
Abstract. Page-based Linear Genetic Programming (GP) is 
proposed in which individuals are described in terms of a 
number of pages. Pages are expressed in terms of a fixed 
number of instructions, constant for all individuals in the 
population. Pairwise crossover results in the swapping of 
single pages, thus individuals are of a fixed number of 
instructions. Head-to-head comparison with Tree structured 
GP and block-based Linear GP indicates that the page-based 
approach evolves succinct solutions without penalizing 
generalization ability. 

Keywords: Genetic Programming, Homologous Crossover, Linear 
Structures, Benchmarking. 

I. INTRODUCTION 

A Darwinism perspective on natural selection implies that a 
set of individuals compete for a finite set of resources, with 
individuals surviving more frequently when they 
demonstrate traits that provide a competitive advantage over 
those without similar traits. This represents a general 
methodology used as the principle behind a set of search 
and optimization techniques often referred to as 
Evolutionary Computation. Examples include, but are not 
limited to, Genetic Algorithms [1], Evolution Strategies [2] 
and Genetic Programming [3]. Each share the same basic 
principles of operation as motivated by Darwin’s concept of 
natural selection. Moreover, variations in features supported 
often distinguish between different forms of the same 
technique. Hence, various selection strategies differentiate 
between different forms of Evolution Strategy and different 
structures often differentiate between variants of Genetic 
Programming [4, 3]. 

In the case of Genetic Programming (GP), an individual 
takes the form of executable code, hence “running” the 
program determines an individuals’ f itness. In order to 
apply GP, it is necessary to define the ‘ instructions’ f rom 
which programs are composed – often referred to as the 
Functional Set. The principle constraint on such a set being 
that it should provide syntactic closure and require one or 
more arguments [3, 4]. In addition, a Terminal Set is 
provided consisting of zero argument instructions, typically 
representing inputs from the environment or constants. 
Typically two search operators are employed for (1) 
exploring new solutions (mutation) and (2) exploiting 
current solutions (crossover) [3, 4]. 

This work will i nvestigate linearly structured GP, as 
opposed to the more widely used tree structured individuals 
[3], and the effect of different forms of crossover operator. 
A linearly structured GP, or L-GP, implies that instead of 
representing an individual in terms of a tree, individuals 

take the form of a ‘ linear’ list of instructions [5-9]. 
Execution of an individual therefore mimics the process of 
program execution normally associated with a simple 
register machine as opposed to traversing a tree structure 
(leaves representing an input, the root node the output). 
Each instruction is defined in terms of an opcode and 
operand, and modifies the contents of internal registers, 
memory and program counter. 

The second component of interest is the crossover 
operator. Biologically, crossover is not ‘blind,’ 
chromosomes exist as distinct pairs, each with a matching 
homologous partner [10]. Thus, only when chromosome 
sequences are aligned may crossover take place; the entire 
process being referred to as meiosis [10]. Until recently, 
however, crossover as applied in GP has been blind. 
Typically, the stochastic nature of crossover results in 
individuals whose instruction count continues to increase 
with generation without a corresponding improvement to 
performance. This is often referred to as code bloat. Some 
of this effect has been attributed to an individual attempting 
to protect instructions actually contributing positively to an 
individual’s fitness, with instructions that make no 
contribution. Redundant instructions effectively reduce the 
likelihood that a crossover operation will decrease the 
fitness of an individual [11]. 

In order to address the negative effects of crossover in 
Tree structured GP, modifications such as “size fair” and 
homologous crossover have been proposed [11]. Nordin et 
al. also proposed a homologous crossover operator for 
linearly structured GP (L-GP) [12], hereafter referred to as 
block-based L-GP. In the work proposed here, an individual 
is described in terms of a number of pages, where each page 
has the same number of instructions [13, 14]. Crossover is 
limited to the exchange of single pages between two 
parents, hence, unlike homologous crossover, the location 
of pages for crossover is unconstrained, but the number of 
instructions in an individual never changes. For the 
remainder this method is referred to as page-based L-GP. 

