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Abstract
D
 P

RAntNet and GA-agent algorithms are benchmarked against a series of dynamic network routing problems. Performance is

characterized using multiple performance metrics on the Japanese backbone (NTTNET). NTTNET is used on account of the

elongated topology presenting a more challenging routing problem than in the case of the American backbone, which is basically

square. The AntNet scheme is found to provide the best routing ability providing global information is available and network

security is not a factor. The GA-agent algorithm is shown to provide routing performance between the AntNet algorithm with

global information and that without, whilst avoiding global information requirements and satisfying typical models of network

security.

# 2005 Published by Elsevier B.V.
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1. Introduction

Network information systems and telecommunica-

tion in general rely on a combination of routing

strategies and protocols to ensure that information sent

by a user is actually received at the desired remote

location. In addition, the distributed nature of the

problem means that multiple users can make requests

simultaneously. This results in delayed response
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Ttimes, lost information or other reductions to the

quality of service objectives on which users judge

network operation. Routing is the process used to

determine how a packet travels from source to

destination. Protocols are used to implement hand-

shaking activities such as error checking and receiver

acknowledgements. In this work, we are interested in

the routing problem on computer networks. The

routing problem has several properties, which make it

particularly challenging. The problem is distributed in

nature; hence, a solution that assumes access to any

form of global information is not desirable. The

problem is also dynamic; hence a solution that is

sufficient for presently experienced network condi-

tions may well be inefficient under other loads
ASOC 164 1–14
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experienced by the network. Moreover, the traffic

experienced by networks is subject to widely varying

load conditions, making ‘typical’ network conditions

unrepresentative.

Traditionally, routing strategies are implemented

through the information contained in routing tables

available at each node in the network [1]. That is, the

table consists of specific entries for the neighboring

nodes and then a series of default paths for packets

with any other destination, for example, OSPF or

BGP4 [2]. Application of a classical optimization

technique to such a problem might take the form of

first assessing the overall pattern of network traffic,

and then defining the contents of each routing table

such that the measured congestion is minimized. This

approach does not generally work in practice as it

simply costs too much to collect the information

centrally on a regular basis, where regular updating is

necessary in order to satisfy the dynamic nature of

network utilization. We, therefore, see the generic

objectives of a routing strategy to be both real-time

reconfigurable and be based on locally available

information, whilst also satisfying the user quality of

service objectives (i.e. a global objective).

Several approaches have been proposed for

addressing these objectives including: active network-

ing [3], social insect metaphors [4,5] cognitive packet

networks [6], and what might be loosely called other

‘adaptive’ techniques (e.g. evolutionary computation

[7,8], neural networks [9]). The latter typically involve

using evolutionary or neural techniques to produce a

‘routing controller’ as opposed to a ‘routing table’ at

each node, where the controller may require knowl-

edge of the global connectivity to ensure a valid route.

The global information assumption may be avoided by

framing the problem in a reinforcement-learning

context [9]. However, the Q-learning method, on

which this is based, results in single path solutions for

each destination. Both the social insect metaphor and

the cognitive packet approach provide a methodology

for routing, without such constraints; by utilizing

probabilistic routing tables and letting the packets

themselves investigate and report network topology

and performance.

All methods as currently implemented, however,

suffer from one drawback or another. Cognitive packet

networks and active networking algorithms attempt to

provide routing programs at the packet level, hence
U
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achieving scalable run time efficiency becomes an

issue. Implementations of ‘adaptive’ techniques or

social insect metaphors frequently rely on the avail-

ability of global information [10]. Finally, the very

nature of the packet routing problem implies that

performance should be measured from multiple

perspectives simultaneously, where most results cur-

rently available characterize performance using one or

two parameters alone.

The purpose of this work is, firstly, to investigate the

application of a social insect metaphor to solve the

dynamic routing problem. This is shown to rely on the

availability of a priori global information. Secondly, a

distributed genetic algorithm (GA) is introduced. This

represents a major departure from previous works

attempting to utilize GAs to solve the dynamic routing

problem, e.g. [7,8]. In particular, a methodology is

detailed for solving the representation problem without

recourse to global information. The system is bench-

marked under dynamic and static network conditions

from the perspective of multiple performance metrics.

