

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2325–2336, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Linear Genetic Programming Approach to Intrusion
Detection

Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood

Dalhousie University, Faculty of Computer Science
6040 University Avenue, Halifax, NS, B3H 1W5, Canada

{dsong,mheywood,zincir}@cs.dal.ca

Abstract. Page-based Linear Genetic Programming (GP) is proposed and im-
plemented with two-layer Subset Selection to address a two-class intrusion de-
tection classification problem as defined by the KDD-99 benchmark dataset. By
careful adjustment of the relationship between subset layers, over fitting by in-
dividuals to specific subsets is avoided. Moreover, efficient training on a data-
set of 500,000 patterns is demonstrated. Unlike the current approaches to this
benchmark, the learning algorithm is also responsible for deriving useful tem-
poral features. Following evolution, decoding of a GP individual demonstrates
that the solution is unique and comparative to hand coded solutions found by
experts.

1 Introduction

The Internet, as well as representing a revolution in the ability to exchange and com-
municate information, has also provided greater opportunity for disruption and sabo-
tage of data previously considered secure. The study of intrusion detection systems
(IDS) provides many challenges. In particular the environment is forever changing,
both with respect to what constitutes normal behavior and abnormal behavior. More-
over, given the utilization levels of networked computing systems, it is also necessary
for such systems to work with a very low false alarm rate [1]. In order to promote the
comparison of advanced research in this area, the Lincoln Laboratory at MIT, under
DARPA sponsorship, conducted the 1998 and 1999 evaluation of intrusion detection
[1]. As such, it provides a basis for making comparisons of existing systems under a
common set of circumstances and assumptions [2]. Based on binary TCP dump data
provided by DARPA evaluation, millions of connection statistics are collected and
generated to form the training and test data in the Classifier Learning Contest organ-
ized in conjunction with the 5th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining 1999 (KDD-99). The learning task is to build a detec-
tor (i.e. a classifier) capable of distinguishing between “bad” connections, called
intrusions or attacks, and “good” or normal connections. There were a total of 24
entries submitted for the contest [3,4]. The top three winning solutions are all variants
of decision trees. The winning entry is composed from 50×10 C5 decision trees fused

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

2326 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

by cost-sensitive bagged boosting [5]. The second placed entry consisted of a deci-
sion forest containing 755 trees [6]. The third placed entry consisted of two layers of
voting decision trees augmented with human security expertise [7].

In this work, the first interest is to explore a Genetic Programming approach to
produce computer programs with a much less complex structure, compared with the
above data mining approaches, yet yielding satisfactory performance on the KDD-99
test set. The motivation being to provide transparent solutions that execute in real
time with modest computational resources. Second, the training system must scale
well on a comparatively large training data set (the 10% KDD-99 training set consists
of approximately half a million patterns) whilst providing a small enough computa-
tional footprint to complete training in a matter of hours on a personal computer.
Third, genetic programs are translated into human readable format and are compared
with human reasoning. This will facilitate a better understanding of what constitutes a
good rule as well as gaining the confidence of the more technically motivated users.
Finally, only the most basic feature set is to be utilized, as opposed to the 41 connec-
tion features used in the decision tree solutions. To this end, a Page-based Linear
Genetic Program with Dynamic Subset Selection and Random Subset Selection is
proposed. Forty trials are conducted and results are compared with KDD-99 winning
entries. One individual was simplified by removing structural introns and analyzed.
The solution was found to be comparative to the type of rules extracted by domain
experts on the same data set.

In the following text, Section 2 summarizes the properties associated with the
KDD-99 IDS data set. Section 3 details the Genetic Programming (GP) approach
taken, with a particular emphasis on the methodology used to address the size of the
data set. Section 4 describes parameter settings and evaluates experiment results.
Finally, conclusions and future directions discussed in Section 5.

2 Intrusion Detection Problem

From the perspective of the Genetic Programming (GP) paradigm KDD-99 posted
several challenges [1, 2]. The amount of data is much larger than normally the case in
GP applications. The entire training dataset consists of about 5,000,000 connection
records. However, KDD-99 provided a concise training dataset – which is used in this
work – and appears to be utilized in the case of the entries to the data-mining compe-
tition [3-7]. Known as “10% training” this contains 494,021 records among which
there are 97,278 normal connection records (i.e. 19.69 %). This will be addressed by
using a hierarchical competition between patterns, based on the Dynamic Subset
Selection technique [8].

