
   
Abstract— Under the M ixtures of Experts architecture a 
method for ‘designing’ t he number of experts and assigning 
local ‘ regions’ of the input space to individual experts is 
investigated. Classification performance and transparency of 
the scheme is found to be significantly better than that using a 
standard M ixtures of Experts.  
 
Index terms—Mixtures of Experts, Self-Organizing Feature 
Map, Potential Function Clustering, Classification. 
 

I. INTRODUCTION 

Divide and conquer has been shown to provide a 
particularly fruitful approach to machine learning in 
practice e.g. decision trees. Under this spirit, Jordan and 
Jacobs in [1, 2] proposed and studied a mixture of experts 
(MoE) model in which the divide and conquer paradigm 
was explicitly supported. Given a supervised learning 
context, the MoE approach uses several neural networks in 
parallel to provide a modular solution to the overall 
problem. However, rather than a priori assume a piecewise 
linear solution to the problem, an additional ‘gate’ network 
is used to associate input conditions with experts. This may 
result in multiple experts being ‘mixed’ or ‘switched 
between’ in order to provide the desired mapping. In 
addition, the scheme can be extended to provide multiple 
layers, thus supporting divide and conquer multiple times 
[1, 2]. 

In this work our interest lies on identifying what inputs 
to feed each expert. That is to say, without a priori 
knowledge, each expert and gate receives all i nputs. 
Naturally, applying a transform to the original data, so 
reducing the initial dimensionality, can alleviate this 
problem and the raw count of inputs routed to each MoE 
‘component’ (e.g. principal component analysis). This 
however does not change the fact that all i nputs require 
forwarding to each ‘component’ of the MoE network. The 
interest of this work is to assess the significance of using a 
cluster based preprocessing step to partition the initial input 
space. Our hypothesis is that different partitions may be 
forwarded to different experts without reducing 
performance, thus supplying additional transparency 
regarding the solution formed. Moreover, such a scheme 
also explicitly determines the (single layer) MoE 
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architecture – the number of experts, their inputs and inputs 
received by the gate network. 

The approach followed here is therefore to first 
formulate a preprocessing scheme capable of introducing 
the necessary partitions, section II . Secondly, to compare 
MoE solutions formulated with and without the proposed 
preprocessing, section IV. Hereafter, MoE-I is used to 
denote the standard approach, and MoE-II used in the case 
of the pre-processed scheme. Section III is devoted to the 
detailed description of all the algorithms involved. In 
section V, we will further discuss the results and highlight 
potential future work. 

II . DESIGN ISSUES 

The design issues are mainly concerned with the formation 
of the preprocessing module in MoE-II . 

A. Primary clustering of input data  

Preprocessing partitions the input data, and therefore 
provides hints regarding the number of expert networks 
necessary in the MoE and their relations to the input space. 
Kohonen's self-organizing feature map (SOM) is used for 
this purpose [3]. In particular, nodes in the SOM provide a 
topological organization of features drawn from the input 
space (i.e. “spatial locations of the neurons in the lattice 
are indicative of intrinsic statistical features contained in 
the input patterns” [3]). As a consequence, SOM nodes may 
themselves be grouped into regions/ partitions and 
employed as inputs to different expert networks of the MoE. 
That is to say, different experts are restricted to different 
partitions from the SOM. Finally, as the gate of the MoE is 
responsible for determining the expert mixture, the SOM 
node representing the ‘mean’ of each SOM partition is 
forwarded to the gate. Thus, for ‘q’ partitions identified by 
the SOM, there are ‘q’ experts and ‘q’ inputs to the gate 
network. Note however that the objective of the process is 
to identify the significance of knowledge, gleaned from the 
data itself, to structure the inputs presented to the MoE. 
This is rather different from employing principal component 
analysis to the initial data; in which case each expert and 
gate still see the same input space. Moreover, such a 
transform does not necessarily represent a good pre-
processing step for classification problems on its’ own (c.f. 
most expressive features and most discriminating features 
[4]). Finally, the computational over head of PCA on some 
applications can preclude it’s application. 

Formulating partitions on SOM architectures has been of 
particular interest to the data-mining community [5]. 

