

Abstract— Under the M ixtures of Experts architecture a
method for ‘designing’ t he number of experts and assigning
local ‘ regions’ of the input space to individual experts is
investigated. Classification performance and transparency of
the scheme is found to be significantly better than that using a
standard M ixtures of Experts.

Index terms—Mixtures of Experts, Self-Organizing Feature
Map, Potential Function Clustering, Classification.

I. INTRODUCTION

Divide and conquer has been shown to provide a
particularly fruitful approach to machine learning in
practice e.g. decision trees. Under this spirit, Jordan and
Jacobs in [1, 2] proposed and studied a mixture of experts
(MoE) model in which the divide and conquer paradigm
was explicitly supported. Given a supervised learning
context, the MoE approach uses several neural networks in
parallel to provide a modular solution to the overall
problem. However, rather than a priori assume a piecewise
linear solution to the problem, an additional ‘gate’ network
is used to associate input conditions with experts. This may
result in multiple experts being ‘mixed’ or ‘switched
between’ in order to provide the desired mapping. In
addition, the scheme can be extended to provide multiple
layers, thus supporting divide and conquer multiple times
[1, 2].

In this work our interest lies on identifying what inputs
to feed each expert. That is to say, without a priori
knowledge, each expert and gate receives all i nputs.
Naturally, applying a transform to the original data, so
reducing the initial dimensionality, can alleviate this
problem and the raw count of inputs routed to each MoE
‘component’ (e.g. principal component analysis). This
however does not change the fact that all i nputs require
forwarding to each ‘component’ of the MoE network. The
interest of this work is to assess the significance of using a
cluster based preprocessing step to partition the initial input
space. Our hypothesis is that different partitions may be
forwarded to different experts without reducing
performance, thus supplying additional transparency
regarding the solution formed. Moreover, such a scheme
also explicitly determines the (single layer) MoE

 Dalhousie University, Faculty of Computer Science. Halifax, Nova
Scotia, B3H 1W5. Canada. http://www.cs.dal.ca

architecture – the number of experts, their inputs and inputs
received by the gate network.

The approach followed here is therefore to first
formulate a preprocessing scheme capable of introducing
the necessary partitions, section II . Secondly, to compare
MoE solutions formulated with and without the proposed
preprocessing, section IV. Hereafter, MoE-I is used to
denote the standard approach, and MoE-II used in the case
of the pre-processed scheme. Section III is devoted to the
detailed description of all the algorithms involved. In
section V, we will further discuss the results and highlight
potential future work.

II . DESIGN ISSUES

The design issues are mainly concerned with the formation
of the preprocessing module in MoE-II .

A. Primary clustering of input data

Preprocessing partitions the input data, and therefore
provides hints regarding the number of expert networks
necessary in the MoE and their relations to the input space.
Kohonen's self-organizing feature map (SOM) is used for
this purpose [3]. In particular, nodes in the SOM provide a
topological organization of features drawn from the input
space (i.e. “spatial locations of the neurons in the lattice
are indicative of intrinsic statistical features contained in
the input patterns” [3]). As a consequence, SOM nodes may
themselves be grouped into regions/ partitions and
employed as inputs to different expert networks of the MoE.
That is to say, different experts are restricted to different
partitions from the SOM. Finally, as the gate of the MoE is
responsible for determining the expert mixture, the SOM
node representing the ‘mean’ of each SOM partition is
forwarded to the gate. Thus, for ‘q’ partitions identified by
the SOM, there are ‘q’ experts and ‘q’ inputs to the gate
network. Note however that the objective of the process is
to identify the significance of knowledge, gleaned from the
data itself, to structure the inputs presented to the MoE.
This is rather different from employing principal component
analysis to the initial data; in which case each expert and
gate still see the same input space. Moreover, such a
transform does not necessarily represent a good pre-
processing step for classification problems on its’ own (c.f.
most expressive features and most discriminating features
[4]). Finally, the computational over head of PCA on some
applications can preclude it’s application.

Formulating partitions on SOM architectures has been of
particular interest to the data-mining community [5].

Input Partitioning to Mixture of Experts

Bin Tang, Malcolm I. Heywood, Member, IEEE, and Michael Shepherd

Moreover, by first using an SOM and then partitioning it,
significant computational speedups are acknowledged [5],
as well as reducing sensitivity to the selection of the SOM
node parameter (number of nodes and topology of initial
map). Thus the second level clustering will ‘prune’
superfluous SOM nodes (represent noise in the input data
[6]) as well as identifying the regions forwarded to the
MoE.

