Dynamic Page Based Crossover in Linear Genetic Programming

M.l. Heywood, A.N. Zincir-Heywood

Abstract. Page-based Linear Genetic Programming (GP) is
proposed in which individuals are described in terms of a
number of pages. Pages are expressed in terms of a fixed
number of instructions, constant for all individuals in the
population. Pairwise crossover results in the swapping of
single pages, thus individuals are of a fixed number of
instructions. Head-to-head comparison with Tree structured
GP and block-based Linear GP indicates that the page-based
approach evolves succinct solutions without penalizing
generalization ability.

Keywords: Genetic Programming, Homologous Crosover, Linea
Structures, Benchmarking.

I. INTRODUCTION

A Darwinism perspedive on natural seledion implies that a
set of individuals compete for a finite set of resources, with
individuals surviving more frequently when they
demonstrate traits that provide a @mpetitive alvantage over
those without similar traits. This represents a genera
methoddogy used as the principle behind a set of seach
and opimizaion techniques often referred to as
Evolutionary Computation. Examples include, but are not
limited to, Genetic Algorithms [1], Evolution Strategies [2]
and Genetic Programming [3]. Each share the same basic
principles of operation as motivated by Darwin’'s concept of
natural selection. Moreover, variations in feaures sipparted
often distingush between different forms of the same
technique. Hence, various Eledion strategies differentiate
between different forms of Evolution Strategy and dff erent
structures often differentiate between variants of Genetic
Programming [4, 3].

In the cae of Genetic Programming (GP), an individual
takes the form of exeautable ade, hence “running’ the
program determines an individuals fitness In order to
apply GP, it is necessry to define the ‘instructions’ from
which programs are ompaosed — often referred to as the
Functional Set. The principle @nstraint on such a set being
that it should provide syntadic dosure and require one or
more aguments [3, 4]. In addition, a Termina Set is
provided consisting of zero argument instructions, typicdly
representing inputs from the environment or constants.
Typicdly two seach operators are amployed for (1)
exploring rew solutions (mutation) and (2) exploiting
current solutions (crossover) [3, 4].

This work will investigate linealy structured GP, as
oppased to the more widely used tree structured individuals
[3], and the dfea of different forms of crossover operator.
A linealy structured GP, or L-GP, implies that instead of
representing an individual in terms of a treg individuals

take the form of a ‘linea’ list of instructions [5-9].
Exeaution of an individual therefore mimics the process of
program exeadtion normally associated with a simple
register machine & oppased to traversing a tree structure
(leares representing an input, the root node the output).
Each instruction is defined in terms of an opcode ad
operand, and modifies the ntents of internal registers,
memory and program courter.

The semnd component of interest is the aossover
operator. Biologicdly, crosover is not ‘blind,
chromosomes exist as distinct pairs, ead with a matching
homologows partner [10]. Thus, only when chromosome
sequences are digned may crosover take place the attire
process being referred to as meiosis [10]. Until recently,
however, crossover as applied in GP has been blind.
Typicdly, the stochastic nature of crossover results in
individuals whose instruction count continues to increase
with generation without a crresponding improvement to
performance This is often referred to as code bloat. Some
of this effed has been attributed to an individual attempting
to proted instructions adually contributing positively to an
individual’s fitness with instructions that make no
contribution. Redundant instructions effedively reduce the
likelihood that a aossover operation will deaease the
fitnessof an individual [11].

In order to addressthe negative dfeds of crossover in
Tree structured GP, modifications such as “size fair” and
homologous crosver have been proposed [11]. Nordin et
al. also proposed a homologows crosover operator for
linealy structured GP (L-GP) [12], heredter referred to as
block-based L-GP. In the work proposed here, an individual
is described in terms of a number of pages, where eat page
has the same number of instructions [13, 14]. Crosver is
limited to the exchange of single pages between two
parents, hence, unlike homologouws crossover, the locaion
of pages for crosver is unconstrained, but the number of
instructions in an individual never changes. For the
remainder this methodis referred to as page-based L-GP.

The purpose of the following study is, firstly, to identify
whether the page-based crossover operator, or fixed length
format, produces any obvious limits to the performance of
the dgorithm. In dang so, a comparison is made against
results for both Treebased GP and Hock-based L-GP on
benchmark problems, where no such comparison between
linealy and tree structured GP presently exists. In the cae
of this gudy, page-based L-GP is nat fixed to a spedfic
instruction set, but interpreted in a high level language for
the purpases of comparing the properties of the aossover
operator. (Motivations from a hardware perspedive ae
discusedin[13].)