The purpose of the following study is, firstly, to identify 
whether the page-based crossover operator, or fixed length 
format, produces any obvious limits to the performance of 
the algorithm. In doing so, a comparison is made against 
results for both Tree-based GP and block-based L-GP on 
benchmark problems, where no such comparison between 
linearly and tree structured GP presently exists. In the case 
of this study, page-based L-GP is not fixed to a specific 
instruction set, but interpreted in a high level language for 
the purposes of comparing the properties of the crossover 
operator. (Motivations from a hardware perspective are 
discussed in [13].) 

In the following text, section II details the page-based 
crossover operator. Section III evaluates the performance of 
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Tree-based GP, block-based L-GP and page-based L-GP on 
a set of benchmark problems. Finally, the results are 
discussed and future directions indicated in section IV. 

II. Linearly Structured GP 

Interest in linearly structured GP (L-GP) extends back to the 
late 1950s when Friedberg conducted various experiments 
using what would today be considered linearly structured 
individuals [7]. In 1985, Cramer directly addressed the 
problem of defining Turing Equivalent languages, capable 
of maintaining syntactic correctness, following modification 
by genetic operators [8]. The first working examples of 
linearly structured GPs, however, had to wait until the mid 
1990s. Nordin and Banzhof emphasize the highly eff icient 
implementation of GP using a linear structure [5, 6]. 
Moreover, the very eff icient kernel and memory footprint 
have enabled the demonstration of mobile applications, in 
which individuals are evolved on line as opposed to under 
simulation [6]. Huelsbergen has taken a different emphasis 
and concentrated instead, on the evolution of program 
iteration without explicit instruction support for this in the 
Functional Set (i.e. ‘f or’ , ‘do-until ’ and ‘while’ loop 
instructions are not provided) [9]. 

Before defining page based linearly structured GP, the 
following definitions are necessary. Firstly, ‘classical’ 
crossover for linearly structured GP (L-GP) is defined as 
that in which arbitrary numbers of instructions, 
unconstrained by the number of bytes, or their location 
within an individual are swapped to create children. 
Secondly, homologous crossover for L-GP follows the 
definition used by Nordin in which, crossover is performed 
between aligned equal length ‘blocks’ containing a variable 
number of instructions, but of a fixed equal number of bytes 
per block [12]. 

Sub-sections A and B define the page-based crossover 
and sub-section C summarizes the mutation operators, all of 
which form the proposed page-based L-GP reviewed in 
section IV. Sub-section D summarizes the instruction 
format. 

A. Page-Based Crossover Operator 

The crossover operator for “page-based” L-GP results in 
individuals defined in terms of a number of program pages 
(does not change after initialization) and a page size, as 
measured in terms of instructions per page (fixed for all 
members of the population). The crossover operator merely 
selects which pages are swapped between two parents, 
where it is only possible to swap single pages. This means 
that following the initial definition of the population; the 
length of an individual never changes (length measured in 
terms of the number of pages and instructions per page). 
The number of pages each individual may contain is 
selected at initialization using a uniform distribution over 
the interval [1, max program length]. This is different from 
classical L-GP as: (1) the concept of pages does not exist; 

and (2) the number of instructions crossed over in classical 
L-GP is not constrained to be equal, resulting in changes to 
the number of instructions per individual.  

As indicated by the work of Nordin, however, when GP 
is implemented on CSIC architectures at the machine code 
level, instructions are not of uniform length, hence the 
motivation for a “block-based” approach to crossover in L-
GP [12]. Block based crossover swaps equally ‘sized’ 
blocks of code, which may contain different numbers of 
instructions as long as the total bytes per block is the same. 
In addition, a homologous crossover operator results if the 
two blocks happen to be in the same position in each 
individual. An instruction block is therefore defined in 
terms of an equal number of bytes, rather than an equal 
number of instructions. The principle motivation for the 
‘blocks’ concept being to enable eff icient crossover in 
variable length instruction formats as typically seen in CISC 
architectures [12]. The blocks of such a homologous 
crossover operator therefore need suff icient space for worst-
case instruction bit length combinations with empty words 
being padded out with NOP instructions. Describing 
crossover in this manner means that the process of 
addressing code for transfer between individuals during 
crossover is now regular (each block always contain the 
same number of bytes) [12]. This is important when 
implementing GP at the machine level, but not when using a 
high-level language implementation, as in the case of the 
results reported in section III . 

