Modular Architectures for Non-Linear Control

Modular SRV Reinforcement Leaning Architeaures for Non-linea

Control

V.Paraskevopoul os*
M.l.Heywood?
C.R.Chatwin*

YUniversity of Sussex, iims, Schod of Engineering, Falmer Brighton, BN1 9QT, U K.
{V.Paraskevopouos, c.r.chatwin} @sussex.ac.uk
Dokuz EylUl University, Dept. of Computer Engineering, Bornova, I1zimr 3510Q Turkey
mheywood@cs.deu.edu.tr

Abstrad

This paper demonstrates the advantages of using a hybrid reinforcement—-modular neural network
architecture for nontlinear control. Specificdly, the method d AcTION-CRITIC reinforcement learning,
modular neural networks, competitive learning and stochastic updating are cmbined. This provides an
architecture &leto bah suppat temporal difference learning and probabilistic partitioning of the input
space. The latter is formed with the aid of competitive learning algorithms, so as to ensure suitable

partitioning of the expertsin the moduar network.

Application of this methoddogy to the pae-balancing benchmark nonlinear control problem
demonstrates superior partitioning of the inpu space, bettering that of equivalent reinforcement
networks; whilst avoiding the learning-to-learn nahing effect, as is often the case when performing

gradient decent over problems requiring adaptation over long temporal dependencies.

Keywords : Moduar neural networks, reinforcement learning, nortlinear control.

Modular Architectures for Non-Linear Control

1. Introdudion

The nonlinear modeling capability of neural networks has frequently provided the rationale for
investigating the gpropriateness of the technique to applications in norlinear control. The cntrol
problem, in its most general setting, represents the cmbination of a predictor and a function
approximator, although in most contexts sufficient data is available to enable the problem to be
modeled as a function approximator alone. By using the more genera context the predictor is
attempting to ensure that actions taken at some present time, t, by the goproximator, do not result in an
undesirable ation at some future point in time t + n. A reinforcement neural network architecure
naturally supports the predictor—approximator combination. That is to say the eror function hes little
distance and/ or state information, where this may also be subject to tempora discourting.
Architecturesinitialy designed for the reinforcement problem where limited to binary resporses[1, 2].
Gullapalli among others generali zed the achitecture to suppat rea valued resporses [3]. Furthermore,
the Stochastic Rea-Vaued (SRV) architecture proposed by Gullapalli naturaly encompasses the
division d duties between predictor and function approximator using unique networks. This is
important as it explicitly supports the decompasition d the training process into separate stages, an
important practicd consideration. The requirement for learning across temporal duration's may be
addres=ed using the method d temporal differences [4]. For example, such a combination has recently
been employed for iterative rescheduling of batch production dants[5].

Partitioning plays a central role in assisting fast convergence in reinforcement learning i.e.
simplifying the task of relating states from the input space to states in the output space. The objective
of this work is to provide the @pability for hierarchical partitioning within the CrRITIC and ACTION
networks themselves. One andidate for such a requirement is the Modular Network of Jacobs and
Jordan, where this enables the cmbination d simple networks through the cncept of gated expert
networks [6]. That is to say the function approximation activity is decompaosed into more simple
elements and then recombined.

Such a method is different from inpu space partitioning, where this is either defined a priori
[2] or encompassed within the adaptive process [7]. The former method obviousy has limited
application, whereas the second dten results in far too many clusters. This then makes the
identification d explicit control rules difficult. Here, however, a scheme based on ursupervised
clustering is used. The objective is nat just to provide adata driven method for deriving the input

space partitions, but also to avoid combinatorial increases in the number of clusters necessary to cover

Modular Architectures for Non-Linear Control

the input space. The intention is therefore to enable partitioning over three levels of the architecture.
That is the AcTION—CRITIC decompasition returally supparts the predictor—approximator partition.
Moduar networks are then employed in ead, thus decompasing the approximation problem further.
Finally, data driven clustering is used to form initial partitions of the input space.

Reinforcement learning, due to its temporal application hese, typicaly requires substantive
training before convergence is achieved [8]. As indicaed abowve partitioning is used extensively
throughou the achitecture in order to improve the efficiency of the adaptive process. The
methodology used to adapt the various comporents of the network, however, also has sgnificant
effeds on the rate of convergence. In particular a winner-takes-all scheme is employed in the gating
network of the moduar networks. This restricts weight updating to specific expert networks and
comporents of the gate & any one time.

The remainder of the paper defines how the ACTION—CRITIC architedure employs Mixture of
Experts paradigm to form the partitions as part of the adaptive process Section 2 describes the
algorithm; section 3 summaries the details of the combined architecture; section 4 demonstrates the
application d the system to the pole-balancing benchmark problem; section 5 summarizes related

work; and section 6 concludes the paper.

2. Defining the Training Algorithms

As indicated above, the reinforcement learning context represents an optimization problem in which
little distance and/ or sign information is available to guide the adaptive process To do so the
Stochastic Real-Vaued (SRV) method d Gullapali [3] is used to split the problem into two
comporents. Specificaly, the reinforcement leaning methodology [1, 2, 9] uses an ACTION network
for optimizing the resporse from the environment, r; and the criTIC network for providing a more
descriptive cost function, . In effed, the derived cost function d the cRITIC is used to control the
stochastic nature of the ACTION network.

The role of the criTIC network is therefore to predict the optimality of some previous action,
y(t-1); suppied as a ombination d stochastic exploration and ACTION network resporse, y(t —1). The
cycle between environment, CRITIC and ACTION network repeats until the environment supplies a
payoff dencting satisfaction d some end condtion. A further enhancement, however, is necessary. The
reinforcement learning problem as defined abowve represents the case of learning within an

environment with no temporal discourting. In order to suppat diredly the learning of sequences, the

Modular Architectures for Non-Linear Control

method of temporal difference learning is incorporated [4]. This reformulates the cost function such
that the cRITIC network acts as a multi-step look-aheal predictor evaluating the significance of the
present ACTION network response in terms of the future expected payoff [5]. The first enables the
introduction o modular networks in the CRITIC and ACTION comporents, thus facilitating faster, more
transparent learning. The second integrates identification of input space dusters using unsupervised
learning within the overall training algorithm.