 

Input Partitioning to Mixture of Experts 

Bin Tang, Malcolm I. Heywood, Member, IEEE, and Michael Shepherd 



Moreover, by first using an SOM and then partitioning it, 
significant computational speedups are acknowledged [5], 
as well as reducing sensitivity to the selection of the SOM 
node parameter (number of nodes and topology of initial 
map). Thus the second level clustering will ‘prune’ 
superfluous SOM nodes (represent noise in the input data 
[6]) as well as identifying the regions forwarded to the 
MoE. 

B. Clustering on SOM 

Properties of significance to the clustering problem 
context here include: 1) robustness in preference to outright 
optimality of the clusters, 2) the number of regions should 
be derived from the data, 3) provides crisp as opposed to 
fuzzy regions. To this end the Potential Function method is 
employed [7], section III .B. The result of this clustering 
process is an assignment of SOM nodes into regions fed to 
individual MoE experts or to the set of redundant nodes. 
Moreover, the Potential Function method as applied here 
defines a region ‘center’ point in terms of corresponding 
SOM node. Each instance of these nodes is forwarded to the 
gating network of the MoE to provide the ‘global’ view 
necessary to establish expert interaction. 

III . LEARNING ALGORITHM DETAILS 

The Mixture of Experts model (MoE) of [1], [2] is 
followed for application to a classification as opposed to a 
regression problem context. Algorithms for MoE-I and 
MoE-II are described in detail i n the following subsections. 
All the programming is implemented under MATLAB 5.3 
development environment [8]. 

A. MoE-I 

MoE-I represents the standard MoE configuration as 
trained under a gradient descent-learning algorithm. An 
Expectation-Maximization algorithm has also been reported 
[1, 2], but given the interest in the preprocessing process in 
this work, it is not used here. The network is composed of K 
experts and one gating network. Each expert is composed of 
M input nodes and one output node. The gating network is 
composed of M input nodes, and K output nodes, such that 
there is a single output for every expert. Each expert and the 
gating network are fully connected, but in the case of this 
work are limited to a single layer. The whole network is 
trained under a supervised learning context. The detailed 
learning process is summarized as follows: 
• Assign random weight values to all the links between 

input nodes and output nodes for all the experts, where 
wki, k = 1...K, i = 1...M; and for the gating network 
weights, aik, k = 1...K, i = 1...M. 

• Present an input pattern, (x , d), x is a vector of size 
M, d is the supposed target class ID 0 or 1. 

• Each expert computes its output by: 
vk(t) = wki xi(t); 
yk(t) = logsig (vk(t)); 

• For the gating network, a softmax activation function 
is necessary: 
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• According to the target value d, error e is defined as, 
 e = d − y 

• Posterior probabilit y is defined as,  
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• The weights wki, and aik are updated by the following 

rules: 
wi(t + 1) = wi(t) + τ[wi(t) − wi(t − 1) ] + ηhi(t)ei(t)xi 

ai(t + 1) = ai(t) + τ[ai(t) − ai(t − 1)] + η[hi(t) − gi(t)]xi 

where η is the learning rate, τ is the momentum term 
constant. 

• The updates on the weights stopped when certain 
stopping criteria is met. 

B. MoE-II  

1)        Pre-processing module 

a. Self-Organizing Feature Map 

Kohonen's Self-Organizing Feature Map (SOM) algorithm 
is an unsupervised learning algorithm. The learning is 
detailed as follows: 
• Assign random weight values for each node in the 

network, wij ; 
• Upon presenting an input pattern x, calculate the 

distance between x and each neuron j represented by 
the weight vector, wj, identifying the winning neuron 

as { }jj wx −minarg , where . is the Euclidean 

norm. 
• Adjust the weights of neighborhood of the winner 

neuron by: 
wij(t + 1) = wij(t) + η(t)K(j,t){ xi(t) − wij(t)} , where η(t) 
is the learning rate at epoch t, and K(j,t) is a suitable 
neighborhood function, in this case of a Gaussian 
nature; 

• Repeat step 2-3 until convergence, in this case, when 
the absolute squared weight changes is smaller than 
0.02 over 2500 epochs. 

b. Clustering of the realized SOM 

To partition the SOM into regions, we utili ze a robust 
Potential Function clustering method proposed by Chiu [9], 
as follows: 



• Take each SOM node wj as potential cluster center, 
calculate its influence on all the other nodes wi as  
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default value of 4 is used. 
• Select the node with the highest potential as the first 

cluster center, wj(0)* and its potential as Pj(0)*, revise 
the potential of other nodes by subtracting  wj’s 
potential as  
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• Then we select the node with the highest potential as 
the second cluster center, revise the potentials of other 
nodes as in step 2.  

