
Abstract. Page-based Linear Genetic Programming (GP) is
proposed in which individuals are described in terms of a
number of pages. Pages are expressed in terms of a fixed
number of instructions, constant for all individuals in the
population. Pairwise crossover results in the swapping of
single pages, thus individuals are of a fixed number of
instructions. Head-to-head comparison with Tree structured
GP and block-based Linear GP indicates that the page-based
approach evolves succinct solutions without penalizing
generalization ability.

Keywords: Genetic Programming, Homologous Crossover, Linear
Structures, Benchmarking.

I. INTRODUCTION

A Darwinism perspective on natural selection implies that a
set of individuals compete for a finite set of resources, with
individuals surviving more frequently when they
demonstrate traits that provide a competitive advantage over
those without similar traits. This represents a general
methodology used as the principle behind a set of search
and optimization techniques often referred to as
Evolutionary Computation. Examples include, but are not
limited to, Genetic Algorithms [1], Evolution Strategies [2]
and Genetic Programming [3]. Each share the same basic
principles of operation as motivated by Darwin’s concept of
natural selection. Moreover, variations in features supported
often distinguish between different forms of the same
technique. Hence, various selection strategies differentiate
between different forms of Evolution Strategy and different
structures often differentiate between variants of Genetic
Programming [4, 3].

In the case of Genetic Programming (GP), an individual
takes the form of executable code, hence “running” the
program determines an individuals’ f itness. In order to
apply GP, it is necessary to define the ‘ instructions’ f rom
which programs are composed – often referred to as the
Functional Set. The principle constraint on such a set being
that it should provide syntactic closure and require one or
more arguments [3, 4]. In addition, a Terminal Set is
provided consisting of zero argument instructions, typically
representing inputs from the environment or constants.
Typically two search operators are employed for (1)
exploring new solutions (mutation) and (2) exploiting
current solutions (crossover) [3, 4].

This work will i nvestigate linearly structured GP, as
opposed to the more widely used tree structured individuals
[3], and the effect of different forms of crossover operator.
A linearly structured GP, or L-GP, implies that instead of
representing an individual in terms of a tree, individuals

take the form of a ‘ linear’ list of instructions [5-9].
Execution of an individual therefore mimics the process of
program execution normally associated with a simple
register machine as opposed to traversing a tree structure
(leaves representing an input, the root node the output).
Each instruction is defined in terms of an opcode and
operand, and modifies the contents of internal registers,
memory and program counter.

The second component of interest is the crossover
operator. Biologically, crossover is not ‘blind,’
chromosomes exist as distinct pairs, each with a matching
homologous partner [10]. Thus, only when chromosome
sequences are aligned may crossover take place; the entire
process being referred to as meiosis [10]. Until recently,
however, crossover as applied in GP has been blind.
Typically, the stochastic nature of crossover results in
individuals whose instruction count continues to increase
with generation without a corresponding improvement to
performance. This is often referred to as code bloat. Some
of this effect has been attributed to an individual attempting
to protect instructions actually contributing positively to an
individual’s fitness, with instructions that make no
contribution. Redundant instructions effectively reduce the
likelihood that a crossover operation will decrease the
fitness of an individual [11].

In order to address the negative effects of crossover in
Tree structured GP, modifications such as “size fair” and
homologous crossover have been proposed [11]. Nordin et
al. also proposed a homologous crossover operator for
linearly structured GP (L-GP) [12], hereafter referred to as
block-based L-GP. In the work proposed here, an individual
is described in terms of a number of pages, where each page
has the same number of instructions [13, 14]. Crossover is
limited to the exchange of single pages between two
parents, hence, unlike homologous crossover, the location
of pages for crossover is unconstrained, but the number of
instructions in an individual never changes. For the
remainder this method is referred to as page-based L-GP.

The purpose of the following study is, firstly, to identify
whether the page-based crossover operator, or fixed length
format, produces any obvious limits to the performance of
the algorithm. In doing so, a comparison is made against
results for both Tree-based GP and block-based L-GP on
benchmark problems, where no such comparison between
linearly and tree structured GP presently exists. In the case
of this study, page-based L-GP is not fixed to a specific
instruction set, but interpreted in a high level language for
the purposes of comparing the properties of the crossover
operator. (Motivations from a hardware perspective are
discussed in [13].)