B. Clustering on SOM

Properties of significance to the clustering problem
context here include: 1) robustness in preference to outright
optimality of the clusters, 2) the number of regions should
be derived from the data, 3) provides crisp as opposed to
fuzzy regions. To this end the Potential Function method is
employed [7], section III .B. The result of this clustering
process is an assignment of SOM nodes into regions fed to
individual MoE experts or to the set of redundant nodes.
Moreover, the Potential Function method as applied here
defines a region ‘center’ point in terms of corresponding
SOM node. Each instance of these nodes is forwarded to the
gating network of the MoE to provide the ‘global’ view
necessary to establish expert interaction.

III . LEARNING ALGORITHM DETAILS

The Mixture of Experts model (MoE) of [1], [2] is
followed for application to a classification as opposed to a
regression problem context. Algorithms for MoE-I and
MoE-II are described in detail i n the following subsections.
All the programming is implemented under MATLAB 5.3
development environment [8].

A. MoE-I

MoE-I represents the standard MoE configuration as
trained under a gradient descent-learning algorithm. An
Expectation-Maximization algorithm has also been reported
[1, 2], but given the interest in the preprocessing process in
this work, it is not used here. The network is composed of K
experts and one gating network. Each expert is composed of
M input nodes and one output node. The gating network is
composed of M input nodes, and K output nodes, such that
there is a single output for every expert. Each expert and the
gating network are fully connected, but in the case of this
work are limited to a single layer. The whole network is
trained under a supervised learning context. The detailed
learning process is summarized as follows:
• Assign random weight values to all the links between

input nodes and output nodes for all the experts, where
wki, k = 1...K, i = 1...M; and for the gating network
weights, aik, k = 1...K, i = 1...M.

• Present an input pattern, (x , d), x is a vector of size
M, d is the supposed target class ID 0 or 1.

• Each expert computes its output by:
vk(t) = wki xi(t);
yk(t) = logsig (vk(t));

• For the gating network, a softmax activation function
is necessary:

gk =

∑
=

K

j
k

k

u

u

1

)exp(

)exp(
 ; k =1, 2, ..., K

where uk = xaT
k , k = 1, 2, ..., K.

• The overall output of the network combines gate and
expert outputs,

y = ∑
=

K

k
kk yg

1

; k = 1, 2, ..., K.

• According to the target value d, error e is defined as,
 e = d − y

• Posterior probabilit y is defined as,

∑ =
−

−

−
−=

1

1

1

)1(
)1(

j

d
j

d
jj

d
i

d
ii

i yyg

yyg
h

• The weights wki, and aik are updated by the following

rules:
wi(t + 1) = wi(t) + τ[wi(t) − wi(t − 1)] + ηhi(t)ei(t)xi

ai(t + 1) = ai(t) + τ[ai(t) − ai(t − 1)] + η[hi(t) − gi(t)]xi

where η is the learning rate, τ is the momentum term
constant.

• The updates on the weights stopped when certain
stopping criteria is met.

B. MoE-II

1) Pre-processing module

a. Self-Organizing Feature Map

Kohonen's Self-Organizing Feature Map (SOM) algorithm
is an unsupervised learning algorithm. The learning is
detailed as follows:
• Assign random weight values for each node in the

network, wij ;
• Upon presenting an input pattern x, calculate the

distance between x and each neuron j represented by
the weight vector, wj, identifying the winning neuron

as { }jj wx −minarg , where . is the Euclidean

norm.
• Adjust the weights of neighborhood of the winner

neuron by:
wij(t + 1) = wij(t) + η(t)K(j,t){ xi(t) − wij(t)} , where η(t)
is the learning rate at epoch t, and K(j,t) is a suitable
neighborhood function, in this case of a Gaussian
nature;

• Repeat step 2-3 until convergence, in this case, when
the absolute squared weight changes is smaller than
0.02 over 2500 epochs.

b. Clustering of the realized SOM

To partition the SOM into regions, we utili ze a robust
Potential Function clustering method proposed by Chiu [9],
as follows:

• Take each SOM node wj as potential cluster center,
calculate its influence on all the other nodes wi as

()∑
=

−−=
N

i
jii wwP

1

2
exp α ,

where

γ
α

α
2

4= and γα is a positive constant, a

default value of 4 is used.
• Select the node with the highest potential as the first

cluster center, wj(0)* and its potential as Pj(0)*, revise
the potential of other nodes by subtracting wj’s
potential as

 −−−=
2**)0(exp)0(jijii wwPPP β and

γβ

β
2

4= ; a good choice of γβ is 1.5γα.

• Then we select the node with the highest potential as
the second cluster center, revise the potentials of other
nodes as in step 2.