In the following, Section 2 introduces the ‘ant’

based social insect metaphor scheme for packet

routing against which this work is compared. Section

3 introduces the proposed alternative scheme based on

a distributed genetic algorithm. Results are presented

in Section 4 and conclusions are drawn in Section 5.
E
C

TE2. AntNet social insect metaphore

As indicated above, active networking [3] and

cognitive packet [6] based approaches emphasize a per

packet mechanism for routing. The aforementioned

‘adaptive’ techniques [7–9] tend to emphasize adding

‘intelligence’ to the routers leaving the packets

unchanged. A social insect metaphor provides a middle

ground in which the concepts of a routing table and data

packet still exist, but in addition, intelligent packets—

ants—are introduced that interact tokeep the contents of

the routing tables up to date. To do so, the operation of

ant packets is modeled on observations regarding the

manner in which worker ants use chemical trails as a

method of indirect stigmergic communication. Speci-

fically, ants are only capable of simple stochastic

decisions influenced by the availability of previously

laid stigmergic trails. The chemical denoting a

stigmergic trail is subject to decay over time, and
ASOC 164 1–14
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reinforcement proportional to the number of ants taking

the same path. Trail building is naturally a bi-directional

process, ants need to reach the food (destination) and

make a successful return path, in order to significantly

reinforce a stigmergic trail (forward only routing has

also been demonstrated [5]). Moreover, the faster the

route, then the earlier the trail is reinforced. An ant on

encountering multiple stigmergic trails will probabil-

istically choose the route with greatest stigmergic

reinforcement. Naturally, this will correspond to the

‘fastest’ route to the food (destination). The probabil-

istic nature of the decision, however, means that ants are

still able to investigate routes with lower stigmergic

reinforcement.

This approach has proved to be a flexible framework

for solving a range of problems including the traveling

sales man problem [11] and the quadratic assignment

problem [12]. The work reported here follows the

‘AntNet’ algorithm of Di Caro and Dorigo, where this

was previously demonstrated to perform better than

typical approaches to the routing problem including

OSPF (as currently employed on the Internet) [4].

2.1. AntNet algorithm

It is assumed that routing tables, Tk, exist at each

node, k, in which a routing decision is made. Tables

consist of ‘n’ rows, one row for each neighboring node/

link. As far as a normal data packet is concerned, a route

is selected based on the neighbor node probabilities.
 T 221221
222

223

� N
224

225

226

227

228

229
ew forward ants, Fsd, are created periodically, but

independently of the other nodes, from source, s, to

destination node, d, in proportion to the destination

frequency of passing data packets. Forward ants

travel the network using the same priority structures

as data packets, hence are subject to the same delay

profiles;
 R
� N
230231232

233

234
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236
O
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ext link in the forward ant route is selected

stochastically, p_( j), in proportion to the routing

table probabilities and length of the corresponding

output queue.

p0ðjÞ ¼ pðjÞ þ alj
1 þ aðjNkj � 1Þ

where p( j) is the probability of selecting node j as
�

237

238
Cthe next hop; a weights the significance given to

local queue length verses global routing informa-
U
N

tion, p( j); lj is proportional to the inverse of queue

length at destination ‘ j’ normalized to the unit

interval; and Nk is the number of links from node

k;
� O
O
O

F

n visiting a node different from the destination, a

forward ant checks for a buffer with the same

identifier as itself. If such a buffer exists, the ant

must be entering a cycle and dies. If this is not the

case, then the ant saves the previously visited node

identifier and time stamp at which the ant was

serviced by the current node in a buffer with the

forward ant’s identifier. In this work, the total

number of buffers at a node is managed by attaching

an ‘‘age’’ to buffer space and allowing backward

ants to free the corresponding buffer space. By

introducing buffers at routers, it is no longer

necessary to carry all node and duration information

in the packet to the target duration as in the original

model [4]. Only the previous node information is,

therefore, carried by each ant;
� W
 P
Rhen the current node is the destination, k = d, then

the forward ant is converted into a backward ant,

Bds. The information recorded at the forward ant

buffer is then used to retrace the route followed by

the forward ant;
� A
E
Dt each node visited by the backward ant, routing

table probabilities are updated using the following

rule,
IF (node was in the path of the ant)

THEN p(i) = p(i) + r{l � p(i)}

ELSE p(i) = p(i) � rP(i)
E
Cwhere r 2 (0, 1] is the reinforcement factor central

to weight the relative significance of path quality

(length), congestion and underlying network dynam-

ics.