In the following text, section II details the page-based
crossover operator. Section III evaluates the performance of

Dynamic Page Based Crossover in Linear Genetic Programming

M.I. Heywood, A.N. Zincir-Heywood

 2

Tree-based GP, block-based L-GP and page-based L-GP on
a set of benchmark problems. Finally, the results are
discussed and future directions indicated in section IV.

II. Linearly Structured GP

Interest in linearly structured GP (L-GP) extends back to the
late 1950s when Friedberg conducted various experiments
using what would today be considered linearly structured
individuals [7]. In 1985, Cramer directly addressed the
problem of defining Turing Equivalent languages, capable
of maintaining syntactic correctness, following modification
by genetic operators [8]. The first working examples of
linearly structured GPs, however, had to wait until the mid
1990s. Nordin and Banzhof emphasize the highly eff icient
implementation of GP using a linear structure [5, 6].
Moreover, the very eff icient kernel and memory footprint
have enabled the demonstration of mobile applications, in
which individuals are evolved on line as opposed to under
simulation [6]. Huelsbergen has taken a different emphasis
and concentrated instead, on the evolution of program
iteration without explicit instruction support for this in the
Functional Set (i.e. ‘f or’ , ‘do-until ’ and ‘while’ loop
instructions are not provided) [9].

Before defining page based linearly structured GP, the
following definitions are necessary. Firstly, ‘classical’
crossover for linearly structured GP (L-GP) is defined as
that in which arbitrary numbers of instructions,
unconstrained by the number of bytes, or their location
within an individual are swapped to create children.
Secondly, homologous crossover for L-GP follows the
definition used by Nordin in which, crossover is performed
between aligned equal length ‘blocks’ containing a variable
number of instructions, but of a fixed equal number of bytes
per block [12].

Sub-sections A and B define the page-based crossover
and sub-section C summarizes the mutation operators, all of
which form the proposed page-based L-GP reviewed in
section IV. Sub-section D summarizes the instruction
format.

A. Page-Based Crossover Operator

The crossover operator for “page-based” L-GP results in
individuals defined in terms of a number of program pages
(does not change after initialization) and a page size, as
measured in terms of instructions per page (fixed for all
members of the population). The crossover operator merely
selects which pages are swapped between two parents,
where it is only possible to swap single pages. This means
that following the initial definition of the population; the
length of an individual never changes (length measured in
terms of the number of pages and instructions per page).
The number of pages each individual may contain is
selected at initialization using a uniform distribution over
the interval [1, max program length]. This is different from
classical L-GP as: (1) the concept of pages does not exist;

and (2) the number of instructions crossed over in classical
L-GP is not constrained to be equal, resulting in changes to
the number of instructions per individual.

As indicated by the work of Nordin, however, when GP
is implemented on CSIC architectures at the machine code
level, instructions are not of uniform length, hence the
motivation for a “block-based” approach to crossover in L-
GP [12]. Block based crossover swaps equally ‘sized’
blocks of code, which may contain different numbers of
instructions as long as the total bytes per block is the same.
In addition, a homologous crossover operator results if the
two blocks happen to be in the same position in each
individual. An instruction block is therefore defined in
terms of an equal number of bytes, rather than an equal
number of instructions. The principle motivation for the
‘blocks’ concept being to enable eff icient crossover in
variable length instruction formats as typically seen in CISC
architectures [12]. The blocks of such a homologous
crossover operator therefore need suff icient space for worst-
case instruction bit length combinations with empty words
being padded out with NOP instructions. Describing
crossover in this manner means that the process of
addressing code for transfer between individuals during
crossover is now regular (each block always contain the
same number of bytes) [12]. This is important when
implementing GP at the machine level, but not when using a
high-level language implementation, as in the case of the
results reported in section III .