In the following text, sedion Il details the page-based
crosover operator. Sedion Il evaluates the performance of

Treebased GP, block-based L-GP and page-based L-GP on
a set of benchmark problems. Finaly, the results are
discussed and future diredionsindicaed in sedion V.

1. Linearly Structured GP

Interest in linealy structured GP (L-GP) extends bad to the
late 1950 when Friedberg condicted various experiments
using what would today be mnsidered linealy structured
individuals [7]. In 1985 Cramer diredly addresed the
problem of defining Turing Equivalent languages, cgoable
of maintaining syntadic corredness foll owing modification
by genetic operators [8]. The first working examples of
linealy structured GPs, however, had to wait until the mid
199Gs. Nordin and Banzhaof emphasize the highly efficient
implementation d GP using a linea structure [5, 6].
Moreover, the very efficient kernel and memory footprint
have enabled the demonstration o mobile gplicaions, in
which individuals are evolved online @& oppased to under
simulation [6]. Huelsbergen has taken a different emphasis
and concentrated instead, on the evolution d program
iteration withou explicit instruction suppat for this in the
Functiona Set (i.e. ‘for’, ‘do-until’ and ‘while loop
instructions are not provided) [9].

Before defining page based linealy structured GP, the
following definitions are necessary. Firstly, ‘classcd’
crosover for linealy structured GP (L-GP) is defined as
that in which arbitrary numbers of instructions,
unconstrained by the number of bytes, or their location
within an individua are swapped to creae dildren.
Seoondly, homologous crosover for L-GP follows the
definition used by Nordin in which, crossover is performed
between aligned equal length ‘blocks’ containing a variable
number of instructions, but of afixed equal number of bytes
per block [12].

Sub-sedions A and B define the page-based crossover
and sub-sedion C summarizes the mutation operators, all of
which form the proposed page-based L-GP reviewed in
sedion V. Sub-sedion D summarizes the instruction
format.

A. Page-Based Crossover Operator

The aossover operator for “page-based” L-GP results in
individuals defined in terms of a number of program pages
(does not change dter initidizaion) and a page size, as
measured in terms of instructions per page (fixed for all
members of the population). The aossover operator merely
seleds which pages are swapped between two parents,
where it is only possble to swap single pages. This means
that following the initial definition of the population; the
length of an individual neve changes (length measured in
terms of the number of pages and instructions per page).
The number of pages ead individual may contain is
seleded at initialization using a uniform distribution over
the interval [1, max program length]. Thisis different from
classcd L-GP as: (1) the ancept of pages does not exist;

2

and (2) the number of instructions crossed over in clasdcd
L-GP is not constrained to be equal, resulting in changes to
the number of instructions per individual.

As indicaed by the work of Nordin, however, when GP
is implemented on CSIC architedures at the machine @de
level, instructions are not of uniform length, hence the
motivation for a “block-based” approac to crossover in L-
GP [12]. Block based crossover swaps equaly ‘sized’
blocks of code, which may contain different numbers of
instructions as long as the total bytes per block is the same.
In addition, a homologous crossover operator results if the
two hblocks happen to be in the same position in eadh
individual. An instruction block is therefore defined in
terms of an equal number of bytes, rather than an equal
number of instructions. The principle mativation for the
‘blocks concept being to enable dficient crossover in
variable length instruction formats as typicdly seenin CISC
architedures [12]. The blocks of such a homologous
crossover operator therefore need sufficient spacefor worst-
case ingtruction hit length combinations with empty words
being padded out with NOP instructions. Describing
crosover in this manner means that the process of
addressng code for transfer between individuals during
crosover is now regular (ead block always contain the
same number of bytes) [12]. This is important when
implementing GP at the machine level, but not when using a
high-level language implementation, as in the cae of the
results reported in sedion I11.

B. Dynamic Page-Based Crossover Operator

Given that the page-based approach fixes the number of
instructions per page, where this is undoubtedly problem
dependent, it would be useful if manipulation of the number
of instructions per page was possble without changing the
overall number of instructions per individual. To doso an a
priori maximum number of instructions per page size ae
spedfied, where this is the same acossall individuals. The
seledion of different page sizesis then related to the overall
fitnessof the population. For example amaximum page size
of 8 also permits page sizes of 4, 2 and 1 whilst retaining
page dignment (as measured in instructions not bytes).
Now, asauming that it is best to start with small pages,
hence encouraging the identificaion of building blocks of
small code sequences, the page-based L-GP begins with a
page size ejuivalent to the smallest divisor of the maximum
page size — always a single instruction. Let this be the
current working page size When the fitness of the
population reades a ‘plateay,” the working page size is
increased to the next divisor, in this case, a page size of two
instructions, and the process repeaed until the maximum
page size is readed. A further plateau in the fithess
function causes the gycle to restart at the small est page size
For example, given a maximum page size of 8, the foll owing
sequence of working page sizewould be expeded: 1 - 2 -
4,812 etc.