B. Dynamic Page-Based Crossover Operator 

Given that the page-based approach fixes the number of 
instructions per page, where this is undoubtedly problem 
dependent, it would be useful i f manipulation of the number 
of instructions per page was possible without changing the 
overall number of instructions per individual. To do so an a 
priori maximum number of instructions per page size are 
specified, where this is the same across all i ndividuals. The 
selection of different page sizes is then related to the overall 
fitness of the population. For example a maximum page size 
of 8 also permits page sizes of 4, 2 and 1 whilst retaining 
page alignment (as measured in instructions not bytes). 
Now, assuming that it is best to start with small pages, 
hence encouraging the identification of building blocks of 
small code sequences, the page-based L-GP begins with a 
page size equivalent to the smallest divisor of the maximum 
page size – always a single instruction. Let this be the 
current working page size. When the fitness of the 
population reaches a ‘plateau,’ the working page size is 
increased to the next divisor, in this case, a page size of two 
instructions, and the process repeated until the maximum 
page size is reached. A further plateau in the fitness 
function causes the cycle to restart at the smallest page size. 
For example, given a maximum page size of 8, the following 
sequence of working page size would be expected: 1 → 2 → 
4 → 8 → 1 → 2 → etc. 
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An eff icient definition for a plateau in the fitness 
function is now required. For this purpose, a non-
overlapping window is used, in which the best-case fitness 
is accumulated over the length of the window. The result is 
compared to that of the previous window. If they are the 
same, then the fitness is assumed to have reached a plateau 
and the working crossover page size is changed. In all the 
following work, the window size remains fixed at 10 
tournaments. 

Naturally, the concept of a plateau used in the above 
definition is a heuristic. That is to say, it can be argued that 
changing the page size based on such a definition is just as 
likely to increase search time as reduce it. The empirical 
observations in section III demonstrate that in practice, the 
above process is significantly more eff icient than retaining a 
fixed page size. 

In summary, a page-based crossover operator has been 
defined for L-GP. Such a definition avoids the need to 
estimate additional metrics to ensure minimal code bloat, as 
in Homologous crossover operators defined for Tree-
structured GPs [12], and does not need to combine the 
classical crossover operator with a Homologous operator as 
in block-based linear GP [12]. The pay off f or this, 
however, is that individuals are now of fixed as opposed to 
variable length. 

C.  Mutation Operators 

In the case of this work, two types of mutation operators are 
employed. The first type of mutation operator is used to 
manipulate the contents in individual instructions. To do so, 
an instruction is randomly selected, and then, an X-OR 
operation performed with a second randomly generated 
integer to create the new instruction. This is later referred to 
as an instruction wide mutation operator. A second version 
is also considered in which only a field of the instruction is 
selected for mutation [6]. This is referred to as field specific 
mutation. 

The second type of mutation operator was introduced to 
enable variation in the order of instructions in an individual 
[13]. In this case, an arbitrary pairwise swap is performed 
between two instructions in the same individual. The 
motivation here is that the sequence, in which instructions 
are executed within a program, has a significant effect on 
the solution. Thus, a program may have the correct 
composition of instructions but specified in the wrong 
order. 