As indicated above, the reinforcement factor sh-

ould be a factor of the trip time and the local stati-

stical model of the node neighborhood. To this end

[4] recommend the following relationship,

r ¼ c1
Wbest

tant

� �
þ c2

Isup � Iinf

ðIsup � IinfÞ þ ðtant � IinfÞ

� �

where Wbest is the best case trip time to destination d

over a suitable temporal horizon, W;tant is the actual

trip time taken by the ant; Iinf ¼ Wbest; Isup

¼ mkd þ fskd=½Wð1 � gÞ�0:5g.
ASOC 164 1–14
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The estimates for mean, mkd, and variant, skd, of the

trip time are also made iteratively, using the trip time

information, okd. Thus,

mkd ¼ mkd þ hðokd � mkdÞ
ðskdÞ2 ¼ ðskdÞ2 þ hfðokd � mdÞ2 � ðskdÞ2g

Thus, trip time information is updated incrementally
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based on the recorded trip duration between current

node, k, and ultimate destination, d.

2.2. Global information assumption

Although providing for a robust ant routing

algorithm under simulated conditions [4], an assump-

tion is made, which inadvertently implies the use of

global information—knowledge of the number of

nodes in the network [10]. The definition of routing

tables assumes that every node has a unique location in

the routing table or a total of l (number of neighboring

nodes) by n (number of nodes in the entire network)

entries. Hereafter, this is referred to as the GlobalAnt

algorithm. In practice, this is never the case. To do so

would assume that it is first feasible, and secondly,

should the network configuration ever change, then all

nodes should be updated with the new configuration

information.

In order to avoid the use of global information, we

consider the case of routing tables limited to detailing

actions in terms of the neighboring nodes alone, or a

total of 2 by l entries. Hereafter referred to as the

LocalAnt algorithm. This is equivalent to the tables as

used by OSPF or BGP4 protocols currently in use [2].

Such a limitation, therefore, places greater emphasis

on the learning capacity of the ant. In Section 4, the

AntNet algorithm is benchmarked under both local

(LocalAnt) and global (GlobalAnt) routing table

configurations.
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R3. Genetic algorithm model

Genetic algorithms (GA) are a class of generic

search algorithms that perform a parallel search over a

fixed ‘‘population’’ of candidate solutions. To do so,

Darwin’s concept of survival of the fittest and

observations from genetics are used to guide the

general mode of operation. Specifically, a selection

operator provides the pressure to improve the contents
U
N

E
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of the population, examples being generational or

tournament based selection. Search operators (cross-

over and mutation) address the exploitation-explora-

tion trade off associated with manipulating individual

members of the population. The algorithm as a whole

is iterative in nature with individuals being repeatedly

modified such that the overall fitness of the population

improves (Holland’s Schema Theorem [13]).

There are three principle inter-related design

decisions that have a significant impact on the ability

of a GA to efficiently solve problems. Firstly, the

representation problem, which is how to efficiently

encode candidate solutions into the genotypic string

format of a GA. Secondly, the operator problem, or

how to define operators such that individuals are

always syntactically correct. The third problem is how

to succinctly express fitness such that the ‘best’

individuals of the population solve all the properties of

the problem of interest.

In the case of this work, we desire a representation

that is independent of network connectivity—unlike,

for example, the approach of Munetomo [7]. The

operator problem naturally has two parts—selection

and search. The definition of suitable search operators

is rendered straightforward (standard crossover and

mutation operators are applicable) if we are able to

pose suitable solutions to the representation problem.