An efficient definition for a plateau in the fitness
function is now required. For this purpose, a non-
overlapping window is used, in which the best-case fithess
is acawmulated over the length of the window. The result is
compared to that of the previous window. If they are the
same, then the fithessis asaumed to have readed a plateau
and the working crossover page size is changed. In all the
following work, the window size remains fixed at 10
tournaments.

Naturally, the concept of a plateau used in the éove
definition is a heurigtic. That is to say, it can be agued that
changing the page size based on such a definition is just as
likely to increase seach time & reduce it. The empiricd
observations in sedion Il demonstrate that in pradice, the
above processis sgnificantly more dficient than retaining a
fixed page size

In summary, a page-based crosover operator has been
defined for L-GP. Such a definition avoids the need to
estimate alditional metrics to ensure minimal code bloat, as
in Homologous crossover operators defined for Tree
structured GPs [12], and dces not need to combine the
classcd crosover operator with a Homologous operator as
in block-based linea GP [12]. The pay off for this,
however, is that individuals are now of fixed as oppcsed to
variable length.

C. Mutation Operators

In the case of this work, two types of mutation operators are
employed. The first type of mutation operator is used to
manipulate the contents in individual instructions. To doso,
an instruction is randomly seleded, and then, an X-OR
operation performed with a second randomly generated
integer to creae the new instruction. Thisis later referred to
as an instruction wide mutation operator. A seand version
is also considered in which only afield of the instruction is
seleded for mutation [6]. Thisis referred to as field spedfic
mutation.

The seaond type of mutation operator was introduced to
enable variation in the order of instructions in an individual
[13]. In this case, an arbitrary pairwise swap is performed
between two instructions in the same individual. The
motivation here is that the sequence in which instructions
are exeauted within a program, has a significant effed on
the solution. Thus, a program may have the a@rred
composition of instructions but spedfied in the wrong
order.

D. Page-Based Linear GP Instruction Format

A 2-addressformat is employed in which provision is made
for: up to 16 interna registers, up to 16 inpus (Terminal
Set), 7 opcodes (Functional Set) — the aghth is retained for
a reserved word dencting end o program — and an 8-bit
integer field representing constants (0-255). Two mode bits
togde between ore of threeinstruction types: opcode with

internal register reference opcode with reference to inpu;
target register with integer constant. Extension to include
further inputs or internal registers merely increases the size
of the aswciated instruction field. The output is taken from
the internal register providing best performance on training
data. That is to say, the fitnessfunction is estimated aaoss
al internal registers, and the single register with smallest
error on training cata taken as the output for that GP
individual. Thereafter, on validation and test data sets this
represents the output register for that individual [14]. The
principle reason for this is that initidizaion d the
popuation and ensuing application d seach operators does
not guaranteethat all i nstructions contribute to producing a
result in an a priori defined register (unlike Treestructured
GPin which all i nstructions contribute to the root node).

[11. EVALUATION

The purpose of the following study is to demonstrate the
significance of the ébove modificaions and dace the results
within the ontext of Tree structured GP (T-GP), as
implemented using the lilgp version 11 [15], and the block-
based L-GP [12], using a free download of Discipulus
version 20 [16]. The aithors are not aware of any such
comparative results for linealy structured GP on the
discussed benchmark problems; table I. The first problem —
two boxes — has found widespread recogntion as a
benchmark, exercising the aility of GP to sample multiple
inpus (six) whilst also being smple to evaluate ad
nonlinea [3, 17]. The next three problems are dl examples
of the binary even parity problem — again a widely used
benchmark problem [3, 17, 18]. The final set of problemsis
taken from a set of widely used red world classficaion
problems[19].

In the case of both block-based and page-based L-GP,
steady state tournament seledion is held between four
individuals ®leded randamly from the popuation with
replacement, and a maximum of 50,000 gnerations
(tournaments) performed. This is equivalent to 50
generations of apopuation d 4,000individuals when using
agenerational seledion criterion, asin the work of Koza[3,
18]. Data is colleded for 50 dfferent initializations of the
popuation in ead experiment. Sub-sedion A details the
nature of the eperiments performed and sub-sedion B
presents the results of these experiments.