Each connection record is described in terms of 41 features and a label declaring
the connection as either normal, or as a specific attack type. Of the 41 features, only
the first eight (of nine) “Basic features of an Individual TCP connection”; hereafter
referred to as ‘basic features’ are employed by this work. The additional 32 derived
features, fall into three categories,

A Linear Genetic Programming Approach to Intrusion Detection 2327

Content Features: Domain knowledge is used to assess the payload of the original
TCP packets. This includes features such as the number of failed login attempts;

Time-Based Traffic Features: These features are designed to capture properties that
mature over a 2 second temporal window. One example of such a feature would be
the number of connections to the same host over the 2 second interval;

Host-Based Traffic Features: Utilize a historical window estimated over the number
of connections – in this case 100 – instead of time. Host based features are therefore
designed to assess attacks, which span intervals longer than 2 seconds.

In this work, none of these additional features are employed, as they appear to almost
act as flags for specific attack behaviors. Our interest is on assessing how far the GP
paradigm would go on ‘basic features’ alone.

Thirdly, the training data encompasses 24 different attack types, grouped into one
of four categories: User to Root; Remote to Local; Denial of Service; and Probe.
Naturally, the distribution of these attacks varies significantly, in line with their func-
tion – ‘Denial of Service,’ for example, results in many more connections than
‘Probe’. Table 1 summarizes the distribution of attack types across the training data.
Test data, on the other hand, follows a different distribution than in the training data,
where this has previously been shown to be a significant factor in assessing generali-
zation [3]. Finally, the test data added an additional 14 attack types not included in
the training data.

Table 1. Distribution of Attacks

Data Type Training Test
Normal 19.69% 19.48%
Probe 0.83% 1.34%
DOS 79.24% 73.90%
U2R 0.01% 0.07%
R2L 0.23% 5.2%

Given that this work does not make use of the additional 32 derived features, it is
necessary for the detector to derive any temporal properties associated with the cur-
rent pattern, x(t). To this end, as well as providing the detector with the labeled fea-
ture vector for the current pattern, [x(t), d(t)], the detector is also allowed to address
the previous ‘n’ features at some sampling interval (modulo(n)).

3 Methodology

In the case of this work a form of Linearly-structured GP (L-GP) is employed [9-12].
That is to say, rather than expressing individuals using the tree like structure popular-
ized by the work of Koza [13], individuals are expressed as a linear list of instructions
[9]. Execution of an individual therefore mimics the process of program execution
normally associated with a simple register machine. That is, instructions are defined in
terms of an opcode and operand (synonymous with function and terminal sets respec-

2328 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

tively) that modify the contents of internal registers {R[0],…,R[k]}, memory and
program counter [9]. Output of the program is taken from register R[0] on completion
of program execution (or some appropriate halting criterion [11]). Moreover, in an
attempt to make the action of the crossover operator less destructive, the Page-based
formulation of L-GP is employed [12]. In this case, an individual is described in terms
of a number of pages, where each page has the same number of instructions. Cross-
over is limited to the exchange of single pages between two parents, and appears to
result in concise solutions across a range of benchmark regression and classification
problems. Moreover, a mechanism for dynamically changing page size was intro-
duced, thus avoiding problems associated with the a priori selection of a specific
number of instructions per page at initialization. Mutation operators take two forms.
In the first case the ‘mutation’ operator selects an instruction for modification with
uniform probability and performs an Ex-OR with a second instruction, also created
with uniform probability. If the ensuing instruction represents a legal instruction the
new instruction is accepted, otherwise the process is repeated. The second mutation
operator ‘swap’ is designed to provide sequence modification. To do so, two instruc-
tions are selected within the same individual with uniform probability and their
positions exchanged.

As indicated in the introduction, the specific interest of this work lies in identifying
a solution to the problem of efficiently training with a large dataset (around half a
million patterns). To this end, we revisit the method Dynamic Subset Selection [8]
and extend it to the case of a hierarchy of subset selections. There are at least two
aspects to this problem: the cost of fitness evaluation – the inner loop, which domi-
nates the computational overheads associated with applying GP in practice; and the
overhead associated with datasets that do not fit within RAM alone. In this work, a
hierarchy is employed in which the data set is first partitioned into blocks small
enough for retention in RAM, whilst a competition is initiated between training pat-
terns within a selected block. Such a scheme also naturally matches the design meth-
odology for computer memory hierarchies [14]. The selection of blocks is performed
using Random Subset Selection (RSS) – layer 1. Dynamic Subset Selection (DSS)
enforces a competition between different patterns – layer 2.