The case of a suitable selection operator for this work

is addressed by utilizing the concept of a static

subpopulation model with migration. That is to say,

each node of the network has an independent

population of candidate solutions and best case

solutions are allowed to periodically migrate between

neighboring nodes, as in an island model of evolution

[14]. Given these general observations, the following

subsections detail the specific methodology employed

and hereafter referred to as GA-agents.

3.1. Basic GA-agents

Letting individuals from each population travel the

network address the objectives of the representation

problem. Thus, the genotypic content of any

individual expresses the number of nodes visited

and routing decision taken at each node. This is similar

to the concept of the forward ant in the AntNet

algorithm. Likewise, as each ‘GA-agent’ travels the

network, previous hop and elapsed time information is
ASOC 164 1–14
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Fig. 1. Processing GA-agents.

Fig. 2. Routing and population update.
O
R

recorded (Fig. 1). On reaching the node identified by

the last gene, the individual becomes a backward ant

and merely retraces its path and waits at the

corresponding source node for fitness evaluation

(routing table updates are only performed at the

source node) (Fig. 1). In the special case of a GA-agent

attempting to return down the same link with which

the node was entered, the router randomly selects the

next hop from the available links, and changes the

gene to the new value (deterministic mutation). If no

next hop is available, then the chromosome is

truncated, and the GA-agent becomes a backward

agent (Fig. 1). A genotype, therefore, takes the form of

a list of integers—representing next hop offsets, e.g.

{1, 5, 0, 4, 2, 3, 5}—over the interval [0, L], where ‘Z’

is selected to enable indexing of node connectivity.1

On entering a node, a gene (offset) is used to identify

the next link using a clockwise count from the link that

the GA-agent entered the node, i.e. the next link is
U
N

C

1 In all the experiments of Section 5, ‘Z,’ is set to 6.
E
C

TE
Dselected modulo (gene % # of links). Such a

representation is then independent of the specific

network connectivity and directly supports single

point crossover, resulting in variable length indivi-

duals. Mutation randomly selects a gene and adds/

subtracts an integer such that the new gene is still in

the interval [0, L].

Selection takes the form of a steady-state tourna-

ment of size 4. Thus, when four GA-agents return to

the same source node, they are ranked in accordance

with their fitness, the worst two GA-agents being

replaced by the children of the best (Fig. 2). The fitness

function itself incorporates the popularity of nodes

visited as well as the time taken to reach nodes

encountered by GA-agents. Both of these properties

are measured with respect to the original source node.

Popularity of destination ‘i’ at node ‘k’ (NPk(i)) is a

dynamic property, measured at the original source node

by recoding the frequency of different data packet

destinations as seen by the source node over a fixed time

window (the time window is set 50 s in this work),

NPkðiÞ ¼
DestðiÞ

TDk
ASOC 164 1–14
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Fig. 3. Routing data packets.

Fig. 4. GA-agent initialization.
where TDk is the total number of data packets passing

through node ‘k’; and Dest(i) is the number of data

packets with destination ‘i’. Fitness now takes the

form,P
NPkðiÞ � trip�timeiP

trip�timei

Thus, GA-agents that find shortest paths to frequently

used destinations are favored.

The routing table in the GA approach consists of a

list of returned agents, every entry corresponds to an

evaluated returned agent path. On routing a data

packet, the router checks the table for a path that had

experienced shortest trip time to the desired destina-

tion (Table 1, column 3); if such an entry is not found,

the entry with the highest fitness (Table 1, column 2)

will be selected as the default next node for this data

packet (Fig. 3). The first two columns in the routing

table are used during ranking and replacement of

winning chromosomes (Fig. 2).

3.2. Aging and population initialization

As indicated in the introduction, the general packet

switched routing problem of interest here has dynamic

properties as a result of different load conditions or

network outages. This means that the routing strategy

must be able to continuously adapt to new conditions.

To provide such a property an incremental aging

penalty is applied to each GA-agent entry of the

routing table. Thus, fitness is decreased and trip times

increased at each update to the routing table entries

(Fig. 2).