As there is no povision for recurrent state feedback in the network, the input space is
partitioned into sectors. The network then learns to assciate the various sedors with good o poa
actions and predicted performance. Previous approaches either required a priori specification d the
relevant partitions of the input space [2], or used an adaptive fuzzy systems context [7] (generaly
results in a large number of rules). With this work, a different approach is taken to introducing the
partitions. The objective is to speed the learning processwhilst minimizing the arse of dimensionally
asociated with partitioning the input space using grid or mesh based approaches.

In particular the Mixtures of Experts (MoE) framework is employed, one each for the crITIC
and ACTION networks; section 31. Empirical experimentation havever, indicated that to perform
weight updating across all experts within the criTiIc and ACTION elements of the architecture did not
result in the required convergence. That is to say, the gate did na learn to partition the problem. This
was ratified by way of a winner-takes-all paradigm in which the gate resporse with the highest
probability indicates the ‘winning’ expert network. The weights of this expert and those aciated
with the assciated gate are then updited. The remaining gate parameters and expert networks are | eft
unchanged. This differs from previous approaches in which the experts are first trained as feature
vectors and the gate network is then applied to combine the features as per the cost function [10]. In
this case unsupervised clustering, applied to the input space but integrated into the overal training
procedure, provides this property; section 22. This combination d the MoE architedure and rough
clustering of the input space shifts the enphasis away from clustering the input space done. By doing
so the trained network is more opaque. Furthermore, the hierarchy of clusters enables the removal of
the hidden layer in the gates and experts. This reduces the significance of the initial network
conditions, as well as geeding the adaptive process withou significantly compromising the overall
network capadty for performing nortlinear mappings. The overall architecture of the proposed
network is simmarized by figure 1.

The manner in which petterns are presented to the network also has sgnificant bearing onthe
network’s ability to converge. The routine used in this case begins by applying patterns further to the
solution state and gradually includes dates requiring less difficult control actions. The am here is to

4

Modular Architectures for Non-Linear Control

avoid learning-to-learn nothing. The following subsections, detail the training algorithm employed to
adapt the criTic and AcTION networks individually and the integration d the inpu space dustering

procedure.

2.1. Training algorithm

As indicated abowve, the principle objective of this work is to provide an architecture, applicable to
problems of atempora nature, which maximizes the use of partitioning during adaptation. Use of such
a moduarized architecture enables a piecewise application d the training process such that different
modules of the network are adapted individually. That is to say, as the CRITIC and ACTION networks
perform diff erent tasks, training shoud focus on the needs of each individually. Furthermore, in order
to assst adaptation d the network as a whale, the training algorithm operates in two phases: pre-
training and training. The first phase begins with the criTiC aone. For this phase only the CRITIC is
pre-trained whilst the ACTION network is replaced by a suitable exciting function; in the case of the
pole-balance problem a sinusoid is used. The objedive is to enable the CRITIC hetwork to see asuitable
cross-section d plant states. That is, pre-training visits are guaranteed to visit conditions in which the
plant is far from optimal, hence the network has a lot to learn. Adaptation havever, ends when the
plant enters the null condtion, synonymous with a zero force, and the CrITIC corredly predicts this
(i.e. zero weight update coinciding with zero force). This action is necessary because if training
continues within the stable regions of control, then the network tends to lean-to-learn nahing™.
Completion d this phase produces a CRITIC with some experience, hence able to pre-train the ACTION
network.

In the second plase of pre-training, the pre-trained criTiIC network is used to judge the
performance of the ACTION network. The dm now is to tune the latter in such away that it manages to
control the plant for ideally all training petterns. Caution is taken nat to present the network with
patterns implying a zero initial force. Again thiswould result in the learning-to-learn nahing scenario.
Likewise, weight updating is inhibited when the control action approaches the nearly balanced region.
Completion d this phase produces an ACTION network capable of completing the training d the

CRITIC.

11t is acknowledged that this definition is aso far from optimal. Just because the plant controller
enters a zero action state, the plant is not necessarily continuoisly stable. However, to assume anymore

than this would erode the reinforcement learning context.

Modular Architectures for Non-Linear Control

The aim of the fina training cycle is to fine-tune the gate network of the CrRITIC moduar
network, with the ACTION network providing the control actions. The CRITIC is trained with the same
initial condtions as before, but is now trained urtil the gate network weight changes are minimized.
Although this phase enhances criTIC performance the same does not appear to be the ase for the

ACTION network. As aresult a secondtraining cycle of the latter is not performed.
2.2. Unsupervised clustering and stochastic parameter adaptation

The objective of the remaining component of the algorithm is to integrate the partitioning of the input
space with the remainder of the learning algorithm. Specificdly the partitions of the input space shoud
reflect the frequency of the states visited by the controller. Furthermore, the frequency with which
specific states are visited is likely to change as a function d the controller’s progression throughthe
various dages of training. This means that the dustering process is performed twice once before pre-
training and orce dter pre-training is completed.