3.1 Subset Selection

First layer. The KDD-99 10% training data set was divided into 100 blocks with
5,000 connection records per block. The size of such blocks is defined to ensure that,
when selected, they fit within the available RAM. Blocks are randomly selected with
uniform probability. Once selected, a history of training pressure on a block is used to
set up the number of iterations performed at the next layer in DSS. This is performed
in proportion to the performance of the best-case individual. Thus, iterations of DSS,
I, in block, b, at the current instance, i, is

)1()((max) −×= iEIiI bb (5)

where I(max) is the maximum number of subsets selected on a block; and Eb(i – 1) is the
number of misclassifications of the best individual on the previous instance, i, of
block, b. Hence, Eb(i) = 1 – [hitsb(i) / #connections(b)], where hitsb(i)

 is the hit count

A Linear Genetic Programming Approach to Intrusion Detection 2329

over block ‘b’ for the best case individual identified over the last DSS tournament at
iteration ‘i’ of block ‘b’; and #connections(b) is the total number of connections in
block ‘b’.

Second Layer. A simplified DSS is deployed in this layer. That is, fixed probabilities
are used to control the weighting of selection between age and difficulty. For each
record in the DSS subset, there is a 30% (70%) probability of selecting on the basis of
age (difficulty). Thus, a greater emphasis is always given to examples that resist clas-
sification. DSS utilizes a subset size of 50, with the objective of reducing the compu-
tational complexity associated with a particular fitness evaluation. Moreover, in order
to further reduce computation, the performance of parent individuals on a specific
subset is retained. After 6 tournaments the DSS subset will be reselected.

DSS Selection [8]. In the RSS block, every pattern is associated with an age value,
which is the number of DSS selections since last selection, and a difficulty value. The
difficulty value is the number of individuals that were unable to recognize a connec-
tion correctly the last time that the connection appeared in the DSS subset. Connec-
tions appear in a specific DSS stochastically, where there is 30% (70%) probability to
select by age (difficulty). Roulette wheel selection is then conducted on the whole
RSS block, with respect to age (difficulty). After the DSS subset is filled, age and
difficulty of selected connections are reset. For the rest, age is increased by 1 and
difficulty remains unchanged.

3.2 Parameterization of the Subsets

The low number of patterns actually seen by a GP individual during fitness evalua-
tion, relative to the number of patterns in the training data set, may naturally lead to
‘over fitting’ on specific subsets. Our general objective was therefore to ensure that
the performance across subsets evolved as uniformly as possible. The principle inter-
est is therefore to identify the stop criterion necessary to avoid individuals that are
sensitive to the composition of a specific Second Level subset.

To this end, a single experiment is conducted in which 2,000 block selections are
made with uniform probability. In the case of each block selection, there are 400 DSS
selections. Before selection of the next block takes place, the best performing indi-
vidual (with respect to sub-set classification error) is evaluated over all patterns
within the block, let this be the block error at selection i, or Eb(i). A sliding window is
then constructed consisting of 100 block selection errors, and a linear least-squares
regression performed. The gradient of each linear regression is then plotted, Figure 1
(1900 points). A negative trend implies that the block errors are decreasing whereas a
positive trend implies that the block errors are increasing (the continuous line indi-
cates the trend). It is now apparent, that after the first 750 block selections, the trend
in block error has stopped decreasing. After 750 selections, oscillation in the block
gradients appears, where this becomes very erratic in the last 500 block selections.

2330 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

Fig. 1. Gradient of block error using best case DSS individual. X axis represents tournament
and Y represents slope of best fitting line on 100 point window

On the basis of these observations, the number of DSS selections per block is lim-
ited to 100 (from 400) – with the objective of further reducing any tendency to pre-
maturely specialize – where the principle cost is in a higher number of block selec-
tions, 1000 in this case.