Over the use of the following experiments,
performance is evaluated in terms of: the number of
instructions (nodes) in the best-case solution, convergence
count, and Koza s metric for Computational Effort [3, 18].
In the latter case, this corresponds to the following
expresson,

logl-2)
log@—C(T,i))

where T is the tournament size i is the generation at which
convergence of an individual occurred; z (= 0.99) is the

3

E=Txix

probability of success and C(t, i) is the amulative
probability of seeng a @nwverging individua in the
experiment. By convention, the instance minimizing the
above relation over the awnverging trials is quaed (opt). In
order to reduce the significance of any ore result, average
Computational Efficiency (avg) will also be used.

A. Learning Parameters

Parameter seledionis generally athorny subjed in learning
algorithms as a whole and GP is no dfferent. By way of
example, page-based L-GP uses crosover, an instruction
spedfic mutation operator, and a second mutation operator
to swap instructions within the same individual. Block-
based L-GP uses two crosover operators. One is the
homologows operator (used in 93% of the aosover
operations) and the second provides for the abitrary
interchange of blocks (not aigned and alows swapping
between urequal numbers of blocks). Three mutation
operators are defined — field spedfic, instruction spedfic
and Hock wide [16]. T-GP only requires asingle aosover
and mutation operator, athough there ae different
probabilities for differentiating between termina and
internal nodes of the tree All this means that seleding
‘equivalent’ parameter combinationsis very difficult, if not
impossble. The gproach used here was therefore to fix
major parameters guch as popuation size, node (instruction)
limits and register counts aaoss an experiment, but
experiment with crossover and mutation probabiliti es to
adhieve agoodfit acossall experiments on a particular GP
architedure. This resulted in using the aossver and
mutation probabiliti es of table Il acdossall experiments.

Initialization d eat architedure dso dffers. T-GP uses
the ramped half-half approach [18] with spedfic limits to
the maximum size of initial individuals being seleded as a
function d the noce limit for that experiment. Page-based
L-GP and Hock-based L-GP share the same general process
[6, 13], except that the page-based approach will initialize
individuals against the overall maximum instruction limit
on acourt of the fixed length methoddogy. The block-
based approadh, on the other hand, begins with much
shorter individuals (number of instructions) and evolves up
to the maximum instruction limit, as does T-GP. Table IlI
summarizes the respedive initiali zetion processs.

In all experiments, a data set is used to describe the
problem, where this is the same for all architedures.
Experiments themselves are cndwted aaqoss the
aforementioned three problem types — a total of 7 urique
problems — for various different popuation and maximum
noce (instruction) limits, tables V, VII, IX. Historicdly, GP
is applied with alarge popuation and low level of mutation,
with the hypahesis that the ade for the crred solution
existsin the popuation and crossover is the principle seach
operator. In thiswork, we aeinterested in arelatively small
popuation and therefore use higher levels of mutation. In
addition, severa experiments are mnduwcted using dff erent
maximum node (instruction) limits. We ae therefore aking
if solutions can be evolved that are robust to popuation and

4

maximum instruction limits, where the latter is particularly
important in the cae of fixed length individuals. Finally, we
are dso interested in identifying the significance of the
different seach operators detailed for page-based L-GP,
sub-sedion II.C, where there ae four possble variants;
table V.

B. Smulation Sudy

1) Two Boxes problem: Table V summarizes parameter
seledion for the volume difference problem. Experiments
are ondwted using 2 4 and 8 internal registers, a
maximum of 128 instructions and two dfferent popuation
limits (500 and 125. Table VI summarizes performance of
the proposed page-based L-GP.

For page-based L-GP, the dyn algorithm provides the
most robust performance with the highest number of
converging cases and most consistent computational eff ort
uncer all register condtions, Table VI. This is particularly
apparent for the experiments using a smaller popuation
size, where caes not using dynamic page sizing either did
not converge or produced a very high computational eff ort.

In comparison to block-based L-GP and T-GP, figure 1,

dyn pagebased L-GP vyields the most consistent
computational effort and significantly shorter solutions (4-
register solutions best for block and page-based L-GP).
T-GP was only able to converge when using the larger
popuation o 500, figure 2.
2) Parity Problems. Table VII summarizes parameter
seledions for the three &en parity problems. Experiments
are onducted using 8internal registers, a maximum of 512
instructions, and threedifferent popuation limits (500, 125
and 75. Given the length of the individuals, a (maximum)
page size of 8 instructionsis employed in page-based L-GP.
Table VIII summarizes performance of the proposed page-
based L-GP.