The final amendment to the goproach originaly used [5] is to incorporate afully stochastic
weight change process (identified as the SWS-SWS algorithm later). Specifically, the Solis and Wets
stochastic weight updating process is employed [12]. This provides much better independence with
respect to the initial condtions. It aso avoids the requirement for a hidden layer, therefore reducing
training time and further improving invariance to initial condtions. The overall training algorithm for
the linear network is summarized as foll ows:

1. Clustering of the inpu space using an arbitrary force generator;

2. Pre-training of the CRITIC network for a mnstrained set of initial condtions,

3. Pre-training of the ACTION network for a cnstrained set of initial condtions;

4. Re-clustering of the input space using the pre-trained ACTION network
responses,

5. Repeat steps (2) and (3) for the compl ete set of training condtions.

3. Defining the Networks

In the following two formulations of the Mixtures of Experts (MOE) architecture are derived such that
they fit within the context of SRV reinforcement learning. One uses the MoE methoddogy explicitly
for the criITIC and a Soft Weight Sharing approach for the ACTION, first introduced by Nowlan [11];

Modular Architectures for Non-Linear Control

(SWS-MEnonlin). This produces a training algorithm based on a mixture of gradient and stochastic
processes. A further generdization provides a purely stochastic training agorithm using the method d
Solis and Wets [12]; for both AcTiION and CRITIC networks (SWS-SWSnorin). Two other
modifications are investigated, in this case the experts and gates of the MoE architecture do nd have a
hidden layer, herein referred to as SWS-MElin and SWS-SWSlin respectively. The section is
completed with a summary of the unsupervised learning algorithm used to perform the partitioning of
the inpu space.

3.1. Non-linea Modular Training Algorithm

3.1.1. ACTION network

The aim of the AcTioN network is to interact with the environment in such a way that the
reinforcement signal is maximized. Actions of the former network are examined arounda mean value

y and avariance o(t) [1]. Thisvariance is estimated by the equation:
k
o(t) = 5(1— tanh(p(t))

The scale parameter k is €leded as afunction of the dynamic range of the gplication damain; two in
the ase of the pole-balance problem, while p(t) is the CRITIC network output. The stochastic response

of the ACTION network is afunction of:
y(t) = N(y; (t),0(1))

where i indicates the expert and N(a, b) is a normal random variable with mean a, variance b. To
reiterate, the am of the optimizaion network is to maximize reinforcement, r(t), where the predictor
resporsible for deriving this, is based ona suitable regressor network. However, previous applications
of reinforcement leaning demonstrated the significance of partitioning the input space [1, 2]. As
indicated above this is to be incorporated using a wmbination o the Mixtures of Expert (MoE)
networks paradigm [4] and a very coarse partitioning of the inpu space (in the following application,
five Gaussian hesis functions per inpu). Control over the plant is expressed in terms of a normal

randam variable, with density function:

— 1 0 1 y_yi 0
f(9)= ameng'z ﬁzD (1)

Modular Architectures for Non-Linear Control

Since the reinforcement learning algorithm does not provide any explicit information abou a target
resporse, weight update eguations are a modified version d Gullipalis' weight change equation [3].
The modifications will focus on introducing stochastic updates on a Soft Weight Sharing basis [11]

with apenalty term for large weights [12]. As aresult the chain rule is formed as follows:

dr _ Jdr Jdc)

ay, Jdc dy;,

Thefirst term of equation (2) isthe infinite horizon temporal difference expression [4]:
or _
il UORSTORRCt?) 3

where r(t) is the reinforcement signa of the environment, and y is the discourt constant associated
with the horizon (being 0.95). The last term in equation (2) is the partia derivative of the Soft Weight
Sharing (SWS) cost function [11] with the penalty term for large weights defined by [13]. The main
reason for employing SWS as a cost function for the ACTION network, as opposed to the form used in
the origina moduar network [4], is to maintain structural simplicity. Hence with respect to (1) and
(2):
y2
c=y s(i-9)-Iny g o - (9;52)2 §+ VY R @)

20
R

That is, the stochastic weight update change for the neural network output layer using reinforcement

Ry

learning algorithm in the modular environment is:

a a

0 ZELQ 0
or _ or f . yi - 90 R?8 & 5
—=—0(y; - 9)-an + A o= o0(t,t-1) ()
dyi ﬁCD(')mam BTl 0 y,20%0

0 M + ZDD

g 0 R20 f

where A is a suitable value constant, h; is the posterior probability and R? is the maximum value f can

take; in the case of the pde-balancing problem 10. A reasonable cost function is obtained by
multiplying the second term of the equation by a cmnstant; o = ac, where aisasmall positive number.
The effect that this term has in the cost functionis significant because it keeps the values of equation 4
away from extremes. As a result training is more dfective, while network performance improves
significantly. Equation (5) is used to update the weights of the output layer of the ACTION network,
while the weight changes in the hidden layer of the experts are clculated by:

Modular Architectures for Non-Linear Control

aw{™ 1) = 18(tt-Dw * (net)y{1~? (t-1) ©

The moduar network will be compared against an MLP equivalent in order to determine the base line
performance and the anourt of improvement achieved by the proposed scenario. As far as the ACTION

network is concerned the weight update eguation for the non-modular network is given by [7]:

o _ _ H(t-1)-y(t-1)0
o 0Oy g @

The gate network in amoduar environment is resporsible for all ocating experts to specific regions of

the inpu space. In effect this means that different experts are asociated with dfferent condtions in
the state space. If no hidden layer exists, a gate network resporse using the winner-takes-all algorithm
ensures that only the expert and gate weights correspondng to such awinning noce ae updated. These

changes are described by the following equation [3, 4]:

al 7 ou; 2d(net)

AWi () =0 G =1 5u g (net) —ow,

= nlb (t-1-g, (t-0)1 (netct -) (1t - 1)

(8)

(1-1)
=nd (t,t - 1)x, (t -1)