3.3 Structural Removal of Introns

Introns are program pieces, which have no influence to the output, but appear to be a
factor in the evolution of solutions. Moreover, two forms of introns are often distin-
guished: structural introns and semantic introns. Structural introns manipulate vari-
ables that are not used for the calculation of the outputs at that program position.
Whereas, semantic introns manipulate variables on which the state of the program is
invariant [15]. In this work, structural introns are detected using following pseudo
code, initiated once evolution is complete, with the last reference to R[0] (the register
a priori defined as the output) as the input argument.

markExon(reg, i)

{..for (destination in the ith instruction != reg; i--)

 if (i = 0) exit;

 mark ith instruction as exon

 markExon(oprand1, i-1)

 markExon(oprand2, i-1) }

A Linear Genetic Programming Approach to Intrusion Detection 2331

4 Experiment

The following experiments are based on 40 runs using Dynamic Page-based L-GP.
Runs differ only in their choice of a random seed initializing the population. Table 2
lists the common parameter settings for all runs. The total number of records in train-
ing and test set is listed in Table 3. The method used for encouraging the identifica-
tion of temporal relationships and composing the instruction set is defined as follows.

Sequencing Information. As indicated above, only the 8 basic features of each con-
nection are used, corresponding to: Duration; Protocol; Service; normal or error status
of the connection (Flag); number of data bytes from source to destination (DST);
number of data bytes from destination to source (SRC); LAND (1 if connection is
from/to the same host/port, 0 otherwise); and number of “wrong” fragments
(WRONG). This implies that GP is required determine the temporal features of inter-
est itself. To do so, for each ‘current’ connection record, x(t), GP is permitted to index
the previous 32 connection records relative to the current sample, modulo 4. Thus, for
each of the eight basic TCP/IP features available in the KDD-99 dataset, GP may
index the 8 connection records [(t), (t – 4), … (t – 32)], where the objective is to pro-
vide the label associated with sample ‘t’.

Table 2. Parameter Settings for Dynamic Page based Linear GP

Parameter Setting
Population Size 125

Maximum number of pages 32 pages
Page size 8 instructions

Maximum working page size 8 instructions
Crossover probability 0.9
Mutation probability 0.5

Swap probability 0.9
Tournament size 4

Number of registers 8
Instruction type 1 probability 0.5
Instruction type 2 probability 4
Instruction type 3 probability 1

Function set {+, -, *, /}
Terminal set {0, .., 255} ∪ {i0, .., i63}

RSS subset size 5000
DSS subset size 50

RSS iteration 1000
DSS iteration (6 tournaments/ iteration) 100

Wrapper function 0 if output <=0, otherwise 1
Cost function Increment by 1 for each misclassification

2332 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

Table 3. Distribution of Normal and Attacks

Connection Training Test

Normal 97249 60577

Attacks 396744 250424

Instruction Set. A 2-address format is employed in which provision is made for: up
to 16 internal registers, up to 64 inputs (Terminal Set), 5 opcodes (Functional Set) –
the fifth is retained for a reserved word denoting end of program – and an 8-bit inte-
ger field representing constants (0-255) [12]. Two mode bits toggle between one of
three instruction types: opcode with internal register reference; opcode with reference
to input; target register with integer constant. Extension to include further inputs or
internal registers merely increases the size of the associated instruction field. The
output is taken from the first internal register.

Training was performed on a Pentium III 1GHz platform with a 256M byte RAM
under Windows 2000. The 40 best individuals within the last tournament are recorded
and translated simplified as per Section 3.3. Note that ‘best’ is defined with respect to
the cost function used during training, Table 2. Performance of these cases is then
expressed in terms of false positive (FP) and detection rates, estimated as follows,

AttacksofNumberTotal

NegativesFalse
RateDetection

#
1 −= (6)

sConnectionNormalofNumberTotal

PositivesFalse
RatePositiveFalse

#= (7)

Figure 3 summarizes the performance of all 40 runs in terms of FP and Detection
rate on both training and test data. Of the forty cases, three represented degenerate
solutions (not plotted). That is to say, they basically classified everything as normal
(i.e. only 20% of the training classifications would be correct) or attack (roughly 80%
of the training connections would be correct). Outside of the case of the three degen-
erate cases, it is apparent that solution classification accuracy is consistently achieved.
Table 4 makes a direct comparison between KDD-99 competition winners, verses the
corresponding GP cases.

