Reinforcement
Learning

Constant Reinforcement Ants Algorithm
Parameters Value
Reinforcement valuer 0.1
Next hop selection Uniform distribution [0..1]

Table 3. Parameters for Dynamic Reinforcement

Learning
Dynamic Reinforcement Ants Algorithm
Parameters Value
C 0.7
G 0.3
z 17
A 25
n 0.05
Sliding window size (W) 100
Next hop selection Uniforrr[1 (;:iiiribution

Figures 3 to 6, demonstrate that ants can actually
adapt to the environment much better as the load on the
network increases. On the other hand, if the load is kept
the same but the generation rate of forward ant is
decreased then the ants working with the dynamic
reinforcement algorithm perform much better, figures 7
and 8.
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Fig. 3. Routing table for Aj on Nick (constant r, no
data packet, F-Ant rate = 1/sec.)

Routing Table for Aj on Nick (Dynamic r)
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Fig. 4. Routing table for Aj on Nick (dynamicr, no
data packet, F-Ant rate = 1/sec.)
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Fig. 5. Routing table for Aj on Nick (constant r, data
packet rate = 20/sec, F-Ant rate = 1/sec.)
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Routing Table for Aj on Nick (Dynamic r)
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Fig. 6. Routing table for Aj on Nick (dynamicr, data
padket rate = 20/se¢ F-Ant rate = 1/sec)
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Fig. 7. Routing table for Aj on Nick (constant r, data
padket rate = 20/seq, F-Ant rate = 1/min.)
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Fig. 8. Routing table for Aj on Nick (dynamic r, data
padket rate = 20/sec F-Ant rate = 1/min.)

From these results it is apparent that the constant
reinforcement case provides for a cntinuous gradual
change in routing strategy, typicdly utilizing multiple
routes at a time. The dynamic reinforcement, under the
same onditions, appeas to provide a bang-bang
profile with hysteresis.

In the next scenario, the performances of the two
algorithms are tested to study how they adapt in terms
of switching to an alternative path/link, when the link
with the highest probability becomes blocked or down.
In this test, at the very beginning, the scenario starts
with all the links up and running with a 2000-ms time
delay on the link from node Nick to node Kevin.
Moreover, about 90 seaonds later, we unplug the cale
from Nick to Brian to see how the ants will behave.
The danges on the routing tables are given below,
figures9 and 10

Routing Table for Aj on Nick (Constant r with delay to Kevin)
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Fig. 9. Routing table for Aj on Nick (constant r, ho
data padkets, F-Ant rate = 1/sec., link to Brian is down)

Routing Table for Aj on Nick (Dynamic r with delay to Kevin)
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Fig. 10. Routing table for Aj on Nick (dynamicr, no
data padkets, F-Ant rate = 1/sec., link to Brian is down)

When the same scenario is tested under more loads,
it is observed that the alaptive method switches to
‘Kevin’ in a series of discrete steps, figures 11 and 12
Thus, constant reinforcement algorithm shows a better
performance to find a new path than the dynamic
reinforcement algorithm, when the previousy found
good mth/link is down. Constant reinforcement
leaning appeas to let ants following longer paths to
have equal weighting (per badkward ant) as the ants
following shorter paths. Hence the results are more
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fluctuant, thus it is easier to find a new path, when the
old path is blocked. On the other hand, during the
dynamic reinforcement leaning, ants need to compare
the time st with the previous short time cost, as well
as the mean time @st. In other words, since the new
path is longer than the previous path, it will take more
time for dynamic reinforcement learning agorithm to
find an alternative path, i.e., dynamic reinforcement is
sensitive to the window width, W,
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Fig. 11. Routingtable for Aj on Nick (constant r, data
padket = 20/se¢ F-Ant =1/sec, link to Brian is down)

Routing Table for Aj on Nick (Dynamic r)
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Fig. 12. Routing table for Aj on Nick (dynamic r, data
padket = 20/sec, F-Ant =1/sec, link to Brian is down)

5. CONCLUSION

In this work, ant routing algorithms with constant
and dynamic reinforcement learning are implemented.
As indicaed before, bath of these routing algorithms
make use of colledive behavior arising from the
interadions between ants to find the shortest path to the
destination. These two ant routing algorithms are tested
on an IP based LAN environment under different
network traffic conditions. These tests demonstrate that
both algorithms are ale to find paths autonomously.

However, it is observed that a dynamic reinforcement
algorithm has better performance under heavy network
traffic than the constant case. It takes approximately 30
seoonds for the dynamic algorithm to adapt to the load
on the network, and to find a good path with
approximately 98% acaracy. Thus, a dynamic
reinforcement algorithm can find the corred path more
quickly. Moreover, once agood path is found, the
dynamic reinforcement algorithm provides a more
stable platform than the constant reinforcement
algorithm. However, becaise of this very charaderistic,
it is quicker to switch to an alternative path for the
constant reinforcement leaning than for the dynamic
reinfforcement  leaning under faulty network
conditions.

Furthermore, although, to the best of our knowledge,
this implementation is the first of its kind, and shows
that the adaptive ants routing algorithm can work on
red computer networks, there is more work to be done
in order to test the system for its reliability and
robustness. Tests on different network topdogies and
bigger networks as well as using dfferent
synchronization methods need to be performed. In
effect both algorithms for defining reinforcement are
adually sensitive to spedfic parameters: r in the cae
of a mnstant reinforcement, W; in the case of dynamic
reinforcement.
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