3.1.2. MoE cRiTIC network

The other network using a modular architecture resides in the crITIC element of the SRV network. As
indicated abowve, the objective of the CRITIC isto predict the significance of the aurrent ACTION network
resporse and dscourt this against the time horizon d the tempora difference method [4]. The error
function for this network uses the same formulation as equation (3). Weight updating for the output
layer of the experts residing in the CRITIC is calculated using a derived application d the moduar
network objedive function[6]:

o a ay, _

ow, oy, ow,

Awi(t)=n

= nh, (t—l)ei (t—l)xi(i‘l)(t_]_) = nd(t,t—]_) ©

Modular Architectures for Non-Linear Control

3.1.3. SWScRITIC network

The @ove defined SWS-ME updbte relation is partially stochastic. SWS-SWS however, employs a
SWS equivalent of the ACTION, for the CRITIC, which is defined from Nowlan's Soft Weight Sharing
methodology [8]:

1. _nEer2
c=z§r2—ZInZgie 0.5¢ (10)

The first term represents misfit, while the latter describes data complexity. The CRITIC error function f

appeas in bah comporents of (10), while gj is the gate network contribution. The latter also uses the

log-likelihoodfunction wsed by the gate network. For the hidden layer the process is similar to the one
described by equation (6) for both versions, hence

tw () = 3t =g (=D net D)x! A (t-1) (11)

To summarize the equations describing the SWS-MEnon-lin and SWS-SWSnortlin agorithms are
(1)-(9) and (11), and (1)-(8) and (10)-(11) respectively.

3.2. Linear Modular Training Algorithm

The above represents the learning algorithm for the combined SRV-MoE SWS architecture. In section
4 this is implemented with MLP experts and foundto be sensitive to the initial conditions of the free
parameters. In order to minimize this eff ect a fully stochastic learning agorithm (as oppased the mixed
stochastic gradient descent regime described in section 31) isintroduced, the MLPs are replaced with
linear perceptrons, and data driven partitioning used instead of a priori partitioning.

Beginning with the latter requirement, many methods have been propcsed from simple
competitive learning, to EM type algorithms. Within this contest, most emphasis is attributed to the
integration d an owerall system; hence the clustering activity is to be achieved with a minimal
computational cost. To this end competitive learning is employed bu on two occasions. In the first
case the method is used to identify initial locations for the dusters based on data derived from a
sinusoidal forcing function. On the second acasion it is used to adjust the locations of the centersin
accordance with forcing functions provided by the pre-trained AcTioN network. Specificaly,
competitive learning wsing the insider role is employed (Hebbian weight adaptation with a forgetting
factor) as

10

Modular Architectures for Non-Linear Control

Awyg (1) = ayi (1) ex; (1) = wig (1)] (12

Estimation d the variance assciated with the RBF centers is now determined drectly from their

|ocation in accordance with:

o= NeYR (13

where d is the average distance between RBF centers and M is the number of centers. This clustering
processis applied in steps one and four of the overall algorithm (section 2.2). Weight update for the
ACTION network is derived solely using the SWS algorithm, while the CrRITIC uses both ME (SWS-
MEIin) and SWS (SWS-SWSlin), defined by equations (1-9 excluding 6 and (1-8 excluding 6and 10
respectively, while both including equations (12, 13) responsible for placing the RBF centers.

The second modification invalves replacing the MLP experts with a single layer of non-linear
perceptrons, trained using the stochastic algorithm of Solis and Wets [12]. This has the alvantage of
diredly suppating the SRV stochastic dgorithm of the reinforcement learning scheme, as well as
dropping the requirement for adapting a hidden layer. By doing so the dfect of initial conditions of the
free parameters on retwork are minimized. Spedfically the Solis and Wets weight updating a gorithm
consists of the following 3steps[12)]:

i) If E(Wk + Awk) < E(WK) then wk+1 = wk + Awk,
i) If E(wk — AwK) < E(WK) < E(WK + AwK) then wk+1 = wk — Awk,
iii) For the asethat noreis satisfied wk+1 = wk.

where E is the error as a function o weight, wk, and the corresponding weight change Awk at the kth
step.

4. Performance Evaluation

4.1 Pole-Balance problem

Asindicaed in sedion 1 evaluation d the proposed moduar SRV ACTION—CRITIC network is judged
against the pae-balancing reinforcement problem identified in [14] as a suitable benchmark problem
for non-linear control. This benchmark has been widely used for assessng the capability of different

reinforcement learning methoddogies[1, 2, 15].

11

Modular Architectures for Non-Linear Control

The inverted penduum plant consists of a cart that is free to travel in either direction along a
horizontal axis. Attached to the top surface of the cat is a penduum. This has two ‘rest positions’ the
first is horizontal with the plane of cart movement, and represents the failure state. The second is
vertical to the plane of cart movement and is considered to be the ideal solution state. There ae four

input variables: linear position of the cart alone the horizontal axis, X, where thisis measured in meters
from the center of movement; X is the mrrespondng linea velocity measured in m/sec angle of the
penduum, 6, measured in degrees from the upright position; and angular velocity of the latter 6
measured in rad/sec. The only parameter that the neural network can adjust to balance the penddum

(plant) is aforce f (measured in N) and applied to the cart along the horizontal axis. The equations of

motion governing the plant behavior are:

6(t+1) = 6(t) + AH(t)

masine(n) - cose(F () + myl(4(0) m280)” sino(0) - e son(u(0)g- 2

O(t+1)=06(t)+A (47 3)ml —mplcos2 o(t)

X(t+2) = x(t) + Ax(t)

10+ mpl 46 7/180)° sin6(t) - O(t) /180 cos§(t)5- 1o san(X(1))

m

X(t+1)=x(t)+A

For these eguations the values of constants are:
1) g = -9.81mV/sec? for the acderation o gravity.
2) m= 1.1 kg, for the massof the pae and cart combined.
3) mp = 0.1 kg, for the massof the pale.
4) | =0.5m, being half pale length.
5) Uc = 0.0005the mefficient of friction d the cart onthe track.
6) Hp = 0.000002 the mefficient of friction d the pole onthe crt.
7) A=0.002, Euler approximation sample step size.
The constraints that define the operating window (non-failure condtion) of the plant are: +12°

degrees for the angle; horizontal range of operation d +2.4 meters, while force must not exceed +10

12

Modular Architectures for Non-Linear Control

N. If any of these parameters are exceeded, the reinforcement signa from the environment is -1

indicating failure, while for al the other condtionsit is 1, indicating success.