The dyn agorithm again provides the most consistent
computational effort and percent of converging solutions.
Moreover, the next best algorithm is multi, indicaing that
the most significant parameter in this problem is dynamic
paging.

Block-based L-GP did na provide afunctional set with
logicd operators, hence the foll owing compares dyn page-
based L-GP and T-GP alone; figures 3 to 5. Here, T-GP did
not converge & all for the 6-parity problem. Computational
Effort of T-GP on the 5-parity problem was high, or biased
by a single good converging case (c.f. popuation o 125),
whereas the page-based L-GP case was biased towards the
smaller popuation sizes. On the 4-parity problem, this
charaderistic was emphasized further, with T-GP favoring a
larger popdation, and page-based L-GP a smaler
popuation (this effed posdbly being emphasized by the
different seledion methods, generationa-versus-stealy
dtate).

Average length of the mnverging cases, figure 5,
emphasizes a general tendency to use longer solutions on
the more difficult tasks, with T-GP being more biased by
the diff erent sized popuations.

3) Clasdfication Problems: Asindicaed in table |, all three
GP architedures are evaluated on three dasdficaion
benchmarks as an example of operation onred world data
sets. In addition, the C5.0 algorithm is used to establish
base-line dassficaion acairagy, for the particular partition
of training and test data used here. Spedficdly, 25% of the
data is used for test and 78% for training. In the cae of
page-based L-GP, the dyn algorithm is used in all cases.

Table IX summarizes parameter seledions for the three
classficaion poblems. Experiments are condicted using 4
internal registers, a maximum of 64, 128 and 256
instructions and a popuation d 125 C5.0 baseline test
classficdion acarracy is simmarized in table X. Figures 6
to 8 summarize test set acaragy for the three problems
usng GP. All GP architedures prodwing best-case
clasgficaionin excessof the C5.0 base-line.

The Liver problem, figure 6, represented the most
difficult problem for all architedures. Page-based L-GP
consistently produces the best pegk-case (best) and average
classficaion (avg.) acarades independent of maximum
instruction courts. Neither block-based L-GP nor T-GP
consistently out performed ead ather on this data set. On
the C-heat problem, figure 7, a similar pattern is foll owed
with the eception d block-based L-GP at the 64-
instruction limit, for which the best-case performance on
this data set is produced. T-GP was consistently the worst
performing architedure on this problem. The Breast cancer
data, figure 8, resulted in all methods returning equally
good pe&k performance However, alot of variationis e
in the average dassficaion courts for block-based L-GP
and T-GP.

Figure 9, summarizes the arerage number of instructions
employed per solution over ead trial. In al but one cae,
page-based L-GP returns lutions using a lower number of
instructions, with no general trend apparent for the block-
based L-GP and T-GP cases.

V. DiscussioN AND CONCLUSION

In this work, page-based L-GP is defined in terms of
individuals that are expressd in a fixed number of pages,
where eat page nsists of an equal number of
instructions. Crossover always results in the interchange of
single pages between two parents. The implicaion keing
that the number of instructions (and pages) per individual
remains constant. Comparison against block-based L-GP
and T-GP indicates that despite the similarity in the
definition o pages and Hocks, the solutions, as
charaderized by computational effort, number of
converging individuals and length of evolved code, are
distinct. Spedficdly, page-based L-GP is cgoable of
providing concise solutions and dces not appea to be
sensitive to the maximum number of instructions. Hence,
does not neal extensive fine-tuning o this parameter, as
might be aticipated in a fixed length individua. The
empiricd evaluation also indicaed that, in the case of page-
based L-GP in the 2-register address instruction format

investigated, field spedfic mutation operators do nd
provide ay advantage over instruction spedfic mutation.
Future work will address sippat for dynamicdly
changing the number of registers, where this is used as a
partial solution to evolving variable length individuals. That
is to say, the smaller (greder) the number of registers, the
higher (lower) the dfedive length of an individual, and the
more (lesg brittle a individual’s code is to incorred
instruction sequences. Finally, the aithors are dso
interested in the use of the page-based concept to introduce
program structure into the process of evolution, for
example, in terms of loopand condtional constructs.

ACKNOWLEDGEMENTS

The aithors gratefully recognize the suppat of Mahmut
Tamersoy of TEBA Computing Group for the provision o
computing resources and many interesting dscussons.