In addition, each node of the network may naturally

have a different degree of connectivity; hence pose a

more (less) significant routing problem. Populations

(at each node) are, therefore, initialized in proportion

to the degree of connectivity of each node; where a
U
N

C
O

R

Table 1

Example GA-agent routing table

Agent ID Fitness Trip time (ms) and node ID

95 0.32 (3, J), (9, C) (21, W)

234 0.355 (1, B), (7, A), . . ., (432, Y)

. . . . . . . . .

31 0.71 (5, C), (9, K), . . ., (871, X)
Psquare law was empirically found to provide sufficient

search capacity (Fig. 4).
C
TE

D4. Evaluation

For the purposes of investigation and comparison, a

discrete event simulation (DES) is developed (C++,

UNIX system) for modeling the action of the GA-

agent and AntNet algorithms on a network configured

to represent the Japanese backbone (NTTNET)

(Fig. 5). Such a configuration is of particular interest

due to the long thin topology in comparison to other

networks (e.g. in the box like topology of the US
ASOC 164 1–14

Fig. 5. Japanese NNTNET topology.
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Table 2

Parameter values

AntNet GA-agent

a 0.3 P(crossover) 0.9

c1 0.7 P(mutation) 0.1

c2 0.3 #Agents/link2 32

h 0.005 Aging rate 0.9

g 0.654 Prop. ratio (%) 3

Prop. freq. (ms) 500

Flow clear freq. (s) 50

Table 3

Static parameters—scenario 1

Algorithm GA-agent GlobalAnt LocalAnt

Finish time (s) 1252 1253 1267

Routing packets (%) 48 10 11

Arrived packets (%) 85.3 99.7 45.5

Dead packets (%) 14.7 0.3 54.5

AP avg. trip time (ms) 1171 566 398
backbone nodes tend to provide a high degree of

connectivity across the network as a whole). This

property of NTTNET makes it more difficult to

identify alternative routes or increases the number of

pathologically bad routes. The DES models each node

as an incoming buffer, a memory space for processing

packets, and an outgoing buffer for each neighboring

link. Both AntNet and GA-agent algorithms are

simulated under the same environmental conditions.

That is, an event generator is used to generate the

events, such as new packet time of generation, or

router availability. The following are the parameters

used in the simulation,

449

450
� N

451
etwork topology takes the form of the Japanese

backbone (Fig. 5);

452
� F
orward ants are launched every 300 ms;

453
� D

454
ata packets are generated by Poisson distribution

(mean of 35 ms);
U
N

C
O

R
R

Fig. 6. Throughput (bytes) vs. tim
� A
e

O
FntNet and GA-agent algorithms are given 5 s at

the beginning of the simulation to converge the

initial routing tables. During this period, routing

packets (ants or GA-agents) are the only packets

traversing the network;
� A
E
D

 P
R

Ony packets that are routed down links representing

a fault condition are distinguished as lost packets. In

addition, packets may also be killed. In this case any

packets, including data packets, are terminated

should they encounter a previously visited node.

Given the probabilistic nature of the routing tables

this represents a rather harsh constraint, but is

utilized to emphasize the properties of different

routing strategies. In the following results, lost and

killed packets are collectively referred to as dead

packets.

Simulations are ran for the duration of 1250 s, as a

result 1,985,536 data packets are generated. The queue

length is the total number of waiting packets per se-
E
C

T
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Fig. 7. Queue length vs. time (s)—no network failure.
cond, which includes the data packets and the routing

packets. In this paper, the routing packets refer to the

ants in the AntNet algorithm, and to the GA-agents in

the GA approach.

4.1. Algorithm parameterization

Parameter selection in the case of the AntNet

algorithm follows the recommendations of Di Caro

and Dorigo [4]. Two versions of the AntNet algorithm

are considered. LocalAnt represents the case of a

routing table without the capacity to represent global

information [10], whereas GlobalAnt represents the

original ‘‘full’’ routing table scenarios [4]. In the case

of GA-agents, there are five basic parameters,

summarized as follows

502

503
1. R
ates of crossover and mutation;
 R 504
2. #
Agents/link2—a constant c1, which determines

the population of chromosomes on every node;
Table 4
3. A
Static parameters—scenario 2