D. Page-Based Linear GP Instruction Format 

A 2-address format is employed in which provision is made 
for: up to 16 internal registers, up to 16 inputs (Terminal 
Set), 7 opcodes (Functional Set) – the eighth is retained for 
a reserved word denoting end of program – and an 8-bit 
integer field representing constants (0-255). Two mode bits 
toggle between one of three instruction types: opcode with 

internal register reference; opcode with reference to input; 
target register with integer constant. Extension to include 
further inputs or internal registers merely increases the size 
of the associated instruction field. The output is taken from 
the internal register providing best performance on training 
data. That is to say, the fitness function is estimated across 
all i nternal registers, and the single register with smallest 
error on training data taken as the output for that GP 
individual. Thereafter, on validation and test data sets this 
represents the output register for that individual [14]. The 
principle reason for this is that initialization of the 
population and ensuing application of search operators does 
not guarantee that all i nstructions contribute to producing a 
result in an a priori defined register (unlike Tree structured 
GP in which all i nstructions contribute to the root node). 

III. EVALUATION 

The purpose of the following study is to demonstrate the 
significance of the above modifications and place the results 
within the context of Tree structured GP (T-GP), as 
implemented using the lil gp version 1.1 [15], and the block-
based L-GP [12], using a free download of Discipulus 
version 2.0 [16]. The authors are not aware of any such 
comparative results for linearly structured GP on the 
discussed benchmark problems; table I. The first problem – 
two boxes – has found widespread recognition as a 
benchmark, exercising the abilit y of GP to sample multiple 
inputs (six) whilst also being simple to evaluate and 
nonlinear [3, 17]. The next three problems are all examples 
of the binary even parity problem – again a widely used 
benchmark problem [3, 17, 18]. The final set of problems is 
taken from a set of widely used real world classification 
problems [19]. 

In the case of both block-based and page-based L-GP, 
steady state tournament selection is held between four 
individuals selected randomly from the population with 
replacement, and a maximum of 50,000 generations 
(tournaments) performed. This is equivalent to 50 
generations of a population of 4,000 individuals when using 
a generational selection criterion, as in the work of Koza [3, 
18]. Data is collected for 50 different initializations of the 
population in each experiment. Sub-section A details the 
nature of the experiments performed and sub-section B 
presents the results of these experiments.  

Over the course of the following experiments, 
performance is evaluated in terms of: the number of 
instructions (nodes) in the best-case solution, convergence 
count, and Koza’s metric for Computational Effort [3, 18]. 
In the latter case, this corresponds to the following 
expression, 

)),(1log(
)1log(
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where T is the tournament size; i is the generation at which 
convergence of an individual occurred; z (= 0.99) is the 
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probabilit y of success; and C(t, i) is the cumulative 
probabilit y of seeing a converging individual in the 
experiment. By convention, the instance minimizing the 
above relation over the converging trials is quoted (opt). In 
order to reduce the significance of any one result, average 
Computational Eff iciency (avg) will also be used. 

A. Learning Parameters 

Parameter selection is generally a thorny subject in learning 
algorithms as a whole and GP is no different. By way of 
example, page-based L-GP uses crossover, an instruction 
specific mutation operator, and a second mutation operator 
to swap instructions within the same individual. Block-
based L-GP uses two crossover operators. One is the 
homologous operator (used in 95% of the crossover 
operations) and the second provides for the arbitrary 
interchange of blocks (not aligned and allows swapping 
between unequal numbers of blocks). Three mutation 
operators are defined – field specific, instruction specific 
and block wide [16]. T-GP only requires a single crossover 
and mutation operator, although there are different 
probabiliti es for differentiating between terminal and 
internal nodes of the tree. All this means that selecting 
‘equivalent’ parameter combinations is very diff icult, if not 
impossible. The approach used here was therefore to fix 
major parameters such as population size, node (instruction) 
limits and register counts across an experiment, but 
experiment with crossover and mutation probabiliti es to 
achieve a good fit across all experiments on a particular GP 
architecture. This resulted in using the crossover and 
mutation probabiliti es of table II across all experiments. 