Structural removal of introns, Section 3.3, resulted in a 5:1 decrease in the average
number of instructions per individual (87 to 17 instructions). With the objective of
identifying what type of rules were learnt, the GP individual with best Detection Rate
from Table 4 was selected for analysis. Table 5 lists the individual following removal
of the structural introns.

A Linear Genetic Programming Approach to Intrusion Detection 2333

Fig. 3. FP and detection rate of 40 runs on KDD-99 test data set

Table 4. Comparison with KDD-99 winning entries

Parameter Detection Rate FP rate

Winning entry 0.908819 0.004472

Second place 0.915252 0.00576

Best GP – FP rate 0.894096 0.006818

Best GP – Detection rate 0.908252 0.032669

Table 5. Anatomy of Best Individual

Opcode Destination Source
LOD R[0] 20
SUB R[0] Input[2][5]
MUL R[0] Input[0][1]
DIV R[0] Input[0][4]
SUB R[0] Input[2][5]
SUB R[0] Input[6][5]
DIV R[0] Input[0][4]

Table 6 summarizes performance of the individual over a sample set of the connec-

tion types in terms of connections types seen during training (24 different types) and
connections types only during test (14 different types). Of particular interest here is
that high classification accuracy is returned for connection types, which are both
frequent and rare, where it might be assumed that only the connections with many
examples might be learnt.

2334 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

Table 6. Error rates on test data for top 16 attacks by individual with Best Detection Rate

Seen
connec-

tion
type

% Misclassi-
fied

Total
Examples

Unseen
connection

type
% Misclassified

Total
Exam-

ples

Neptune 0 58,001 Udpstorm 0 2
Portsweep 0 354 Prosstable 3.03 759

Land 0 9 Saint 5.978 736
Nmap 0 84 Mscan 8.452 1,053
Smurf 0.077 164,091 Httptunnel 15.823 158
Satan 3.552 1,633 Phf 50 2

Normal 3.267 60,577 Apache2 65.491 794

Re-expressing this individual analytically, below, indicates that the statistics of the
number of bytes from the responder and the byte ratio responder-originator are util-
ized. This enables the individual to identify that the attacking telnet connections in the
DARPA dataset are statistically different from the normal telnet connections. More-
over, not only telnet connections can be classified by this way. Such a rule never
misses an attack of “Neptune”, “portsweep”, “land”, ”nmap”, “udpstorm”. It also
provided ‘good’ performance on “smurf”, “processtable”, “normal”, “satan”, “saint”,
“mscan” and “httptunnel”. For “Neptune,” there are many half open tcp connections,
without any data transfer. In “smurf,” there are many echo replies to victim, but no
echo requests from victim. In “http tunnel,” the attacker defines attacks on the http
protocol, which is normal, but the actual data exchange ratio makes it different from
normal traffic. Currently, only [16] argued that telnet connection can be differentiated
by a rule of the form discovered here. It has been suggested that attacks be formu-
lated with such a rule in mind, [17], but without explicitly proposing using this statis-
tic. Thus GP in this case has actually provided a unique generic rule for the detection
of multiple attack types.

()

]4][0[

]5][6[]5][2[
]4][0[

]1][0[]5][2[20

Input

InputInput
Input

InputInput

Output

−−×−

=

where Input[j][i] indexes the ith input feature at temporal location t – 4 × j; and ‘t’
(= 0) is the current connection.

5 Conclusion

A Page-based Linear Genetic Programming system with DSS and RSS was imple-
mented and tested on the KDD'99 benchmark dataset, a problem involving a training
dataset of half a million patterns. To do so, a hierarchy of data subset selections is
introduced such that GP only perceives 50 of the total training set patterns at any one

A Linear Genetic Programming Approach to Intrusion Detection 2335

time. Moreover, such a hierarchy is designed to utilize the memory hierarchy com-
monly employed in computer architectures. As such the ensuing system completes
each trial in approximately 15 minutes on a modest laptop-computing platform (1Ghz
Pentium III, 256 Mbyte RAM) or 10 hours for 40 trials.

In addition, only the ‘basic’ connection features are employed, with GP deriving
the necessary temporal features itself. Performance approaches that of data-mining
solutions based on all 41 features, whilst solution transparency is also supported and
verified, enabling the user to learn from the solutions provided. Note however, that
the principle design interest of this work was to demonstrate that GP could be applied
to data-driven learning problems on large datasets. The resulting GP classifier repre-
sents an anomaly detector, providing a binary decision boundary: normal or attack.
Extensions to include the classification of different attack types would involve train-
ing additional detectors on the subset of patterns labeled as attack. The ensuing hier-
archy of detectors would provide an additional (attack) class label at each level.