Algorithm GA-agent GlobalAnt LocalAnt
Rging—a constant c2 2 (0.0, 1.0), rate by which

fitness of individuals currently populating the

routing tables decay;
Finish time (s) 1507 1668 1369

4. P
Routing packets (%) 58.9 10 11

Arrived packets (%) 70.6 92.3 41
Oropagate ratio—the number of chromosomes

exchanged between populations, expressed as a

%node population size;

Dead packets (%) 29.4 7.7 59
5. P

AP avg. trip time (ms) 356 998 2899
Cropagate freq—constant rate/frequency of

exchange of chromosomes between populations;
U
N

6. F
E
C

TE
D

 P
Rlow clear freq—a constant c3, time interval over

which data packet destination statistics are

collected.

Default values for GA-agent were established in

[15]. Table 2 summarizes parameter values employed

in the following experiments for both AntNet and GA-

agents.

4.2. Network scenarios

A total of four simulation scenarios are considered

for the AntNet and GA approaches, all of which utilize

the Japanese backbone network topology (Fig. 5).

Moreover, unlike the original study, we concentrate on

network reconfiguration properties [4]. In the first

case, all routers remain available, scenario 1. The

remaining experiments investigate plasticity of the

agents by introducing fault conditions. First, router
ASOC 164 1–14
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516

Fig. 8. Throughput (bytes) vs. time (s)—node 34 lost at 500 s.
R34 is removed at a time step of 500 s, scenario 2,

where this effectively cuts the network in two, with

only one path linking the two halves. In scenario 3,

two routers (R49, R13) are removed, whereas in

scenario 4, the same two routers (R49, R13) are taken

down asynchronously, but return later synchronously.
U
N

C
O

R
R

Fig. 9. Queue length vs. time (s
D
 PScenario 4 is, therefore, of particular interest because

it requires three different reconfigurations—once in

the introduction of each fault and again when all the

faults are restored.

In all cases the performance of routing algorithms

is measured from multiple perspectives,
E
C

TE
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517
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527

528

529

530

531

532

533

534

535

536

537

518519

520

521

522523

524

525

526527

528

529530

531

532533

534535

536

537

538

539

540

541

542

543

544

545

546

547

548

Table 5
� N

Static parameters—scenario 3

Algorithm GA-agent GlobalAnt LocalAnt
etwork throughput, which is defined as the

number of data packet bytes successfully received

at their destination per two second window;
Finish time (s) 1252 1466 1300
� A
Routing packets (%) 51.6 10 11

Arrived packets (%) 71.4 94.3 41.7
verage queue length, where this is the average of

the number of packets—data and routing—per two

second interval over the network as a whole;

Dead packets (%) 28.6 5.7 58.3
� T

AP avg. trip time (ms) 861 1325 1617
otal time to deliver all the data packets that are not

lost or killed (finish time);
� N
549
umber of arrived data packets (AP) as a

percentage of the number of data packets generated;
550
� A
verage trip time of arrived data packets, and;
551
� N
552

553

554

555

556

557

558

559

560

561

562

563

564

565
umber of routing packets created during the

course of the simulation, again expressed as a

percentage of the number of data packets generated.

In the case of throughput and queue length, we are

interested in capturing the temporal characteristics;

hence plots are used over the duration of the simul-

ation. All other parameters are summarized by a single

numerical value.

4.2.1. Scenario 1—no network failure

Table 3 summarizes the static parameters over a

network experiencing no failure conditions, whereas

Figs. 6 and 7 represent throughput and queue length,

respectively.
U
N

C
O

R
R

Fig. 10. Throughput (bytes) vs. time (s
 P
R

O
O

FThe linearly increasing queue length property (and

low throughput) of the LocalAnt algorithm indicates

that a good routing strategy has not been identified

(Figs. 7 and 6). Moreover, from Table 3, it is evident

that more packets are lost than successfully reach their

destination. That is to say, without the global

information, the LocalAnt algorithm is unable to stop

packets from revisiting nodes more than once. In

effect, the data structure used to support (global)

positive feedback is no longer available. The GA-

agent algorithm delivers twice as many packets, but

with a significant overhead in the number of routing

packets utilized. This property will be revisited in the

discussion.