B. Dynamic Page-Based Crossover Operator

Given that the page-based approach fixes the number of
instructions per page, where this is undoubtedly problem
dependent, it would be useful i f manipulation of the number
of instructions per page was possible without changing the
overall number of instructions per individual. To do so an a
priori maximum number of instructions per page size are
specified, where this is the same across all i ndividuals. The
selection of different page sizes is then related to the overall
fitness of the population. For example a maximum page size
of 8 also permits page sizes of 4, 2 and 1 whilst retaining
page alignment (as measured in instructions not bytes).
Now, assuming that it is best to start with small pages,
hence encouraging the identification of building blocks of
small code sequences, the page-based L-GP begins with a
page size equivalent to the smallest divisor of the maximum
page size – always a single instruction. Let this be the
current working page size. When the fitness of the
population reaches a ‘plateau,’ the working page size is
increased to the next divisor, in this case, a page size of two
instructions, and the process repeated until the maximum
page size is reached. A further plateau in the fitness
function causes the cycle to restart at the smallest page size.
For example, given a maximum page size of 8, the following
sequence of working page size would be expected: 1 → 2 →
4 → 8 → 1 → 2 → etc.

 3

An eff icient definition for a plateau in the fitness
function is now required. For this purpose, a non-
overlapping window is used, in which the best-case fitness
is accumulated over the length of the window. The result is
compared to that of the previous window. If they are the
same, then the fitness is assumed to have reached a plateau
and the working crossover page size is changed. In all the
following work, the window size remains fixed at 10
tournaments.

Naturally, the concept of a plateau used in the above
definition is a heuristic. That is to say, it can be argued that
changing the page size based on such a definition is just as
likely to increase search time as reduce it. The empirical
observations in section III demonstrate that in practice, the
above process is significantly more eff icient than retaining a
fixed page size.

In summary, a page-based crossover operator has been
defined for L-GP. Such a definition avoids the need to
estimate additional metrics to ensure minimal code bloat, as
in Homologous crossover operators defined for Tree-
structured GPs [12], and does not need to combine the
classical crossover operator with a Homologous operator as
in block-based linear GP [12]. The pay off f or this,
however, is that individuals are now of fixed as opposed to
variable length.

C. Mutation Operators

In the case of this work, two types of mutation operators are
employed. The first type of mutation operator is used to
manipulate the contents in individual instructions. To do so,
an instruction is randomly selected, and then, an X-OR
operation performed with a second randomly generated
integer to create the new instruction. This is later referred to
as an instruction wide mutation operator. A second version
is also considered in which only a field of the instruction is
selected for mutation [6]. This is referred to as field specific
mutation.

The second type of mutation operator was introduced to
enable variation in the order of instructions in an individual
[13]. In this case, an arbitrary pairwise swap is performed
between two instructions in the same individual. The
motivation here is that the sequence, in which instructions
are executed within a program, has a significant effect on
the solution. Thus, a program may have the correct
composition of instructions but specified in the wrong
order.

D. Page-Based Linear GP Instruction Format

A 2-address format is employed in which provision is made
for: up to 16 internal registers, up to 16 inputs (Terminal
Set), 7 opcodes (Functional Set) – the eighth is retained for
a reserved word denoting end of program – and an 8-bit
integer field representing constants (0-255). Two mode bits
toggle between one of three instruction types: opcode with

internal register reference; opcode with reference to input;
target register with integer constant. Extension to include
further inputs or internal registers merely increases the size
of the associated instruction field. The output is taken from
the internal register providing best performance on training
data. That is to say, the fitness function is estimated across
all i nternal registers, and the single register with smallest
error on training data taken as the output for that GP
individual. Thereafter, on validation and test data sets this
represents the output register for that individual [14]. The
principle reason for this is that initialization of the
population and ensuing application of search operators does
not guarantee that all i nstructions contribute to producing a
result in an a priori defined register (unlike Tree structured
GP in which all i nstructions contribute to the root node).

III. EVALUATION

The purpose of the following study is to demonstrate the
significance of the above modifications and place the results
within the context of Tree structured GP (T-GP), as
implemented using the lil gp version 1.1 [15], and the block-
based L-GP [12], using a free download of Discipulus
version 2.0 [16]. The authors are not aware of any such
comparative results for linearly structured GP on the
discussed benchmark problems; table I. The first problem –
two boxes – has found widespread recognition as a
benchmark, exercising the abilit y of GP to sample multiple
inputs (six) whilst also being simple to evaluate and
nonlinear [3, 17]. The next three problems are all examples
of the binary even parity problem – again a widely used
benchmark problem [3, 17, 18]. The final set of problems is
taken from a set of widely used real world classification
problems [19].