4.2. Network Training and Test

A training cycle is condwcted using the 6 inpu patterns of table 1. Training continues urtil all patterns
have met the stoppng criteria. Generalization is tested by assessing performance on 32 urseen initia
conditions. These conditions are divided into two categories. those with the same horizonta
displacement, and those with the same angle. In case of the former, position d the art is considered to
be +1m while the angle varies between + 10° in increments of 2.5° degrees, repeating the test for a
position d —1m. In the second category the angle remains constant at 5°, while position varies between
+ 2.2 meters using increments of 0.6 meters, again repeating the test for an angle of —5°.

This approach dffers from that of most previous work in that the initial condtion was either
aways 0 for al parameters, in which case the network in effed learns-to-learn nothing [2, 7].
Alternatively, the initial input condtions are initialized to dfferent values after each failure of the
training algorithm, but training is considered complete when thefirst initial conditionisleant [1, 15].

The following study is in two parts. The first summarizes the performance achieved withou a
modular network in the respective ACTION and CRITIC elements and a priori partitioning of the inpu
space. Instead an MLP is used in each. These results provide aperformance base-line for assessing the
significance of the moduar schemes proposed in section 3 Part two assesss the performance of the
hierarchical modular schemes: SWS-ME and SWS-SWS. Two scenario’s are considered in each case,
the first in which linear MoE are used and the second in which the MoEs are dlowed to have a hidden
layer.

In each case performance will be assessed in terms of: robustness to the initia condtions of the
network; iterations to failure; and computational requirements during training. In terms of an idea

performance goal, bath short training times and good generalization ability are sought.

4.3. MLP Performance

In this sedion the performance of SRV ACTION—CRITIC networks using MLP and linear networks in the
ACTION—CRITIC elements is assessed. Weight updeting in the MLP and linear networks is performed

using equation (7) for the AcTION and standard BP in the case of the CRITIC network. Figure 2, columns

13

Modular Architectures for Non-Linear Control

1 and 3 summarize performance of the MLP scenarios in terms of the number of iterations before
failure on the training set (1% quartile, median and 39 quartile). At best most nonlinear MLP based
networks avoid failure for a few thousand iterations. Failure occurs orer in the case of the linea
scenario. Table 2, row 1 column 3, provides a T-test statistic of the similarity between the two
methods; the results are statistically independent with the nontlinear case typically performing better
than the linear case. In terms of training requirements on average it takes abou 400 iterations for the
MLP to converge while the linear network requires abou 200 iterations; figure 3, columns 1 and 4
However, computationally, the linear case is much faster; Figure 4, columns 1 and 4

Generdlization is assessed by examining network performance over the above 32 urseen input
conditions. Figure 2, columns 3 and 4 and Table 2, row 1 column 4, indicates that the both the linea
and the nonlinear MLP networks balance the penddum for a period consistent with that achieved
during training. Given the known nonlinear charaderistics of this problem, this is expected. Test
results for these achitectures do nd show a significant degree of performance discrepancy between the
different initiaizaion condtions. However, nore of the training or test condtions observed represent
a satisfactory control action. That is to say, the action for the cntroller in bah casesis unidirectional,
thus leading to the failure criteria. The networks investigated in this sedion therefore do nd provide a

sustainable @ntrol action onany initial penduum/ cart position.

4.4. Modular Network Performance

The previous ®dion indicated that the problem was not linearly separable using the combination o
short training cycles and SRV ACTION—CRITIC paradigm aone. Furthermore, the MLP version d this
architecture (i.e. incorporating non-linear learning capabilities) was not able to sufficiently generaize
the problem from the training set and convergence criteria enployed. This is not to say that an MLP
based SRV AcTION—CRITIC network is completely unable to solve the problem as paosed, but that the
resources necessary to adiieve this are in excess of those available in practice. By employing the
modular scheme under the same training conditions, an assessment of the significance of the propcsed
hierarchical moduar leaning agorithm is made.

The combination d the MoE architecture and partitioning of the input space leals to a larger
number of design decisions necessary to specify the network architecture. In this case the number of
MOoE experts and inpu space partitions is constrained to be the same. Empirical evaluation d the
network for different numbers of experts partitions quickly identified this design parameter through

evauation d the MoE gate response. Too few partitions lead to an ower reliance on the properties of

14

Modular Architectures for Non-Linear Control

the experts. Too many partitions lead to a high degree of overlap in the gating network, thus causing
poar partitioning between experts.

In this evaluation, two dfferent versions of the dgorithm for training the modular networks are
used. One amploys full SWS on bah comporents of the SRV AcTioN—CRITIC networks (SWS-SWSlin/
nortlin), while the other uses a cmbined SWS-ME scenario (SWS-MElin/ non-lin) [16]. As in the

previous ction evaluation begins with network performance over the training patterns.

4.4.1. Testing Network Learning Abiliti es.

Evaluation d network performance over the training patterns follows a different philosophy from the
one mentioned in [15]. There, a network is effedively considered trained if a balance state is visited
from any single start state within atotal test period o 5x10" iterations. Under this convergence criteria
al SWS-ME/ SWS networks satisfy such a generali zation test.