After an initial configuration period (typically

100 s for the GA scheme) GA-agent and GlobalAnt

control queue length effectively (Fig. 6). GlobalAnt
E
C

TE
D
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Fig. 11. Queue length vs. time (s)—nodes 13 and 49 lost at 500 s.

Table 6

Static parameters—scenario 4

Algorithm GA-agent GlobalAnt LocalAnt

Finish time (s) 1252 1252 1289

Routing packets (%) 54.5 10 11

Arrived packets (%) 78.8 96.5 43.6

Dead packets 21.2 3.5 56.4

AP avg. trip time (ms) 1012 677 3259
C
O

R

‘‘loses’’ the least packets (0.3% as opposed to 15% for

GA-agent) (Table 3) and maintains the highest levels

of throughput (Fig. 7). LocalAnt returns the shortest

average trip time for a delivered packet, but this is

most likely a reflection of the low number of packets

actually delivered (Table 3).

4.2.2. Scenario 2—node 34 lost at 500 s

In this scenario, node 34 is removed at time step

500, where node 34 represents a critical node for

connectivity (Fig. 5). Table 4 and Figs. 8 and 9

summarize the performance. The LocalAnt algo-

rithm continues to loose more packets than it

delivers (implying that more packets attempt to

revisit nodes than find a direct path) and in addition

returns the longest trip time for those packets that

are delivered (Table 4). On account of the reduction

in the number of packets delivered, the LocalAnt

queue length profile is now better than GlobalAnt

(Fig. 9) whereas throughput is still the worst

(Fig. 8). The linear increase in GlobalAnt queue

length is an indication of the significance of node

34, where the same property is observed by GA-

agent. That is to say, in order to avoid loosing

packets down paths previously available in node 34,

it is necessary to queue packets waiting for the low

number of alternative routes.
U
N

E
C

TE
D

 P4.2.3. Scenario 3—node 13 and 49 lost at 500 s

In this case, we are interested in the case of multiple

network failures, with Table 5 and Figs. 10 and 11

summarizing performance. LocalAnt is still losing far

more packets than it is delivering (Table 5) which

naturally results in low throughput and queue length

profiles (Figs. 10 and 11). The GlobalAnt algorithm

still loses the least number of packets (Table 5).

Performance of GA-agent again appears to fall

between that of Local and Global versions of the

AntNet algorithm. Moreover, the GA-agent in this

case appears to have identified alternative routes that

have minimal impact on queue lengths (Fig. 11).

4.2.4. Scenario 4—asynchronous removal of

two nodes

Here, the effect of different routers going down at

different times and recovering (at the same time) is
ASOC 164 1–14
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Fig. 12. Throughput (bytes) vs. time (s)—asynchronous removal of two nodes.

Fig. 13. Queue length vs. time (s)—asynchronous removal of two nodes.
C
O

R

investigated: Table 6 and Figs. 12 and 13. Both the

AntNet algorithms make use of queues (Fig. 13)

possibly implying the utilization of a small number of

preferred alternative routes. The GA-agent strategy

appears to minimize queue lengths at the expense of

higher dead packet counts with respect to GlobalAnt

(Table 6). Throughput profiles follow the same general

pattern as previously encountered—GlobalAnt con-

sistently has the highest throughput, with GA-agent

performance midway between Global and Local

AntNet (Fig. 12). It is also interesting to note that,
U
N

once all network connections are re-established, all

three algorithms successfully return to throughput

levels each identified before any faults were intro-

duced.

4.3. Discussion

By way of an overall ranking, it is clear that the

utilization of global information in the AntNet

algorithm plays a central role in its performance.

Without this—LocalAnt—more dead packets occur
ASOC 164 1–14
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than packets delivered, irrespective of whether there

are missing links or not. GA-agents clearly perform far

better than LocalAnt, typically delivering twice as

many packets, irrespective of the scenario. Moreover,

it was also apparent that GA-agents evolved different

strategies depending on the location of the population.

Populations associated with nodes at the periphery of

the network tended to have relatively short chromo-

somes (around five genes or less). Those associated

with nodes having higher degrees of connectively

tended to have much longer chromosomes (around 10

or more genes). Future work will investigate this

property further within the context of co-evolutionary

strategies.