• Repeat step 2 and 3, until some termination criteria 
met. In this case,  

if Pk
* > th Pj(0)*, accept w.k

* as cluster center and  continue, 
(th is predefined upper cut threshold, 0<tk<1, here 
0.5 is used); 

else if Pk
* < tl Pj(0)*, reject the new cluster center and end 
the process, (tl is predefined lower cut threshold, 0 
< tl < th, here tl = 0.1) 

else let dmin= min{ ||w.k
* − wj(0)*||} , the minimum distance 

between current center to all the other previously 
determined centers. 

if dmin/γα+ Pk
*
 / Pj(0)* ≥ 1, accept w.k

* as new cluster center 
and continue,  

else set Pk
* =0, reject w.k

*, select the next highest potential 
as the new center and re-test. 

 
As the result of step (b), SOM nodes are grouped into q 
partitions, each with a specific SOM node identified as the 
region centroid. That is to say, a natural consequence of the 
Potential Function method is that not only are partition 
centriods identified, but also nodes are assigned to regions 
on a nearest neighbour basis.  

c. Calculate SOM weight factors 

As indicated above, the centroid for each region is also 
forward to the gate in order to provide a “summary view” of 
the input space without having to forward a vector over the 
entire input dimension. To do so, the following 
normalization is employed, 
• Calculate the inverse distance of node j in cluster i to 

its center ci as  
d'(wjci, ci)=|| wjci-ci||

-1 
• the weight factors are calculated as,  
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C. Changes to the MoE module 

With the preprocessing module in the front end, we build q 
classifier experts, one for each SOM cluster. The number of 
SOM nodes in each partition is automatically determined in 
step (b) above, which is not necessarily equal for each 
partition. The gating network receives input from the SOM 
partition centroids, processed as per step (c) above. For any 
input pattern, x, each SOM partition 
• Forwards the Euclidean distance of each node to the 

corresponding expert network (no winner takes all 
rule) and, 

• Forwards the value of the partition centroid to the gate 
network. 

These activities are detailed as follows, 
1. Present a pattern x to the network. 
2. Calculate the distance between x and every SOM 

node, wjci, ci is the index for the cluster i, j is the node 
index within cluster ci. 

3. for expert i, the inputs are  
djci (x,  wjci) = ||x − wjci || 

4. for the gating network, its q inputs are the outputs 
from each cluster centers, which is calculated as, 
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Once inputs for experts and gate are identified, operation 
of the MoE then follows that detailed for MoE-I as in 
section III .A. 

IV. EXPERIMENTAL RESULTS 

A. Performance Measures  

For both architectures, MoE-I and MoE-II , experiments 
are first conducted to identify best case parameter 
combinations. With these parameter settings, two thirds of 
the available data is randomly drawn and used for training, 
the remaining third is used as the test set. For each data set, 
30 trials are made under different weight initializations, the 
mean and standard deviations of the error rates along with 
the  parameter setting are reported in Table 1.  

For MoE-I, the important parameters are the learning 
rate η, the momentum constant τ and the number of experts, 
|EXPS|, which largely establish the computation limits of 
the architecture. In the case of MoE-II , the parameters are 
the learning rate η, the momentum constant τ and the 
number of SOM nodes, |SOM|, and the number of the SOM 
partitions, |SOMC|. The latter parameters establish the 
computational limits of the architecture.  

B. Data description.  

Three benchmark data sets are taken to evaluate the 
architectures, each representative of a binary classification 



task. They are C_HEART, IONO and BREAST and 
expressed as (attributes, patterns) pairs. C_HEART(13, 
303), BREAST(9, 699), IONO(34, 351). 