In the Gase of all the networks employing the proposed modular scheme, some art/ poe
conditions are observed to be balanced for over 3x10* iterations, while others manage only a few
thousand. Examination d the extended cases reveadls that control parameters vary in a sinusoidal
manner, where thisis replicated in all the measured parameters. Specifically, figures 5, 6 (network 1, x
= 1m, 8 = -5°), show that the angle of the penddum and correspondng velocity vary at a constant
frequency and amplitude. On the other hand, respective cart position and velocity operate as decaying
sinusoids, figures 7, 8. The ntroller force which gives rise to this condtion, however, does not
simplify to such a simple analysis, figure 9. This operation d the inpu parameters is taken to imply
that for the particular initia input condtion, the network has captured plant dynamics accurately
enough to provide an extended control action, hencethe pattern is considered ‘learnt’. Similar findings
are observed for the dl the input condtions that reach the 3x10* limit. Analysis of the instances which
fail before reaching this condtion reveals that not all the control parameters vary in a sinusoidal
manner, thus encountering one of the failure conditions, section 41. Specifically, the linea
acceleration d the cart is observed to always have aunidirectional comporent, making it inevitable
that the plant will reach the paositional failure cndtion. It is also apparent from table 3 that the
majority of the networks tested do nd identify control actions reaching the threshold, implying
dependence on initial positional condtions. Since analysis of control actions reaching the 3x10*
iteration limit provide stable control, this will be used as a threshald distinguishing the success or

fail ure of the network.

15

Modular Architectures for Non-Linear Control

Performance of the various SWS-ME and SWS-SWS agorithms is suammarized in figure 2
(columns 5 to 12, table 2 (confidence intervals) and 3 (instances reaching 3x10" iterations). It is
immediately apparent that there is no longer a preferencefor theinclusion o a hidden layer. In the case
of the SWS-ME pair, there is no significant difference in the performance between the two methods
(linear or nontlinear). The SWS-SWS pair however has a significant preference for the linear network
scenario. Contrasting the SWS-ME and SWS-SWS algorithms indicates that the nontlinear cases are
indistingushable, but the linear variant of the SWS-SWS agorithm (SWS-SWSlin) is significantly
better than any of the other networks tested.

In terms of necessary training requirements, figures 3 and 4, it is observed that al moduar
networks consume more training resource than the non-modular cases. The main reason for this
however, is that included within this estimation are the iterations necessary to train the unsupervised
network performing the partitioning of the inpu space. This adivity is not performed at all in the case
of the @&ove MLP cases. As observed previoudly, the linear cases (SWS-MElin/ SWSlin) have a
higher iteration court, but lower adual training time. It is interesting to nade however, that the SWS-
ME algorithms take a significantly longer time to converge than the correspondng SWS-SWS cases,
where this is most pronaunced in the number of iterations i.e. typicaly doude the SWS-SWS

requirement.

4.4.2. Testing Networ ks Generali zation Abiliti es.

The generalization test focuses on the adility of the network to identify the previously described
sustaining control action ona set of unseen cart/ pde @ndtions. This is different from the aiteria
used in [15] in which the generdization test is limited to the network lasting 1000iterations without
encourtering a failure condtion onany one unseen condtion. Using such a test for generaizaion
would result in all networks fulfilling the aiteria.

In al cases bath the performance under test and training set patterns remains consistent, hence
the @ove observations also hold for the @ase of unseen initial condtions; figure 2. Importance of
initial condtions of the free network parameters to final network performance is evident, since some
networks manage to repeatably reach the threshold while othersfail; table 3.

In summary, the combination of a completely stochastic training algorithm with linear experts
in the SWS-SWS algorithm out performs the other methods as measured by the 99% confidence
interval; table 2. Furthermore, the SWS-SWS algorithms typically requires half as many iterations to

16

Modular Architectures for Non-Linear Control

reach convergence than the correspondng SWS-ME cases, whilst at worst matching the performance
of the SWS-ME case. The MLP based methods are unable to generalize d al, making their faster

training time inconsequential .

4.4.3. Gate Assssment

The ability of the devised agorithms to associate individual experts with specific regions is examined
by observing the respornse of the MoE gate network. For the non-linear architecture, gate resporse of
both SWS-ME and full SWS models, are shown in figures 10 and 11 It is apparent that no scenario
manages to explicitly partition, that is focus one expert on aunique region for either the ACTION or the
CRITIC network. However, it is noted that expert 3 always contributes at least 40% to the final action
while the others asgst, except for the center region where it solely controls the plant. Thisimplies that
for this architedure successul control actions are achieved by linearly combining nonlinear networks.

In the aase of the linear network (SWS-MEIlin/ SWSlin) gate response, figures 12 and 13 three
partitions occur. Typically two networks contribute to each o the extremes (expert pairs (1,4) and
(2,5)), whereas one network dominates in the cantral location (expert 3). That is a non-linear mixture

of linea networks, a predictable result given the inherent non-linearity of the plant.

5. Related Work

In terms of the architecture employed the most significant related network is that of the hierarchical
CMAC network developed by Tham [17]. Here a MoE network is used as the action generator with
CMAC networks as the experts and gate. The method wsed to partition the input spaces is therefore
very different. CMAC emphasizes efficient covering of the entire inpu space. The RBF based
clustering used here represents a wholly data driven partitioning d the input space, such that only the
areas of interest are included (vis-&vis the training set). Moreover, Q learning as oppcse to an
ACTION—CRITIC architecture is used. Furthermore, the EM algorithm is used to adapt the network
parameters [18], rather than the mmpletely stochastic approach o the preferred SWS-SWS method
propcsed here. Finally, in the application dscussed by Tham, intermediate rewards are eplicitly
incorporated, thus performing asociations over long temporal horizonsis not actually necessary.
Milléan carries the use of enriched reinforcement information much further in his work with a

modular architedure [19, 20]. Here sensors are goplied to the application (autonomous roba and a

17

Modular Architectures for Non-Linear Control

roba arm respedively) in order to create agrid capable of feeding back information about the state of
the environment. Several metrics are then built into the reinforcement signal, with upditing performed
on a step-by-step basis. In terms of the architecture, Gullapalli’s interpretation d the ACTION—CRITIC
architecture is again used as the starting point. However, atessllation based constructive dgorithm is
used to crede the partitions [19]. Furthermore, the grid of the sensors is then used interactively to
ensure dficient exploration d the inpu space. In the case of [20] more traditional adaptive processis
employed based on the method d truncated temporal differences and Williams's REINFORCE
algorithm.