In the case of both block-based and page-based L-GP,
steady state tournament selection is held between four
individuals selected randomly from the population with
replacement, and a maximum of 50,000 generations
(tournaments) performed. This is equivalent to 50
generations of a population of 4,000 individuals when using
a generational selection criterion, as in the work of Koza [3,
18]. Data is collected for 50 different initializations of the
population in each experiment. Sub-section A details the
nature of the experiments performed and sub-section B
presents the results of these experiments.

Over the course of the following experiments,
performance is evaluated in terms of: the number of
instructions (nodes) in the best-case solution, convergence
count, and Koza’s metric for Computational Effort [3, 18].
In the latter case, this corresponds to the following
expression,

)),(1log(
)1log(
iTC

z
iTE

−
−××=

where T is the tournament size; i is the generation at which
convergence of an individual occurred; z (= 0.99) is the

 4

probabilit y of success; and C(t, i) is the cumulative
probabilit y of seeing a converging individual in the
experiment. By convention, the instance minimizing the
above relation over the converging trials is quoted (opt). In
order to reduce the significance of any one result, average
Computational Eff iciency (avg) will also be used.

A. Learning Parameters

Parameter selection is generally a thorny subject in learning
algorithms as a whole and GP is no different. By way of
example, page-based L-GP uses crossover, an instruction
specific mutation operator, and a second mutation operator
to swap instructions within the same individual. Block-
based L-GP uses two crossover operators. One is the
homologous operator (used in 95% of the crossover
operations) and the second provides for the arbitrary
interchange of blocks (not aligned and allows swapping
between unequal numbers of blocks). Three mutation
operators are defined – field specific, instruction specific
and block wide [16]. T-GP only requires a single crossover
and mutation operator, although there are different
probabiliti es for differentiating between terminal and
internal nodes of the tree. All this means that selecting
‘equivalent’ parameter combinations is very diff icult, if not
impossible. The approach used here was therefore to fix
major parameters such as population size, node (instruction)
limits and register counts across an experiment, but
experiment with crossover and mutation probabiliti es to
achieve a good fit across all experiments on a particular GP
architecture. This resulted in using the crossover and
mutation probabiliti es of table II across all experiments.

Initialization of each architecture also differs. T-GP uses
the ramped half-half approach [18] with specific limits to
the maximum size of initial individuals being selected as a
function of the node limit for that experiment. Page-based
L-GP and block-based L-GP share the same general process
[6, 13], except that the page-based approach will i nitialize
individuals against the overall maximum instruction limit
on account of the fixed length methodology. The block-
based approach, on the other hand, begins with much
shorter individuals (number of instructions) and evolves up
to the maximum instruction limit, as does T-GP. Table III
summarizes the respective initialization processes.

In all experiments, a data set is used to describe the
problem, where this is the same for all architectures.
Experiments themselves are conducted across the
aforementioned three problem types – a total of 7 unique
problems – for various different population and maximum
node (instruction) limits, tables V, VII , IX. Historically, GP
is applied with a large population and low level of mutation,
with the hypothesis that the code for the correct solution
exists in the population and crossover is the principle search
operator. In this work, we are interested in a relatively small
population and therefore use higher levels of mutation. In
addition, several experiments are conducted using different
maximum node (instruction) limits. We are therefore asking
if solutions can be evolved that are robust to population and

maximum instruction limits, where the latter is particularly
important in the case of f ixed length individuals. Finally, we
are also interested in identifying the significance of the
different search operators detailed for page-based L-GP,
sub-section II .C, where there are four possible variants;
table IV.

B. Simulation Study

1) Two Boxes problem: Table V summarizes parameter
selection for the volume difference problem. Experiments
are conducted using 2, 4 and 8 internal registers, a
maximum of 128 instructions and two different population
limits (500 and 125). Table VI summarizes performance of
the proposed page-based L-GP.

For page-based L-GP, the dyn algorithm provides the
most robust performance with the highest number of
converging cases and most consistent computational effort
under all register conditions, Table VI. This is particularly
apparent for the experiments using a smaller population
size, where cases not using dynamic page sizing either did
not converge or produced a very high computational effort.