REFERENCES

[1] JH. Hoalland, Adaptation in Natural and Artificial Systems.
Cambridge, MA: MIT Press 1998

[2] I. Rechenberg, “Cybernetic Solution Path of an Experimental
Problem,” Royal Aircraft Establishment, Library Trandation
1122 1965

[3] JR. Koza Genetic Programning: On the Programning o
Computers by Means of Natural Seledion. Cambridge, MA:
MIT Press 1992

[4] P.J. Angeline, Advances in Genetic Programning — Volume
2, Cambridge, MA: MIT Press Angeline P.J., Kinnea K.E. Jr
(ed), 1996 Chapter 1, pp. 1-20.

[5] J.P. Nordin, Advances in Genetic Programning — Volume 1,
Cambridge, MA: MIT Press Kinnea K.E. J (ed), 1994
Chapter 14, pp. 311-331

[6] JP. Nordin, Evolutionay Program Induwtion d Binary
Machine Code and its Applications. Munster, Germany:
Krehl Verlag, 1999

[71 R.M. Friedberg, “A Leaning Machine: Part 1,” IBM Journal
of Research andDevdopment, 2(1), pp 213, 1958

[8] N.L. Cramer, “A Representation for the Adaptive Generation
of Simple Sequential Programs,” Proc. Int. Conf. on Genetic
Algorithms and Their Application, 1985 pp 183187.

[9] L. Huelsbergen, “Toward Simulated Evolution d Macine-
Language Iteration,” Proc. Conf. on Genetic Programming,
1996 pp 315320

[10] C. Tudge, The Enginee in the Garden — Genetics. From the
ideaof heredity to the aeaion o life. London UK: Pimlico
Press 1993

[12] W.B. Langdon, “Size Fair and Homologous Tree Crossovers
for Tree Genetic Programming,” Genetic Programning and
Evolvable Machines, 1(1/2), pp. 95-120, 2000

[12] J.P. Nordin, W. Banzhaf, F.D. Francone, Advancesin Genetic
Programning — Volume 3, Cambridge, MA: MIT Press
Spedor L., Langdon W.B., O’'Rellly U.-M., Angeline P.J.
(eds), 1999 Chapter 12, pp 275299,

[13] M.l. Heywood, A.N. Zincir-Heywood *“Register Based
Genetic Programming on FPGA based Custom Computing
Platforms” 3 European Conference on Genetic
Programmning. Berlin: Springer-Verlag, 2000 LNCS Volume
1802 pp. 44-59.

[14] M.l. Heywood, A.N. Zincir-Heywood, “Page-Based Linea
Genetic Programming,” IEEE Int. Conf. Systems, Man and
Cybernetics. October 200Q pp 38233828

[15] Zongker D., B. Punch, lil-gp 10 User's Manual, Genetic
Algorithms Reseach and Appli caions Group. Michigan State
University. http://garage.cps.msu.edu/software/lil -gp/lil gp-
index.html

[16] AIMLeaningd Tedhndogy. Discipulus 2.0.
http://www.aimleaning.com/Prod-Discipul us.htm

[17] K. Chellapilla, “Evolving Computer Programs withou
subtree Crosover,” |IEEE Transactions on Evolutionary
Computation. 1(3), 209-216, 1997

[18] JR. Koza Genetic Programming: Automatic Discovery of
Reusable Programmes. Cambridge, MA: MIT Press 1994

[19] Universal Problem Solvers Inc., Machine Leaning Data Sets.
http://www.upso.net/tdl_frames.html

TABLE | —BENCHMARK PROBLEMS

Regresgon Problems

Problem Relation Num. Input Termina
Exemplar | range set
Two X, X, X, 10 [1,10] {X X, X,
Boxes =X XX X X, X}
Binary Problems
4Paity | D,0D,O 16 {0,13 | {d,d,d,
.0 dj}
5Paity | D,0D,O 32 {0.13 | {d,d,d,
...0D, d,d
6Paity | D,0D,O 64 {0.13 | {d,d,d,
..0D, d,d,d
Classgfication Problems
Problem | Num.inpu Num. Patterns Num. Class
feaures Train (Test) Instances {0 (1)}
Liver 6(1) 25986) 200(145
C-heat 13(1) 227(76) 164(139
Breast 9(1) 524(175 458(241)
TABLE || — SEARCH OPERATOR SELECTION
Architedure Parameters
Page-based L-GP P(Xover) 0.9; P(Mutate) 0.5; P(Swap) 0.9

Block-based L-GP

P(Xover) 0.5; P(Mutate) 0.95

T-GP

P(Xover) 0.9; P(Mutate) 0.5

TABLE [I1 —MAX PROGRAM LIMITSAT INITIALIZATION

GP type Instruction (nodg) limit
64 128 256 512
Page 16 peges 32 pges 64 pages 64 eges
4instr/pg | 4ingtr./pg | 4ingr./pg | 8instr./pg
Block 32 80 80 N/a
Tree 2-4 2-4 2-5 2-6

TABLE IV —VERSIONS OF THE PAGE-BASED L-GP

Pneumonic Description
Sd Fixed page size aosver; instruction wide
mutation operator.
Bitmut Fixed page size gosver; field spedfic
mutation operator.
Dyn Dynamic page size ¢osover; instruction wide
mutation operator.
Multi Dynamic page size gosver; field spedfic

mutation operator.