• Repeat step 2 and 3, until some termination criteria
met. In this case,

if Pk
* > th Pj(0)*, accept w.k

* as cluster center and continue,
(th is predefined upper cut threshold, 0<tk<1, here
0.5 is used);

else if Pk
* < tl Pj(0)*, reject the new cluster center and end
the process, (tl is predefined lower cut threshold, 0
< tl < th, here tl = 0.1)

else let dmin= min{ ||w.k
* − wj(0)*||} , the minimum distance

between current center to all the other previously
determined centers.

if dmin/γα+ Pk
*
 / Pj(0)* ≥ 1, accept w.k

* as new cluster center
and continue,

else set Pk
* =0, reject w.k

*, select the next highest potential
as the new center and re-test.

As the result of step (b), SOM nodes are grouped into q
partitions, each with a specific SOM node identified as the
region centroid. That is to say, a natural consequence of the
Potential Function method is that not only are partition
centriods identified, but also nodes are assigned to regions
on a nearest neighbour basis.

c. Calculate SOM weight factors

As indicated above, the centroid for each region is also
forward to the gate in order to provide a “summary view” of
the input space without having to forward a vector over the
entire input dimension. To do so, the following
normalization is employed,
• Calculate the inverse distance of node j in cluster i to

its center ci as
d'(wjci, ci)=|| wjci-ci||

-1
• the weight factors are calculated as,

 −

 −= ∑
=

cwcwwf ij
toj

ijj c
c
d

c
d

c i

i

ii 1

''

C. Changes to the MoE module

With the preprocessing module in the front end, we build q
classifier experts, one for each SOM cluster. The number of
SOM nodes in each partition is automatically determined in
step (b) above, which is not necessarily equal for each
partition. The gating network receives input from the SOM
partition centroids, processed as per step (c) above. For any
input pattern, x, each SOM partition
• Forwards the Euclidean distance of each node to the

corresponding expert network (no winner takes all
rule) and,

• Forwards the value of the partition centroid to the gate
network.

These activities are detailed as follows,
1. Present a pattern x to the network.
2. Calculate the distance between x and every SOM

node, wjci, ci is the index for the cluster i, j is the node
index within cluster ci.

3. for expert i, the inputs are
djci (x, wjci) = ||x − wjci ||

4. for the gating network, its q inputs are the outputs
from each cluster centers, which is calculated as,

∑
=

×=
||

1

),()(
i

ii

c

j
jcjci wxdwfxgate

Once inputs for experts and gate are identified, operation
of the MoE then follows that detailed for MoE-I as in
section III .A.

IV. EXPERIMENTAL RESULTS

A. Performance Measures

For both architectures, MoE-I and MoE-II , experiments
are first conducted to identify best case parameter
combinations. With these parameter settings, two thirds of
the available data is randomly drawn and used for training,
the remaining third is used as the test set. For each data set,
30 trials are made under different weight initializations, the
mean and standard deviations of the error rates along with
the parameter setting are reported in Table 1.

For MoE-I, the important parameters are the learning
rate η, the momentum constant τ and the number of experts,
|EXPS|, which largely establish the computation limits of
the architecture. In the case of MoE-II , the parameters are
the learning rate η, the momentum constant τ and the
number of SOM nodes, |SOM|, and the number of the SOM
partitions, |SOMC|. The latter parameters establish the
computational limits of the architecture.

B. Data description.

Three benchmark data sets are taken to evaluate the
architectures, each representative of a binary classification

task. They are C_HEART, IONO and BREAST and
expressed as (attributes, patterns) pairs. C_HEART(13,
303), BREAST(9, 699), IONO(34, 351).

C. Results

Through all the experiments on different benchmark
data sets and some man-made artificial data sets, we notice
that keeping the learning rate low (0.1) is necessary for the
computation to converge. A momentum term is also
introduced such that, 1) the training error tends to accelerate
descent in downhill direction on the error surface, 2), when
downhill descent reaches a local or global minimum, the
momentum term tends to have stabili zing effect; 3) it may
also help to prevent the learning process from terminating in
shallow local minimum on error surface [9]. The
experiments here used values of 0.1 or 0.3.

From the results, it is apparent that MoE-II outperforms
MoE-I for both C_HEART and IONO data sets, and is
comparable with MoE-I for the BREAST data set. MoE-II
has noticeably lower error rates on the C_HEART and
IONO data, whereas error rates for the BREAST data are
indistinguishable compared to that of MoE-I. It is noticeable
that for all the data set, MoE-II has smaller standard
deviation in its errors when compared to MoE-I.