In comparison to block-based L-GP and T-GP, figure 1,
dyn page-based L-GP yields the most consistent
computational effort and significantly shorter solutions (4-
register solutions best for block and page-based L-GP).
T-GP was only able to converge when using the larger
population of 500; figure 2.
2) Parity Problems: Table VII summarizes parameter
selections for the three even parity problems. Experiments
are conducted using 8 internal registers, a maximum of 512
instructions, and three different population limits (500, 125
and 75). Given the length of the individuals, a (maximum)
page size of 8 instructions is employed in page-based L-GP.
Table VIII summarizes performance of the proposed page-
based L-GP.

The dyn algorithm again provides the most consistent
computational effort and percent of converging solutions.
Moreover, the next best algorithm is multi , indicating that
the most significant parameter in this problem is dynamic
paging.

Block-based L-GP did not provide a functional set with
logical operators, hence the following compares dyn page-
based L-GP and T-GP alone; figures 3 to 5. Here, T-GP did
not converge at all for the 6-parity problem. Computational
Effort of T-GP on the 5-parity problem was high, or biased
by a single good converging case (c.f. population of 125),
whereas the page-based L-GP case was biased towards the
smaller population sizes. On the 4-parity problem, this
characteristic was emphasized further, with T-GP favoring a
larger population, and page-based L-GP a smaller
population (this effect possibly being emphasized by the
different selection methods; generational-versus-steady
state).

Average length of the converging cases, figure 5,
emphasizes a general tendency to use longer solutions on
the more diff icult tasks, with T-GP being more biased by
the different sized populations.

 5

3) Classification Problems: As indicated in table I, all three
GP architectures are evaluated on three classification
benchmarks as an example of operation on real world data
sets. In addition, the C5.0 algorithm is used to establish
base-line classification accuracy, for the particular partition
of training and test data used here. Specifically, 25% of the
data is used for test and 75% for training. In the case of
page-based L-GP, the dyn algorithm is used in all cases.

Table IX summarizes parameter selections for the three
classification problems. Experiments are conducted using 4
internal registers, a maximum of 64, 128 and 256
instructions and a population of 125. C5.0 base-line test
classification accuracy is summarized in table X. Figures 6
to 8 summarize test set accuracy for the three problems
using GP. All GP architectures producing best-case
classification in excess of the C5.0 base-line.

The Liver problem, figure 6, represented the most
diff icult problem for all architectures. Page-based L-GP
consistently produces the best peak-case (best) and average
classification (avg.) accuracies independent of maximum
instruction counts. Neither block-based L-GP nor T-GP
consistently out performed each other on this data set. On
the C-heart problem, figure 7, a similar pattern is followed
with the exception of block-based L-GP at the 64-
instruction limit, for which the best-case performance on
this data set is produced. T-GP was consistently the worst
performing architecture on this problem. The Breast cancer
data, figure 8, resulted in all methods returning equally
good peak performance. However, a lot of variation is seen
in the average classification counts for block-based L-GP
and T-GP.

Figure 9, summarizes the average number of instructions
employed per solution over each trial. In all but one case,
page-based L-GP returns solutions using a lower number of
instructions, with no general trend apparent for the block-
based L-GP and T-GP cases.

IV. DISCUSSION AND CONCLUSION

In this work, page-based L-GP is defined in terms of
individuals that are expressed in a fixed number of pages,
where each page consists of an equal number of
instructions. Crossover always results in the interchange of
single pages between two parents. The implication being
that the number of instructions (and pages) per individual
remains constant. Comparison against block-based L-GP
and T-GP indicates that despite the similarity in the
definition of pages and blocks, the solutions, as
characterized by computational effort, number of
converging individuals and length of evolved code, are
distinct. Specifically, page-based L-GP is capable of
providing concise solutions and does not appear to be
sensitive to the maximum number of instructions. Hence,
does not need extensive fine-tuning of this parameter, as
might be anticipated in a fixed length individual. The
empirical evaluation also indicated that, in the case of page-
based L-GP in the 2-register address instruction format

investigated, field specific mutation operators do not
provide any advantage over instruction specific mutation.

Future work will address support for dynamically
changing the number of registers, where this is used as a
partial solution to evolving variable length individuals. That
is to say, the smaller (greater) the number of registers, the
higher (lower) the effective length of an individual, and the
more (less) brittle an individual’s code is to incorrect
instruction sequences. Finally, the authors are also
interested in the use of the page-based concept to introduce
program structure into the process of evolution, for
example, in terms of loop and conditional constructs.