TABLE V — PARAMETER SETTING FOR TWO BOXES PROBLEM

Objedive Fit curveto X X, X, — X, X, X

Terminal Set Xy %oy Xay Xy Xy X

Functional Set | +,-,*, %

FitnessCases 50randam values €leded ower interval [0, 1]

Fitness Sum Square Error

Hits Number of cases with absolute aror < 0.01

Node Limit 128

Pop. Size 500,125

Termination Hits of 50 (succes§ or 200,000 evaluations
(fail)

Experiments 50independent runs

TABLE VI — PAGE-BASED L-GP ON Two BOXES BENCHMARK PROBLEM

Num. | % Computational Effort
Algorithm | Int. Solutions (x 1000
Reg. (50trias) opt | Avg
Popdation 500
2 4 8,188 9,013
std 4 8 3,769 6,347
8 12 3,101 4,071
2 None mnverged
bitmut 4 6 5,971 6,602
8 14 2,009 2,947
2 8 6,511 8,139
dyn 4 14 4,202 6,202
8 46 421 847
2 None mnverged
multi 4 6 5,033 5,778
8 4 4,091 5,528
Popdation 125
2 None Converged
std 4 4 17,192 19,594
8 4 3,306 3,990
2 None
bitmut 4 Converged
8 2 6,017 6,017
2 6 2,030 3,055
dyn 4 10 1,480 3,988
8 10 539 1,255
2 None Converged
multi 4 2 14,173 14,173
8 2 3,994 3,994

TABLE VIl — PARAMETER SETTING FOR EVEN PARATY PROBLEM

Objedive Find a Bodlean function matching that of the 4
(5), {6} -bit even parity problem(s)

Terminal Set d,d,d,d,{(d),d}

Functional Set | AND, OR, NAND, NOR

FitnessCases | All 2 (2°) {2} combinations of the Boolean
arguments

Fitness Number of matching fitnesscases

Hits As per ‘Fitness

Node Limit 512
Pop. Size 500 125 75
Termination Hits matching the number of Fitness Cases
(succes9 or 200,000 evaluations (fail)
Experiments 50 independent runs
TABLE VIII — PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS.
4 bit even parity
% Solutions Comp. Eff.
Algorithm Popsize (50trials) (opt) x1000
75 58 711
std 125 56 1,007
500 32 2,241
75 66 630
bitmut 125 54 1,175
500 54 993
75 90 372
dyn 125 82 480
500 72 553
75 74 535
multi 125 74 447
500 82 439
5 hit even parity
75 16 4,625
Sd 125 22 3,604
500 14 6,011
75 20 2,578
125 12 3,584
500 10 8,031
75 30 2,314
Dyn 125 22 3,117
500 22 3,684
75 32 2,004
multi 125 14 3,929
500 24 3,239
6 bit even parity
75 0 Non
std converge
125 2 17,915
500 Non converge
75 3 11,560
bitmut 125 6 12,854
500 2 30,032
75 12 5,896
dyn 125 20 3,760
500 2 40,447
75 6 11,587
multi 125 0 Non
converge
500 6 14418

TABLE I X — PARAMETER SETTING FOR CLASSFICATION PROBLEMS

Objedive Find a function corredly classfying the data
set

Terminal Set d,...,d, where k is the problem spedfic set of
feaures (tablell).
Constants as per table V.

Functional Set | +,—*, %, cos, sin, arg’ — 1

FitnessCases

Seetablell

Fitness Number of matching fitnesscases

Hits As per ‘Fitness

Node Limit 64, 128 256

Pop. Size 125

Wrapper IF arg < 0.5 THEN class0; ELSE class1
Termination Hits matching the number of Fitness Cases

(succes9 or 200,000 evaluations (fail)
Experiments 50independent runs

TABLE XI —C5.0 TesT SET CLASSFICATION ERROR

Problem Test Set Classdfication
Liver 65.1%
Breast 95.4%
C-heat 75%
3,500 - :
Pop.500 | Pop. 125
3,000 :
|
|
2,500 :
|
|
2,000 i mopt
|
1,500 —1— Oavg
|
|
1,000 :
: o
500 | ; N
: c
O | |
Pg Blk Tree Pg Blk Tree

Fig 1 Two Boxes Problem — Computational Effort (x1000.