The sizes of the routing tables are significantly

different. For a router with l neighbors in a network

with n routers, we make the following comments. A

GlobalAnt router has l records, each has (n � 1) fields

for each node in the network. Thus, the size of the

routing table is l(n � 1), i.e. Q(l � n), where usually

l � n, so, the size of the routing table is Q(n). Since

the routing table is a two-dimensional array, the next

hop look up time is only Q(1). A LocalAnt router has l

records (number of neighboring links), each has only

two fields, one for the neighbor, one for the rest of the

network. Thus, the size of the routing table is l � 2, i.e.

Q(l); the next hop look up time is also only Q(1). A

GA-agent based router has a population of c1 � l2

chromosomes, thus the routing table has O(l2) records,

and each represents an explored route. According to

the statistics of the experiments, routes have approxi-

mately 2–12 genes; this fits a Q(l) relation. Thus the

size of a routing table is O(l3). Sequential search of the

routing table will take O(l3) time.

Finally, the relationship between routing agents and

routing tables also differs significantly between the

two approaches. The AntNet algorithm currently

updates all routing tables along the return path of an

ant. GA-agents in its current formulation only update

the table of the source node. This means that for each

routing packet (Ant or GA-agent) more routing tables

are updated per agent in the case of the AntNet

algorithm. Modifying the GA-agent scheme along the

lines of the AntNet update process would significantly

reduce the number of routing packets necessary.

However, this approach also represents a serious

security issue from the perspective of network

management. In effect, any node is able to modify
U
N

the routing table of another node, so opening the door

to malicious modification of the network routing.
E
C

TE
D
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R
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5. Conclusion

Dynamic/adaptive routing has become a research

topic of significant interest over the last five years. The

growing size and increasing demands placed on packet

switched networks has pushed their application into

areas not considered at their conception. As a

consequence routing techniques currently in operation

are increasingly being shown to be ineffective [16].

Extensive simulation of the AntNet algorithm against

routing algorithms currently in use—OSPF, SPF, BF,

Q-R, P-QR and Daemon—has demonstrated the

superiority of AntNet under dynamic load conditions

[4]. In this work, we show that such performance

comes at a cost. Global information is necessary and

network security may be compromised. Removing

access to global information is shown to compromise

the ability of the AntNet algorithm to find suitable

routes, even in the case of a static network

configuration (no faults).

In order to reduce the significance of these

drawbacks, we investigate the utilization of a genetic

algorithm based on a static multi-population model.

To do so, the GA representation problem is addressed,

such that agents do not require global information

regarding network topology. In addition, the network

security problem is reduced as agents may only

modify the routing table of their source. The penalty

paid for this is a reduction in routing capacity, with

performance falling between that of the AntNet

algorithm with and without global information. We

believe, however, that this establishes a baseline of

performance for a routing algorithm that does conform

to all the constraints of a network routing problem in

practice. Future work will concentrate on two general

topics. Firstly, the investigation of more advanced co-

evolutionary techniques to promote the sharing of

information between routing agents whilst minimizing

the potential for compromises in network security.

Secondly, the organization of routing table informa-

tion should be addressed such that identifying a

required route is much more efficient than is currently

the case. Other opportunities for improvement might

concentrate on the optimization of the GA search
ASOC 164 1–14
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operators. Specifically, the indirect encoding scheme

has been improved by introducing biases into the

selection of crossover and mutation points [17].

Moreover, multi-population models based on the

island model abound [14], from which we might learn

of improved schemes for parameter adaptation and

migration.

Alternatively, the problem of information sharing

could be addressed by letting data packets carry

routing information with them (similar to the case of

adaptive routing [3]). Thus, it is no longer necessary

for each routing table to provide routes to all

destinations and data packets maximize the utilization

of routing information when it is provided (the current

implementation only uses the source to destination

path specified in a GA-agent routing table to select the

next hop). Finally, instances of the AntNet algorithm

should be investigated in which there are more than

two columns, but less than the number of nodes in the

entire network. In this case, the objective is to

dynamically identify what destinations each column

should correspond to.
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