Future work is expected to include a dynamic cost function; with the objective of
adjusting at run time the relative weighting associated with different attack types.
Moreover, the function set at present is purely analytical. Of interest would be the
significance of conditional statements or modular code within this problem context.

Acknowledgements. This research was partially supported by NSERC Discovery
Grants of Drs. Heywood and Zincir-Heywood.

References

1. Lippmann R.P., Fried D.J., Graf I., Haines J.W., Kendall K.R., McClung D., Weber D.,
Webster S.E., Wyschogrod D., Cunningham R.K., Zissman M.A.: Evaluating Intrusion
Detection Systems: the 1998 DARPA Off-Line Intrusion Detection Evaluation. Proceed-
ings of the 2000 DARPA Information Survivability Conference and Exposition, 2 (2000)

2. McHugh J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999
DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory.
ACM Transactions on Information and System Security. 3(4), (2000) 262–294

3. Elkan C.: Results of the KDD'99 Classifier Learning Contest. SIGKDD Explorations.
ACM SIGKDD. 1(2), (2000) 63–64

4. Wenke L., Stolfo S.J., Mok K.W.: A data mining framework for building intrusion detec-
tion models. Proceedings of the 1999 IEEE Symposium on Security and Privacy (1999)
120–132

5. Pfahringer B.: Winning the KDD99 Classification Cup: Bagged Boosting. SIGKDD
Explorations. ACM SIGKDD. 1(2) (2000) 65–66

6. Levin I.: KDD-99 Classifier Learning Contest LLSoft’s Results Overview. SIGKDD
Explorations. ACM SIGKDD. 1(2) (2000) 67–75

7. Vladimir M., Alexei V., Ivan S.: The MP13 Approach to the KDD'99 Classifier Learning
Contest. SIGKDD Explorations. ACM SIGKDD. 1(2) (2000) 76–77

8. Gathercole C., Ross P.: Dynamic Training Subset Selection for Supervised Learning in
Genetic Programming. Parallel Problem Solving from Nature III. Lecture Notes in Com-
puter Science, Vol. 866. Springer-Verlag, Berlin (1994) 312–321

2336 D. Song, M.I. Heywood, and A.N. Zincir-Heywood

9. Cramer N.L.: A Representation for the Adaptive Generation of Simple Sequential Pro-
grams. Proceedings of the International Conference on Genetic Algorithms and Their Ap-
plication (1985) 183–187

10. Nordin P.: A Compiling Genetic Programming System that Directly Manipulates the
Machine Code. In: Kinnear K.E. (ed.): Advances in Genetic Programming, Chapter 14.
MIT Press, Cambridge, MA (1994) 311–334

11. Huelsbergen L.: Finding General Solutions to the Parity Problem by Evolving Machine-
Language Representations. Proceedings of the 3rd Conference on Genetic Programming.
Morgan Kaufmann, San Francisco, CA (1998) 158–166

12. Heywood M.I., Zincir-Heywood A.N.: Dynamic Page-Based Linear Genetic Program-
ming. IEEE Transactions on Systems, Man and Cybernetics – PartB: Cybernetics. 32(3)
(2002), 380–388

13. Koza J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge, MA (1992)

14. Hennessy J.L., Patterson D.A.: Computer Architecture: A Quantitative Approach. 3rd
Edition. Morgan Kaufmann, San Francisco, CA (2002)

15. Brameier M., Banzhaf W.: A Comparison of Linear Genetic Programming and Neural
Networks in Medical Data Mining. IEEE Transactions on Evolutionary Computation, 5(1)
(2001) 17–26

16. Caberera J.B.D., Ravichandran B., Mehra R.K.: Statistical traffic modeling for network
intrusion detection. Proceedings of the 8th International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems (2000) 466–473

17. Kendall K.: A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems. Master Thesis. Massachusetts Institute of Technology (1998)

	1 Introduction
	2 Intrusion Detection Problem
	3 Methodology
	3.1 Subset Selection
	3.2 Parameterization of the Subsets
	3.3 Structural Removal of Introns

	4 Experiment
	5 Conclusion