‘Pg’ denotes page-based L-GP; ‘BIk’ denates block-based L-GP; ‘ Treé denotes T-GP; and ‘n-c’ denotes none anverged.

10

120

100

Block m

80

60 -

40 -

20 ~

Tree

2 Reg. 4 Reg.

Page

8 Reg. 2Reg. 4 Reg. 8Reg.

H pop 500
Opop 125

Fig 2 Two Boxes Problem — Average Solution Length.

‘n-c’ denotes none mnverged. With resped to page and Hock-based L-GP: ‘2 Reg.’” denotes 2 registers; ‘4 Reg.” denotes 4 registers; and
‘8 Reg.” denates 8 registers.

11

14,000 ~

12,000

fog. 500

Pop. 125

10,000 +
8,000 +
6,000 ~
4,000 ~

2,000 +

M opt
Oavg

Tree Pg

Tree Pg

Tree Pg

Fig 3. 5-bit Even Parity Problem — Computational Effort (x1000.

‘Treé denotes T-GP and ' Pg' page-based L-GP. ‘Pop. N’ denotes a population o size‘N’

1,600 ~

Pop. 500

Pop. 125

Pop. 75

1,400

1,200

1,000

M opt

800
600

400 ~

200 +

Tree Pg

Tree Pg

Oavg

Tree Pg

Fig 4. 4-bit Even Parity Problem — Computational Effort (x1000.

‘Tre€ denotes T-GP and ' Pg' page-based L-GP. ‘Pop. N’ denctes apopuation o size‘N’.

12

6 parity i — Sparity _ i 4 parity
| |
[} [}
i i
[} [}
]]
[} [}
[} [}
i |
! ! OTree
: : mPg
i i
[} [}
| i
[}
= n
[}
| il
500 125 75 500 125 75 500 125 75
Fig 5. Even Parity Problem — Average Solution Length.
No T-GP cases converge on 6-parity. 500, 125, 75 dencte popuation sizes.
256 Max. Instr. 128 Max. Instr. 64 Max. Instr.
_ A A _
74 i i —
[_ [
—1 | —1 | —
[} [}
[} [}
72] ! ! |
[} [}
[} [}
| |
70 i i — |Mavg.
[} [}
' ' Obest
[} [}
68 ' ' —
[} [}
[} [}
[} [}
[} [}
66 - ! ! —
[} [}
64 Bl i I I ‘Y_-_<YJ_ﬁ
Pg Blk Tree Pg Blk Tree Pg Blk Tree

Fig 6. Test Clasdficaion Accuragy — Liver Data Set.

‘Pg’ denctes page-based L-GP; ‘BIk’ block-based L-GP; and ‘Tre€ T-GP. ‘N Max. Instr.” denotes a Maximum Instruction (node) limit of

‘N'.

13

90 - 64 Max. Instr.

256 Max. Instr. 128 Max. Instr.

85

80 -

Havg.
Obest

75 A

70 ~

65 -
Pg Blk Tree Pg Blk Tree Pg Blk Tree

Fig 7. Test Classfication Accuragy — C-heat Data Set.

‘Pg’ denotes page-based L-GP; ‘BIk’ block-based L-GP; and ‘Tre€ T-GP. ‘N Max. Instr.” denotes a Maximum Instruction (node) limit of

‘N

995 , 256Max.Instr. 128 Max. Instr.

64 Max. Instr.

99

98.5

Havg.
Obest

98 -

97.5 ~

97 -

L

96.5 —
Pg Blk Tree Pg Blk Tree Pg Blk Tree

Fig 8 Test Clasdficaion Accuracy — Breast Data Set.

‘Pg’ denotes page-based L-GP; ‘BIk’ block-based L-GP; and ‘Tre€ T-GP. ‘N Max. Instr.” denotes a Maximum Instruction (node) limit of

‘N

14

250

Liver C-Heart Breast

200

150 i

100 A

50

HPage
OBlock
OTree

64 128 256 64 128 256 64 128 256

Fig 9. Clasdficaion Problems — Average Solution Length.

‘Page’ denotes page-based L-GP; ‘Block’ block-based L-GP; and ‘ Tre€ T-GP. 64, 128 256 denote Maximum Instruction (node) limits.

15