Initialization of each architecture also differs. T-GP uses 
the ramped half-half approach [18] with specific limits to 
the maximum size of initial individuals being selected as a 
function of the node limit for that experiment. Page-based 
L-GP and block-based L-GP share the same general process 
[6, 13], except that the page-based approach will i nitialize 
individuals against the overall maximum instruction limit 
on account of the fixed length methodology. The block-
based approach, on the other hand, begins with much 
shorter individuals (number of instructions) and evolves up 
to the maximum instruction limit, as does T-GP. Table III 
summarizes the respective initialization processes. 

In all experiments, a data set is used to describe the 
problem, where this is the same for all architectures. 
Experiments themselves are conducted across the 
aforementioned three problem types – a total of 7 unique 
problems – for various different population and maximum 
node (instruction) limits, tables V, VII , IX. Historically, GP 
is applied with a large population and low level of mutation, 
with the hypothesis that the code for the correct solution 
exists in the population and crossover is the principle search 
operator. In this work, we are interested in a relatively small 
population and therefore use higher levels of mutation. In 
addition, several experiments are conducted using different 
maximum node (instruction) limits. We are therefore asking 
if solutions can be evolved that are robust to population and 

maximum instruction limits, where the latter is particularly 
important in the case of f ixed length individuals. Finally, we 
are also interested in identifying the significance of the 
different search operators detailed for page-based L-GP, 
sub-section II .C, where there are four possible variants; 
table IV. 

B. Simulation Study 

1) Two Boxes problem: Table V summarizes parameter 
selection for the volume difference problem. Experiments 
are conducted using 2, 4 and 8 internal registers, a 
maximum of 128 instructions and two different population 
limits (500 and 125). Table VI summarizes performance of 
the proposed page-based L-GP. 

For page-based L-GP, the dyn algorithm provides the 
most robust performance with the highest number of 
converging cases and most consistent computational effort 
under all register conditions, Table VI. This is particularly 
apparent for the experiments using a smaller population 
size, where cases not using dynamic page sizing either did 
not converge or produced a very high computational effort. 

In comparison to block-based L-GP and T-GP, figure 1, 
dyn page-based L-GP yields the most consistent 
computational effort and significantly shorter solutions (4-
register  solutions best  for  block  and  page-based L-GP). 
T-GP was only able to converge when using the larger 
population of 500; figure 2. 
2) Parity Problems: Table VII summarizes parameter 
selections for the three even parity problems. Experiments 
are conducted using 8 internal registers, a maximum of 512 
instructions, and three different population limits (500, 125 
and 75). Given the length of the individuals, a (maximum) 
page size of 8 instructions is employed in page-based L-GP. 
Table VIII summarizes performance of the proposed page-
based L-GP.  

The dyn algorithm again provides the most consistent 
computational effort and percent of converging solutions. 
Moreover, the next best algorithm is multi , indicating that 
the most significant parameter in this problem is dynamic 
paging. 

Block-based L-GP did not provide a functional set with 
logical operators, hence the following compares dyn page-
based L-GP and T-GP alone; figures 3 to 5. Here, T-GP did 
not converge at all for the 6-parity problem. Computational 
Effort of T-GP on the 5-parity problem was high, or biased 
by a single good converging case (c.f. population of 125), 
whereas the page-based L-GP case was biased towards the 
smaller population sizes. On the 4-parity problem, this 
characteristic was emphasized further, with T-GP favoring a 
larger population, and page-based L-GP a smaller 
population (this effect possibly being emphasized by the 
different selection methods; generational-versus-steady 
state). 

Average length of the converging cases, figure 5, 
emphasizes a general tendency to use longer solutions on 
the more diff icult tasks, with T-GP being more biased by 
the different sized populations. 
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3) Classification Problems: As indicated in table I, all three 
GP architectures are evaluated on three classification 
benchmarks as an example of operation on real world data 
sets. In addition, the C5.0 algorithm is used to establish 
base-line classification accuracy, for the particular partition 
of training and test data used here. Specifically, 25% of the 
data is used for test and 75% for training. In the case of 
page-based L-GP, the dyn algorithm is used in all cases. 