Lin and Lee take the more general motivation (as is the case with the work condwcted here),
applying a neuro-fuzzy system to Gullapalli’s interpretation of the ACTION—CRITIC architecture [7]. The
resulting network works in a cntinuous environment (as oppased to the quantized actions of the
above) and employs Sutton’s temporal difference learning with gradient decent to adapt the free
parameters. The network is initialized with a random set of IFTHEN rules, which when applied to the
pae-balancing problem yields 35 rules or 31 clusters (as opposed to the 20 partitions used by the
SWS-ME/ SWS methoddogies).

6. Condusion

This paper details the extension d Gulapali’s SRV reinforcement learning to include moduar
networks in the ACTION and CRITIC partitions. By combining this with unsupervised clustering of the
input space, for the paositioning of the RBF centers used in the gates and experts, a three layer
partitioning of the achitecture is provided. This facilitates the decompasition d the learning procedure
into the individua adaptation o sub-comporents of the overall network. The resulting architecture is
demonstrated to have the adility to identify partitions within the context of a temporaly discourted
nonlinear control problem, withou a priori partitioning of the inpu space, additions to the
reinforcement signal or resulting in tens of partitions. A comparison is made between the propcsed
MOoE scenario and the equivalent architecture with MLP ACTION and CRITIC. The MLP based system is
unable to ‘learn’ any pattern within the short training cycles employed. The moduar linear experts
architecture however, is snown to have the capability to master the non-linear dynamics of the system
in several cases. Similar are the findings for the non-linear equivalent, which performs control actions

in a less effedive manner. Furthermore the linear SWS-SWS topology out performs al of the

18

Modular Architectures for Non-Linear Control

networks assessed at the 99% confidence interval, whilst requiring half the training time of the hybrid
gradient—stochastic learning algorithm.

It is also emphasized that the test conditions are more difficult than usually reported due to the
nonzero parameter initiali zation and more stringent condtion for generalization (without which 100/
generalization is achieved). It is acknowledged that both architectures gill lack the aility to efficiently
store temporal information. That is to say, the system still relies on matching combinations of the input
space partitions and associating these states with temporal difference weighted oucomes. This

problem will be aldressed in future research.

19

Modular Architectures for Non-Linear Control

References

. Anderson C.W., “Strategy Leaning with multi-layer conrectionist representations,” Proceeding of
4™ International Workshop onMachine Learning, pp 103-114, 1987.

. Barto, R.S. Sutton, C.W. Anderson, “Neuronelike Adaptive Elements that can solve Difficult
Leaning Control Problems,” IEEE Trans. SMC part B, vol. 13, no. 5, pp 834-847, 1983.

. Gulapalli V., “A Stochastic Reinforcement Leaning Algorithm for Learning Real-Vaued
Functions,” Neural Networks, 3, pp 671692, 1990.

. Sutton S., “Learning to Predict by the Methods of Temporal Difference,” Machine Learning, vol. 3,
pp 944, 1988.

. Heywood M.I., Chan M-.C., Chatwin C.R., “Application d stochastic real-valued reinforcement
neura networks to batch production rescheduling,” Proc. Inst. Mech. Engrs., Vol 211 Part B, pp
591-603 1997.

. Jacobs, M. |. Jordan, “Learning Piecewise Control Strategies in a Moduar Neural Network
Architecture,” IEEE Trans. on SMC part B, vol. 23, no. 2, pp 337-345 March/April 1993

. Lin C.-T, Lee C.S.G., “Reinforcement Structure/ Parameter Learning for Neural Network Based
Fuzzy Logic Control System”, IEEE Trans. on Fuzz/ Logic, IEEE, USA, February 1994, vol. 2, no.
1, pp 4663, 1994.

. Lin L-J, “Self Improving Reactive Agents based on Reinforcement Learning, Planning and
Teaching,” Machine Learning, 8, pp 28-321, 1992.

. Werbos J Paul, Approximate dynamic programming for red-time control and neural network. In
Handbook of Intelligent Control, White A. David, Sofge A. Donad (ed), Van Nostrand-Reinhdd,
New York, pp 493-524, 1992.

10.Kehagias A., Petridis V., “Predictive Modular Neural Networks for Time Series Classification,”

Neural Networks, 10(1), pp31:50, 1997.

11Nowlan J, Hilton G. E., “Simplifying Neural Networks by Soft Weight-Sharing” Neural

Computation, vol. 4, pp 473493 December 1992

12.Solis F.J., Wets J.B., “Minimizaion by randan search techniques,” Mathematics of Operations

Research, 6, pp 1930, 1981

13.Weigend , B. A. Huberman, D. E. Rume hart, “Predicting the future : A conrectionist approach”,

Internationd Journal of Neural Systems, vol. 1, no. 3, pp 193209, 1990.

20

Modular Architectures for Non-Linear Control

14.Anderson CW., Miller W.T., “Chalenging Control Problems,” Neural Networks for Control,
Appendix A, (ed), Miller W.T., Werbos P.J., MIT Press 199Q

15.Moriarty E. David, Miikkulainen Risto. Efficient Reinforcement Learning through symbiotic
Evolution. Machine Learning 1996 22: ppl1-32.