TABLE I
TEST DATA ERROR OVER 30 RUNS

 CH CH BR BR IONO IONO

 MoEI MoEII MoEI MoEII MoEI MoEII

mean 0.232 0.204 0.037 0.042 0.107 0.058

std 0.039 0.029 0.014 0.006 0.034 0.033

η 0.01 0.01 0.01 0.01 0.01 0.01

τ 0.3 0.7 0.3 0.1 0.1 0.1

|EXP| 12 12 23

|SOM| 72 90 72

|SOMC| 18 18 36

EP 400 400 400 300 200 400

Note: CH: C_HEART data set, BR: BREAST data set, IONO: IONO data
set. EP: the epoch we stop training, and begin performance measure on
test data.

During training sessions, MoE-I and MoE-II have
drastically different behaviours. For MoE-I, the training
curve starts with very deep descent during the early epochs,
soon flattening out and remains almost the same until the
end of the training session. The training error reaches low
values at a rather early stage of training. For instance, for
C_HEART data, under the best parameter combination,
after 250 epochs, the training error nearly reaches zero. On
the other hand, the behavior of test curve is rather random.
It often reaches a low valley very quickly, but then
continues to steeply climb. The starting point of the test
curve is rather random, and the position when the valley
occurs is also random. From our experiments, it is very
diff icult, if not impossible, to derive any heuristic rules to
determine the position of low valley on test curve for better
error rate values. It is fair to say, at least in the experiments
and data sets reported here, that there is littl e correlation

between the training curve and the test curve. This is well
illustrated in Fig1. In contrast, for MoE-II , good correlation
between the training and test curves is achieved. Both start
with deep descent with similar speed and slope, and then
follow a flattened long tail . The training curve remains
reasonably low, near 0.1 for C_HEART, while the test
curve remains nearly twice of that of training curve. The
training curve and test curve of MoE-II show stable
behavior in contrast to that of MoE-I. This is clearly
ill ustrated in Fig2.

 Fig 1. MoE-I for C_HEART, 19th run.
 (upper curve is test error, lower curve is training error)

 Fig 2. MoEII for C_HEART, 3rd run.
 (upper curve is test error, lower curve is training error)

MoE-I alone therefore appears to be is a less robust
architecture than MoE-II . Moreover, when searching for
suitable combinations of learning parameters, it proved to
be a rather harder task for MoE-I than for MoE-II . Little
deviation from the “optimal” combination of training
parameters would cause drastic changes in the final results.
For MoE-II , a deviation from the “optimal” parameter
setting would only cause minor degradation in the overall
performance. This observation is also reflected in the
sensitivity to MoE network nodes under both architectures.
MoE-I becomes even less stable, resulting in further over
fitting shown on the test curve. On the contrast, MoE-II is
much more graceful it any deviation between test and
training performance.

For the IONO data set, similar behavior patterns of the
two architectures are observed. Under the best parameter
settings, MoE-I shows strong randomness and less coupling
between the training curve and the test curve. Fig 3
ill ustrates one common run. For MoE-II , the training curve
and the test curve are strongly coupled, indicating that the
learned network based on training data generalizes well on
test data. One such example is shown in Fig 4.

Similarly, for BREAST data set, there is a tighter
coupling between training curve and test curve with MoE-II ,
while there is more randomness with MoE-I. The trend is
not as obvious as with the other two data sets, since both
MoE-I and MoE-II reach indistinguishably low error rates.

Fig 3. MoE-I for IONO, 24th run.

 (upper curve is test error, lower curve is training error)

Fig 4. MoE-II for IONO, 30th run.

 (upper curve is test error, lower curve is training error)

As indicated during the introduction, a major motivation
of this work is to improve the transparency of the network
following convergence. By scrutinizing the roles played by
the experts in decision-making we are able to associate
experts with classes for MoE-I and classes with partitioned
inputs in the case of MoE-II . To do so, a count is made of
the instances in which a gate value larger than some
threshold value (25%, 60%) occurs. For different threshold
values, the general trends are found to hold true. For
instance, on MoE-II with CHEART data, experts have a

clear role division in the classification task, Fig 5. Expert 5
is the decision maker for class 1 data with a minor influence
from expert 7. Experts 8 and 13 mainly identify class 0 data,
with a minor contribution from expert 9. This is an
interesting result as it indicates that assigning local regions
of the input space to each MoE expert has not resulted in
complex expert combinations to solve the overall
classification problem.

On the other hand, in MoE-I, Fig 6, the experts play
complex roles in forming the decision function. For class 1,
expert 1 is the major decision maker with minor help from
expert 7. While, for class 0, the decision making task is
distributed over many experts (expert 2, 3, 5, 7, 11). Also
we notice that the discriminating abilit y of each expert is
not as strong as that in MoE-II . For instance, for some of
the decision makers of class 0 data, experts (5, 7, 11), they
also participate in the identification for class 1 data in a
non-negligible manner.