ACKNOWLEDGEMENTS

The authors gratefully recognize the support of Mahmut
Tamersoy of TEBA Computing Group for the provision of
computing resources and many interesting discussions.

 6

REFERENCES

[1] J.H. Holland, Adaptation in Natural and Artifi cial Systems.
Cambridge, MA: MIT Press, 1998.

[2] I. Rechenberg, “Cybernetic Solution Path of an Experimental
Problem,” Royal Aircraft Establishment, Library Translation
1122, 1965.

[3] J.R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA:
MIT Press, 1992.

[4] P.J. Angeline, Advances in Genetic Programming – Volume
2, Cambridge, MA: MIT Press. Angeline P.J., Kinnear K.E. Jr
(ed), 1996, Chapter 1, pp. 1-20.

[5] J.P. Nordin, Advances in Genetic Programming – Volume 1,
Cambridge, MA: MIT Press. Kinnear K.E. Jr (ed), 1994,
Chapter 14, pp. 311-331.

[6] J.P. Nordin, Evolutionary Program Induction of Binary
Machine Code and its Applications. Munster, Germany:
Krehl Verlag, 1999.

[7] R.M. Friedberg, “A Learning Machine: Part I,” IBM Journal
of Research and Development, 2(1), pp 2-13, 1958.

[8] N.L. Cramer, “A Representation for the Adaptive Generation
of Simple Sequential Programs,” Proc. Int. Conf. on Genetic
Algorithms and Their Application, 1985, pp 183-187.

[9] L. Huelsbergen, “Toward Simulated Evolution of Machine-
Language Iteration,” Proc. Conf. on Genetic Programming,
1996, pp 315-320.

[10] C. Tudge, The Engineer in the Garden – Genetics: From the
idea of heredity to the creation of li fe. London, UK: Pimlico
Press, 1993.

[11] W.B. Langdon, “Size Fair and Homologous Tree Crossovers
for Tree Genetic Programming,” Genetic Programming and
Evolvable Machines, 1(1/2), pp. 95-120, 2000.

[12] J.P. Nordin, W. Banzhaf, F.D. Francone, Advances in Genetic
Programming – Volume 3, Cambridge, MA: MIT Press.
Spector L., Langdon W.B., O’Reill y U.-M., Angeline P.J.
(eds), 1999, Chapter 12, pp 275-299.

[13] M.I. Heywood, A.N. Zincir-Heywood, “Register Based
Genetic Programming on FPGA based Custom Computing
Platforms,” 3rd European Conference on Genetic
Programming. Berlin: Springer-Verlag, 2000, LNCS Volume
1802, pp. 44-59.

[14] M.I. Heywood, A.N. Zincir-Heywood, “Page-Based Linear
Genetic Programming,” IEEE Int. Conf. Systems, Man and
Cybernetics. October 2000, pp 3823-3828.

[15] Zongker D., B. Punch, lil -gp 1.0 User’s Manual, Genetic
Algorithms Research and Applications Group. Michigan State
University. http://garage.cps.msu.edu/software/lil -gp/lil gp-
index.html

[16] AIMLearning Technology. Discipulus 2.0.
http://www.aimlearning.com/Prod-Discipulus.htm

[17] K. Chellapill a, “Evolving Computer Programs without
subtree Crossover,” IEEE Transactions on Evolutionary
Computation. 1(3), 209-216, 1997.

[18] J.R. Koza, Genetic Programming: Automatic Discovery of
Reusable Programmes. Cambridge, MA: MIT Press, 1994.

[19] Universal Problem Solvers Inc., Machine Learning Data Sets.
http://www.upso.net/tdl_frames.html

 7

TABLE I – BENCHMARK PROBLEMS

Regression Problems
Problem Relation Num.