16.Paraskevopodos V, Heywood M, Chatwin R. Modular SRV Reinforcement Learning: An
architecture for nonlinear control. IJCNN’98; Anchorage, Alaska, May 1998; pp 20342038

17.Tham C.K. Reinforcement leaning of Multiple Tasks using a hierarchical CMAC architecture,
Robatics and Autonamous Systems, 1995 15 (4) pp 247-274.

18Jordan M.J.,, Jacobs R.A., Hierarchical Mixtures of Experts and the EM algorithm. Neural
Computation, 1994 6, pp 181214

19.Martin P., Reinforcement learning of goal-direded obstical-avoiding reaction strategies in an
autonamous mobil e robat, 1995 15(4), pp 275300.

20.Martin P., Millan J.R., Leaning reaching strategies through reinforcement for a sensor-based
manipulator, Neural Networks, 1998 11 (2), pp 359376.

21

Modular Architectures for Non-Linear Control

Table 1. Neura network training patterns.

Angle | Position |Angular velocity |Linear velocity

in degrees|in meters rad/sec m/sec
-2.2 11 -18 9

-1.6 8 -13.0909 6.5455

-1 5 -8.1818 4.0909

1 -5 8.1818 -4.0909

1.6 -8 13.0909 -6.5455
2.2 -11 18 -9

Table 2: Control activity — Confidence interval tests

Networks compared T-test Data Set
Train (%) | Test (%)
MLP Linear MLP—-v—Non-linear MLP 0.014 0
Mixed Linear MLP—-v—Version 1 0 0
Nonlinear MLP—v—Version 2 0 0
Version 1-v—Version 2 74 48
Moduar
Version 3-v-Version 4 41 0
Version 1-v—Version 3 13 0
Version 2-v-Version 4 88 93
Table 3: Percentage of cases reaching 30,000 Threshold
Algorithm Training Test
Linear SWS-ME 13% 16%
Non-Linear SWS-ME 8% 3%
Linear SWS-SWS 27% 31%
NonLinear SWS-SWS 7% 8%

22

Modular Architectures for Non-Linear Control

Inpu] ACTION
Condtion SWS
Environment
CRITIC
LS R |
ME
T
t+121
Clustering Reinforcement Leaning Algorithm
of Input
Space

Fig 1. SRV-Moduar network architecture.
CRITIC and ACTION eements composed of MoE architectures, SWS ME denates the learning rule.

35000 T T T T T

30000 |-mmm == m s TR

25000 | .

20000 | .

SWS
SWS SWS

MEnonlin nodin
15000 | 5

SWS-MElin

10000 r .

MLPnonlin p P

fos b

0 1 1 1 1 1
0 2 4 6 8 10 12
Fig 2: Network iterations before failure — 30,000 Threshold (1% Quartile, Median, 3 Quartile).
Key: #1 linear MLP (train); #2 linear MLP (test); #3 nonlinea MLP (train); #4 non-linea MLP (test); #5
linead SWS-ME (train); #6 linear SWS-ME (test); #7 non-linea SWS-ME (train); #8 non-linea SWS-ME
(test); #9 linear SWS-SWS (train); #10 linea SWS-SWS (test); #11 nonlinea SWS-SWS (train); non-linea
SWS-SWS (test).

5000

23

Modular Architectures for Non-Linear Control

700+
600
500
400
3001

2001 —

100+

Lin MLP SWS-MElin SWS-SWSIin Nonlin MLP SWS- SWS-
MEnonlin SWSnonlin

Fig 3: Mean iterations during training.

IN
o

Lin MLP SWS-MElin SWS-SWSIin Nonlin MLP SWS- SWS-
MEnonlin ~ SWSnonlin

Fig 4: Mean simulation time (sec) during training.

10 . . : : 3

1 2 3 410 5 g 1 5 3 4 100 5

Fig 5: Angle of the pendulum in degrees. Fig 6: Angular velocity of the penddum in rad /
SEC.

24

Modular Architectures for Non-Linear Control

1= 0.05
08¢
04+t
02 ~ - - 0.05 -
0 1 2 % 4 10* 5 0 1 2 o 4 10" 5
Fig 7: Position of the penddum in meters. Fig 8: Linear velocity of the penduum in meters/
SEC.
0015
001

0.005F

0r

0.005¢

-0.01

0 1 yi 3 4 10 5
Fig 9: Force onthe system in N.

1 12

Gate Output
o
[«2]
,

Input Conditions Input Conditions
Fig 10(a): ACTION network. Fig 10(b): cRITIC network.
Fig 10. SWS-MEnonlin Gate Network Resporse.
Key: + expert 1; ——+—— expert 2, -------- expert3; ——>—— expert4;
expert 5.

25

Modular Architectures for Non-Linear Control

[any

o O
® ©
t t

/

R
& o S

Gate Out
[¢ [o

Input Conditions

Gate Output
o
[e)]
’

Input Conditions

Fig 11(a): ACTION network.

Fig 11(b): criTiC network.

Fig 11: SWS-SWSnonin Gate Network Resporse (key: asfigure 10).

Gate Output.

Input Conditions.

Gate Output.
o o
w

©
N
St

1 6 1 16 21 26
Input Conditions.

Fig 12(a): ACTION network.

Fig 122 SWS-MElin Gate Network Resporse.

Key: —|— expert 1;

-------- expert 5.

Gate Output.

Input Condition.

Fig 13(a): ACTION network.

Fig 12(b): criTIC network.

————— expert3; ——>X— expert4;

0.6

Function Output.

1 6 1 16 21 26
Input Condition.

Fig 13(b): criTiC network.

Fig 13: SWS-SWSlin Gate Network Response (key: asfigure 12).

26