Table IX summarizes parameter selections for the three 
classification problems. Experiments are conducted using 4 
internal registers, a maximum of 64, 128 and 256 
instructions and a population of 125. C5.0 base-line test 
classification accuracy is summarized in table X. Figures 6 
to 8 summarize test set accuracy for the three problems 
using GP. All GP architectures producing best-case 
classification in excess of the C5.0 base-line. 

The Liver problem, figure 6, represented the most 
diff icult problem for all architectures. Page-based L-GP 
consistently produces the best peak-case (best) and average 
classification (avg.) accuracies independent of maximum 
instruction counts. Neither block-based L-GP nor T-GP 
consistently out performed each other on this data set. On 
the C-heart problem, figure 7, a similar pattern is followed 
with the exception of block-based L-GP at the 64-
instruction limit, for which the best-case performance on 
this data set is produced. T-GP was consistently the worst 
performing architecture on this problem. The Breast cancer 
data, figure 8, resulted in all methods returning equally 
good peak performance. However, a lot of variation is seen 
in the average classification counts for block-based L-GP 
and T-GP. 

Figure 9, summarizes the average number of instructions 
employed per solution over each trial. In all but one case, 
page-based L-GP returns solutions using a lower number of 
instructions, with no general trend apparent for the block-
based L-GP and T-GP cases. 

IV. DISCUSSION AND CONCLUSION 

In this work, page-based L-GP is defined in terms of 
individuals that are expressed in a fixed number of pages, 
where each page consists of an equal number of 
instructions. Crossover always results in the interchange of 
single pages between two parents. The implication being 
that the number of instructions (and pages) per individual 
remains constant. Comparison against block-based L-GP 
and T-GP indicates that despite the similarity in the 
definition of pages and blocks, the solutions, as 
characterized by computational effort, number of 
converging individuals and length of evolved code, are 
distinct. Specifically, page-based L-GP is capable of 
providing concise solutions and does not appear to be 
sensitive to the maximum number of instructions. Hence, 
does not need extensive fine-tuning of this parameter, as 
might be anticipated in a fixed length individual. The 
empirical evaluation also indicated that, in the case of page-
based L-GP in the 2-register address instruction format 

investigated, field specific mutation operators do not 
provide any advantage over instruction specific mutation. 

Future work will address support for dynamically 
changing the number of registers, where this is used as a 
partial solution to evolving variable length individuals. That 
is to say, the smaller (greater) the number of registers, the 
higher (lower) the effective length of an individual, and the 
more (less) brittle an individual’s code is to incorrect 
instruction sequences. Finally, the authors are also 
interested in the use of the page-based concept to introduce 
program structure into the process of evolution, for 
example, in terms of loop and conditional constructs. 
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TABLE  I – BENCHMARK PROBLEMS 
 

Regression Problems 
Problem Relation Num. 

Exemplar 
Input 
range 

Terminal 
set 

Two 
Boxes 

x0 x1 x2  
– x3 x4 x5 

10 [1,10] { x0, x1, x2, 
x3, x4, x5}  

Binary Problems 
4 Parity D0 ⊕ D1 ⊕ 

… ⊕ D3 
16 { 0, 1}  { d0, d1, d2, 

d3}  
5 Parity D0 ⊕ D1 ⊕ 

… ⊕ D4 
32 { 0, 1}  {  d0, d1, d2, 

d3, d4}  
6 Parity D0 ⊕ D1 ⊕ 

… ⊕ D5 
64 { 0, 1}  {  d0, d1, d2, 

d3, d4, d5}  
Classification Problems 

Problem Num. input 
features 

Num. Patterns 
Train (Test) 

Num. Class 
Instances { 0 (1)}  

Liver 6(1) 259(86) 200(145) 
C-heart 13(1) 227(76) 164(139) 
Breast 9 (1) 524 (175) 458 (241) 

 