C. Results 

Through all the experiments on different benchmark 
data sets and some man-made artificial data sets, we notice 
that keeping the learning rate low (0.1) is necessary for the 
computation to converge. A momentum term is also 
introduced such that, 1) the training error tends to accelerate 
descent in downhill direction on the error surface, 2), when 
downhill descent reaches a local or global minimum, the 
momentum term tends to have stabili zing effect; 3) it may 
also help to prevent the learning process from terminating in 
shallow local minimum on error surface [9]. The 
experiments here used values of 0.1 or 0.3.  

From the results, it is apparent that MoE-II outperforms 
MoE-I for both C_HEART and IONO data sets, and is 
comparable with MoE-I for the BREAST data set. MoE-II 
has noticeably lower error rates on the C_HEART and 
IONO data, whereas error rates for the BREAST data are 
indistinguishable compared to that of MoE-I. It is noticeable 
that for all the data set, MoE-II has smaller standard 
deviation in its errors when compared to MoE-I.  
 

TABLE I 
TEST DATA ERROR OVER 30 RUNS 

 CH CH BR BR IONO IONO 

 MoEI MoEII MoEI MoEII MoEI MoEII 

mean 0.232 0.204 0.037 0.042 0.107 0.058 

std 0.039 0.029 0.014 0.006 0.034 0.033 

η 0.01 0.01 0.01 0.01 0.01 0.01 

τ 0.3 0.7 0.3 0.1 0.1 0.1 

|EXP| 12  12  23  

|SOM|  72  90  72 

|SOMC|  18  18  36 

EP 400 400 400 300 200 400 

Note: CH: C_HEART data set, BR: BREAST data set, IONO: IONO data 
set. EP: the epoch we stop training, and begin performance measure on 
test data. 

During training sessions, MoE-I and MoE-II have 
drastically different behaviours. For MoE-I, the training 
curve starts with very deep descent during the early epochs, 
soon flattening out and remains almost the same until the 
end of the training session. The training error reaches low 
values at a rather early stage of training. For instance, for 
C_HEART data, under the best parameter combination, 
after 250 epochs, the training error nearly reaches zero. On 
the other hand, the behavior of test curve is rather random. 
It often reaches a low valley very quickly, but then 
continues to steeply climb. The starting point of the test 
curve is rather random, and the position when the valley 
occurs is also random. From our experiments, it is very 
diff icult, if not impossible, to derive any heuristic rules to 
determine the position of low valley on test curve for better 
error rate values. It is fair to say, at least in the experiments 
and data sets reported here, that there is littl e correlation 

between the training curve and the test curve. This is well 
illustrated in Fig1. In contrast, for MoE-II , good correlation 
between the training and test curves is achieved. Both start 
with deep descent with similar speed and slope, and then 
follow a flattened long tail . The training curve remains 
reasonably low, near 0.1 for C_HEART, while the test 
curve remains nearly twice of that of training curve. The 
training curve and test curve of MoE-II show stable 
behavior in contrast to that of MoE-I. This is clearly 
ill ustrated in Fig2.  
 

 
         Fig 1. MoE-I for  C_HEART, 19th run.  
           (upper curve is test error, lower curve is training error) 

 
 Fig 2. MoEII for C_HEART, 3rd run. 
           (upper curve is test error, lower curve is training error) 
  

MoE-I alone therefore appears to be is a less robust 
architecture than MoE-II . Moreover, when searching for 
suitable combinations of learning parameters, it proved to 
be a rather harder task for MoE-I than for MoE-II . Little 
deviation from the “optimal” combination of training 
parameters would cause drastic changes in the final results. 
For MoE-II , a deviation from the “optimal” parameter 
setting would only cause minor degradation in the overall 
performance. This observation is also reflected in the 
sensitivity to MoE network nodes under both architectures. 
MoE-I becomes even less stable, resulting in further over 
fitting shown on the test curve. On the contrast, MoE-II is 
much more graceful it any deviation between test and 
training performance.  



For the IONO data set, similar behavior patterns of the 
two architectures are observed. Under the best parameter 
settings, MoE-I shows strong randomness and less coupling 
between the training curve and the test curve. Fig 3 
ill ustrates one common run. For MoE-II , the training curve 
and the test curve are strongly coupled, indicating that the 
learned network based on training data generalizes well on 
test data. One such example is shown in Fig 4.  