Exemplar
Input
range

Terminal
set

Two
Boxes

x0 x1 x2
– x3 x4 x5

10 [1,10] { x0, x1, x2,
x3, x4, x5}

Binary Problems
4 Parity D0 ⊕ D1 ⊕

… ⊕ D3
16 { 0, 1} { d0, d1, d2,

d3}
5 Parity D0 ⊕ D1 ⊕

… ⊕ D4
32 { 0, 1} { d0, d1, d2,

d3, d4}
6 Parity D0 ⊕ D1 ⊕

… ⊕ D5
64 { 0, 1} { d0, d1, d2,

d3, d4, d5}
Classification Problems

Problem Num. input
features

Num. Patterns
Train (Test)

Num. Class
Instances { 0 (1)}

Liver 6(1) 259(86) 200(145)
C-heart 13(1) 227(76) 164(139)
Breast 9 (1) 524 (175) 458 (241)

TABLE II – SEARCH OPERATOR SELECTION

Architecture Parameters
Page-based L-GP P(Xover) 0.9; P(Mutate) 0.5; P(Swap) 0.9
Block-based L-GP P(Xover) 0.5; P(Mutate) 0.95

T-GP P(Xover) 0.9; P(Mutate) 0.5

TABLE II I – MAX PROGRAM LIMITS AT INITIALIZATION

Instruction (node) limit GP type
64 128 256 512

Page 16 pages
4 instr./pg

32 pages
4 instr./pg

64 pages
4 instr./pg

64 pages
8 instr./pg

Block 32 80 80 N/a
Tree 2-4 2-4 2-5 2-6

TABLE IV – VERSIONS OF THE PAGE-BASED L-GP

Pneumonic Description
Std Fixed page size crossover; instruction wide

mutation operator.
Bitmut Fixed page size crossover; field specific

mutation operator.
Dyn Dynamic page size crossover; instruction wide

mutation operator.
Multi Dynamic page size crossover; field specific

mutation operator.

 8

TABLE V – PARAMETER SETTING FOR TWO BOXES PROBLEM

Objective Fit curve to x1 x2 x3 – x4 x5 x6
Terminal Set x1, x2, x3, x4, x5, x6
Functional Set +, -, * , %
Fitness Cases 50 random values selected over interval [0, 1]
Fitness Sum Square Error
Hits Number of cases with absolute error < 0.01
Node Limit 128
Pop. Size 500, 125
Termination Hits of 50 (success) or 200,000 evaluations

(fail)
Experiments 50 independent runs

TABLE VI – PAGE-BASED L-GP ON TWO BOXES BENCHMARK PROBLEM

Computational Effort
(× 1000)

Algorithm

Num.
Int.
Reg.

%
Solutions
(50 trials) opt Avg

Population 500
2 4 8,188 9,013
4 8 3,769 6,347

std

8 12 3,101 4,071
2 None converged
4 6 5,971 6,602

bitmut

8 14 2,009 2,947
2 8 6,511 8,139
4 14 4,202 6,202

dyn

8 46 421 847
2 None converged
4 6 5,033 5,778

multi

8 4 4,091 5,528
Population 125

2 None Converged
4 4 17,192 19,594

std

8 4 3,306 3,990
2
4

None
Converged

bitmut

8 2 6,017 6,017
2 6 2,030 3,055
4 10 1,480 3,988

dyn

8 10 539 1,255
2 None Converged
4 2 14,173 14,173

multi

8 2 3,994 3,994

TABLE VII – PARAMETER SETTING FOR EVEN PARATY PROBLEM

Objective Find a Boolean function matching that of the 4
(5), { 6} -bit even parity problem(s)

Terminal Set d0, d1, d2, d3, { (d4), d5 }
Functional Set AND, OR, NAND, NOR
Fitness Cases All 24 (25) { 26} combinations of the Boolean

arguments
Fitness Number of matching fitness cases
Hits As per ‘Fitness’

 9

Node Limit 512
Pop. Size 500, 125, 75
Termination Hits matching the number of Fitness Cases

(success) or 200,000 evaluations (fail)
Experiments 50 independent runs

TABLE VII I – PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS.

4 bit even parity

Algorithm

Pop size
% Solutions
(50 trials)

Comp. Eff .
(opt) ×1000

75 58 711
125 56 1,007

std

500 32 2,241
75 66 630
125 54 1,175

bitmut

500 54 993
75 90 372
125 82 480

dyn

500 72 553
75 74 535
125 74 447

multi

500 82 439
5 bit even parity

75 16 4,625
125 22 3,604

Std

500 14 6,011
75 20 2,578
125 12 3,584

500 10 8,031
75 30 2,314
125 22 3,117

Dyn

500 22 3,684
75 32 2,004
125 14 3,929

multi

500 24 3,239
6 bit even parity

75 0 Non
converge

125 2 17,915

std

500 Non converge
75 3 11,560
125 6 12,854

bitmut

500 2 30,032
75 12 5,896
125 20 3,760

dyn

500 2 40,447
75 6 11,587
125 0 Non

converge

multi

500 6 14,418

TABLE IX – PARAMETER SETTING FOR CLASSIFICATION PROBLEMS

Objective Find a function correctly classifying the data
set

Terminal Set d0,…,dk where k is the problem specific set of
features (table II) .
Constants as per table IV.