CHEART MoE-II

0
10
20
30
40
50
60
70
80
90

5 7 8 9 13 5 7 8 9 13

experts

ga
te

va
lue

 co
un

ts class 0

class 1

Fig 5. MoE-II gate plots for CHEART on run 3.
 (unimportant experts, gate counts < 10 for both classes, are omitted)

CHEART MoE-I

0
10
20
30
40
50
60
70
80
90

1 2 3 5 7 11 1 2 3 5 7 11

experts

ga
te

 v
al

ue
 c

ou
nt

s

class 0

class 1

Fig 6. MoE-I gate plots for CHEART on run 19.
 (unimportant experts, gate counts < 10 for both classes, are omitted)

g>0.25 g>0.6

g>0.25 g>0.6

The unclear division of roles that experts played in
MoE-I compared to that in MoE-II is interesting. MoE-I
resulted in the distribution of the decision function for all
the data over all the experts on an instance-by-instance base
(case of multiple experts contributing to both classes). On
the other hand, in MoE-II , experts and gating network base
their judgments on preprocessed, de-noised, abstracted
features rather than the raw data. Since the experts are
directly linked to specific (SOM) feature regions, there
appears to be a better abilit y for identifying relationships
between payoff and most applicable expert-input partition.
This speculation is supported by the strong discriminating
abilit y exhibited by the experts in MoE-II .

V. CONCLUSION

Experiments are conducted with the Mixture of Experts
architecture, but under different pre-processing conditions,
in this case designed to identify partitions regarding the
association of inputs to experts in the MoE. Such a scheme
provides: 1) better generalization abilit y, 2) robust and
stable to parameter selection, and 3) makes the contribution
between experts clearer.

Factors contributing to this conclusion are, 1) pre-
processing module divides the input space into partitions
according to the underlying probabilit y distribution of the
data, 2) partitioning determines the number of experts in
MoE, (same as the number of regions in the SOM), 3) given
any pattern, due to the preprocessing, each expert is
selectively given stronger or weaker pre-processed signals,
this leading to a clearer distinction between expert
“ responsibiliti es” , 4) noise in the input space is reduced
within the preprocessing module, therefore, each expert
only handles the de-noised, preprocessed signals, 5) gating
network still receives inputs representative of the ‘global
problem’.

This work can be extended in the following directions.
Firstly, we are naturally interested in the use of hierarchical
MoE architectures and the significance of hierarchical
(SOM) partitioning for determining the MoE architecture.
Secondly, extensions to the case of multi -class classification
problems are to be verified. Thirdly, so far all the data sets
we have deal with a relatively low dimension of input data,
from 9 to 34. The eventual aim will be to test MoE-II on
data with high dimensionally, for instance text classification
problems, which is a multi -class classification problem on
high dimensional data.

VI. REFERENCE
[1] M. I. Jordan and R. A. Jacobs. 1994., Hierarchical Mixtures of

Experts and the EM Algorithm. Neural Computation, vol 6, pp181-
214.

[2] M. I. Jordan and R. A. Jacobs. 1995., Modular and Hierarchical
Learning Systems. in M.A.Arbib, ed., The Handbook of Brain Theory
and Neural Networks, pp579-53, Cambridge, MA:MIT Press.

[3] T. Kohonen . 1990., The Self-Organizing Map. Proceedings of the
IEEE . Vol 78. No.9. p1464-1480.

[4] Swets D., Weng J.J., “Using discriminant eigenfeatures for image
retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intell igence. 18(8), pp 831-835, Aug. 1996.

[5] B. Fritzke 1993. Kohonen Feature Maps and Growing Cell Structures
- a Performance Comparison. Advances in Neural Information
Processing Systems 5. p123-170

[6] J. Vesanto and E. Alhoniemi. 2000. Clustering of the Self-Organizing
Map. IEEE Transactions on Neural Networks. Vol 11. No.3 P 586-
600.

[7] R. N. Devé and R. Krishnapuram . 1997. Robust Clustering Methods:
A United View. IEEE Transactions on Fuzzy Systems. Vol 5. No. 2.
P270-293.

[8] H. Demuth and M. Beale. Matlab -Neural Network Toolbox, Users
Guide 4.0; http://www.mathworks.com

[9] S. L. Chiu. 1994. Fuzzy Model Identification Based on Cluster
Estimation. Journal of Intell igent and Fuzzy Systems. Vol.2 p267-278.