Similarly, for BREAST data set, there is a tighter 
coupling between training curve and test curve with MoE-II , 
while there is more randomness with MoE-I. The trend is 
not as obvious as with the other two data sets, since both 
MoE-I and MoE-II reach indistinguishably low error rates. 

 

 
Fig 3. MoE-I for IONO, 24th run. 

           (upper curve is test error, lower curve is training error) 

 
Fig 4. MoE-II for IONO, 30th run. 

          (upper curve is test error, lower curve is training error) 
  

As indicated during the introduction, a major motivation 
of this work is to improve the transparency of the network 
following convergence. By scrutinizing the roles played by 
the experts in decision-making we are able to associate 
experts with classes for MoE-I and classes with partitioned 
inputs in the case of MoE-II . To do so, a count is made of 
the instances in which a gate value larger than some 
threshold value (25%, 60%) occurs. For different threshold 
values, the general trends are found to hold true. For 
instance, on MoE-II with CHEART data, experts have a 

clear role division in the classification task, Fig 5. Expert 5 
is the decision maker for class 1 data with a minor influence 
from expert 7. Experts 8 and 13 mainly identify class 0 data, 
with a minor contribution from expert 9. This is an 
interesting result as it indicates that assigning local regions 
of the input space to each MoE expert has not resulted in 
complex expert combinations to solve the overall 
classification problem. 

On the other hand, in MoE-I, Fig 6, the experts play 
complex roles in forming the decision function. For class 1, 
expert 1 is the major decision maker with minor help from 
expert 7. While, for class 0, the decision making task is 
distributed over many experts (expert 2, 3, 5, 7, 11). Also 
we notice that the discriminating abilit y of each expert is 
not as strong as that in MoE-II . For instance, for some of 
the decision makers of class 0 data, experts (5, 7, 11), they 
also participate in the identification for class 1 data in a 
non-negligible manner. 
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Fig 5. MoE-II gate plots for CHEART on run 3. 
   (unimportant experts, gate counts < 10 for both classes, are omitted) 
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Fig 6. MoE-I gate plots for CHEART on run 19. 
   ( unimportant experts, gate counts < 10 for both classes, are omitted) 

g>0.25 g>0.6 

g>0.25 g>0.6 



The unclear division of roles that experts played in 
MoE-I compared to that in MoE-II is interesting. MoE-I 
resulted in the distribution of the decision function for all 
the data over all the experts on an instance-by-instance base 
(case of multiple experts contributing to both classes). On 
the other hand, in MoE-II , experts and gating network base 
their judgments on preprocessed, de-noised, abstracted 
features rather than the raw data. Since the experts are 
directly linked to specific (SOM) feature regions, there 
appears to be a better abilit y for identifying relationships 
between payoff and most applicable expert-input partition. 
This speculation is supported by the strong discriminating 
abilit y exhibited by the experts in MoE-II . 

V. CONCLUSION 

Experiments are conducted with the Mixture of Experts 
architecture, but under different pre-processing conditions, 
in this case designed to identify partitions regarding the 
association of inputs to experts in the MoE. Such a scheme 
provides: 1) better generalization abilit y, 2) robust and 
stable to parameter selection, and 3) makes the contribution 
between experts clearer. 

Factors contributing to this conclusion are, 1) pre-
processing module divides the input space into partitions 
according to the underlying probabilit y distribution of the 
data, 2) partitioning determines the number of experts in 
MoE, (same as the number of regions in the SOM), 3) given 
any pattern, due to the preprocessing, each expert is 
selectively given stronger or weaker pre-processed signals, 
this leading to a clearer distinction between expert 
“ responsibiliti es” , 4) noise in the input space is reduced 
within the preprocessing module, therefore, each expert 
only handles the de-noised, preprocessed signals, 5) gating 
network still receives inputs representative of the ‘global 
problem’.  

This work can be extended in the following directions. 
Firstly, we are naturally interested in the use of hierarchical 
MoE architectures and the significance of hierarchical 
(SOM) partitioning for determining the MoE architecture. 
Secondly, extensions to the case of multi -class classification 
problems are to be verified. Thirdly, so far all the data sets 
we have deal with a relatively low dimension of input data, 
from 9 to 34. The eventual aim will be to test MoE-II on 
data with high dimensionally, for instance text classification 
problems, which is a multi -class classification problem on 
high dimensional data. 
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