Functional Set +, –, * , %, cos, sin, arg2 – 1
Fitness Cases See table II

 10

Fitness Number of matching fitness cases
Hits As per ‘Fitness’
Node Limit 64, 128, 256
Pop. Size 125
Wrapper IF arg < 0.5 THEN class 0; ELSE class 1
Termination Hits matching the number of Fitness Cases

(success) or 200,000 evaluations (fail)
Experiments 50 independent runs

TABLE XI – C5.0 TEST SET CLASSIFICATION ERROR

Problem Test Set Classification
Liver 65.1%
Breast 95.4%
C-heart 75%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1 2 3 4 5 6

opt

avg

Pop. 500 Pop. 125

n
-

c

Pg Blk Tree Pg Blk Tree

Fig 1. Two Boxes Problem – Computational Effort (×1000).

‘Pg’ denotes page-based L-GP; ‘Blk’ denotes block-based L-GP; ‘Tree’ denotes T-GP; and ‘n-c’ denotes none converged.

 11

0

20

40

60

80

100

120

1 2 3 4 5 6 7

pop 500

pop 125

PageBlock

n-
c

n-
c

Tree 2 Reg. 4 Reg. 8 Reg. 2 Reg. 4 Reg. 8 Reg.

Fig 2. Two Boxes Problem – Average Solution Length.

‘n-c’ denotes none converged. With respect to page and block-based L-GP: ‘2 Reg.’ denotes 2 registers; ‘4 Reg.’ denotes 4 registers; and
‘8 Reg.’ denotes 8 registers.

 12

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5 6

opt

avg

Pop. 500 Pop. 125 Pop. 75

Tree Pg Tree Pg Tree Pg

Fig 3. 5-bit Even Parity Problem – Computational Effort (×1000).

‘Tree’ denotes T-GP and ‘Pg’ page-based L-GP. ‘Pop. N’ denotes a population of size ‘N’

0

200

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4 5 6

opt

avg

Pop. 500 Pop. 125 Pop. 75

Tree Pg Tree Pg Tree Pg

Fig 4. 4-bit Even Parity Problem – Computational Effort (×1000).

‘Tree’ denotes T-GP and ‘Pg’ page-based L-GP. ‘Pop. N’ denotes a population of size ‘N’ .

 13

300

320

340

360

380

400

420

440

460

480

1 2 3 4 5 6 7 8 9

Tree

Pg

6 parity 4 parity5 parity

500 125 75 500 125 75 500 125 75

Fig 5. Even Parity Problem – Average Solution Length.

No T-GP cases converge on 6-parity. 500, 125, 75 denote population sizes.

64

66

68

70

72

74

1 2 3 4 5 6 7 8 9

avg.

best

256 Max. Instr. 128 Max. Instr. 64 Max. Instr.

Pg Blk Tree Pg Blk Tree Pg Blk Tree

Fig 6. Test Classification Accuracy – Liver Data Set.

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of
‘N’ .

 14

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9

avg.

best

256 Max. Instr. 128 Max. Instr.
64 Max. Instr.

Pg Blk Tree Pg Blk Tre PgTree Blk Tree

Fig 7. Test Classification Accuracy – C-heart Data Set.

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of

‘N’ .

96.5

97

97.5

98

98.5

99

99.5

1 2 3 4 5 6 7 8 9

avg.

best

256 Max. Instr. 128 Max. Instr. 64 Max. Instr.

Pg Blk Tree Pg Blk Tree Pg Blk Tree

Fig 8. Test Classification Accuracy – Breast Data Set.

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of

‘N’ .

 15

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Page

Block

Tree

64

Liver C-Heart Breast

128 256 64 128 256 64 128 256

Fig 9. Classification Problems – Average Solution Length.

‘Page’ denotes page-based L-GP; ‘Block’ block-based L-GP; and ‘Tree’ T-GP. 64, 128, 256 denote Maximum Instruction (node) limits.