TABLE  II – SEARCH OPERATOR SELECTION 
 

Architecture Parameters 
Page-based L-GP P(Xover) 0.9; P(Mutate) 0.5; P(Swap) 0.9 
Block-based L-GP P(Xover) 0.5; P(Mutate) 0.95 

T-GP P(Xover) 0.9; P(Mutate) 0.5 
 
 

TABLE II I – MAX PROGRAM LIMITS AT INITIALIZATION 
 

Instruction (node) limit GP type 
64 128 256 512 

Page 16 pages 
4 instr./pg 

32 pages 
4 instr./pg 

64 pages 
4 instr./pg 

64 pages 
8 instr./pg 

Block 32 80 80 N/a 
Tree 2-4 2-4 2-5 2-6 

 
 

TABLE IV – VERSIONS OF THE PAGE-BASED L-GP 
 

Pneumonic Description 
Std Fixed page size crossover; instruction wide 

mutation operator. 
Bitmut Fixed page size crossover; field specific 

mutation operator. 
Dyn Dynamic page size crossover; instruction wide 

mutation operator. 
Multi  Dynamic page size crossover; field specific 

mutation operator. 
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TABLE V – PARAMETER SETTING FOR TWO BOXES PROBLEM 
 

Objective Fit curve to x1 x2 x3 – x4 x5 x6 
Terminal Set x1, x2, x3, x4, x5, x6 
Functional Set +, -, * , % 
Fitness Cases 50 random values selected over interval [0, 1] 
Fitness Sum Square Error 
Hits Number of cases with absolute error < 0.01 
Node Limit 128 
Pop. Size 500, 125 
Termination Hits of 50 (success) or 200,000 evaluations 

(fail ) 
Experiments 50 independent runs 

 

TABLE VI – PAGE-BASED L-GP ON TWO BOXES BENCHMARK PROBLEM 
 

Computational Effort 
(× 1000) 

 
Algorithm 

Num. 
Int. 
Reg. 

% 
Solutions 
(50 trials) opt Avg 

Population 500 
2 4 8,188 9,013 
4 8 3,769 6,347 

 
std 

8 12 3,101 4,071 
2 None converged 
4 6 5,971 6,602 

 
bitmut 

8 14 2,009 2,947 
2 8 6,511 8,139 
4 14 4,202 6,202 

 
dyn 

8 46 421 847 
2 None converged 
4 6 5,033 5,778 

 
multi  

8 4 4,091 5,528 
Population 125 

2 None Converged 
4 4 17,192 19,594 

 
std 

8 4 3,306 3,990 
2 
4 

None 
Converged 

 
bitmut 

8 2 6,017 6,017 
2 6 2,030 3,055 
4 10 1,480 3,988 

 
dyn 

8 10 539 1,255 
2 None Converged 
4 2 14,173 14,173 

 
multi  

8 2 3,994 3,994 

 

TABLE VII – PARAMETER SETTING FOR EVEN PARATY PROBLEM 

Objective Find a Boolean function matching that of the 4 
(5), { 6} -bit even parity problem(s) 

Terminal Set d0, d1, d2, d3, { (d4), d5 }  
Functional Set AND, OR, NAND, NOR 
Fitness Cases All 24 (25) { 26} combinations of the Boolean 

arguments 
Fitness Number of matching fitness cases 
Hits As per ‘Fitness’  
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Node Limit 512 
Pop. Size 500, 125, 75 
Termination Hits matching the number of Fitness Cases 

(success) or 200,000 evaluations (fail ) 
Experiments 50 independent runs 

TABLE VII I  – PAGE-BASED L-GP ON PARITY BENCHMARK PROBLEMS. 
 

4 bit even parity 
 

Algorithm 
 

Pop size 
% Solutions 
(50 trials) 

Comp. Eff . 
(opt) ×1000 

75 58 711 
125 56 1,007 

 
std 

500 32 2,241 
75 66 630 
125 54 1,175 

 
bitmut 

500 54 993 
75 90 372 
125 82 480 

 
dyn 

500 72 553 
75 74 535 
125 74 447 

 
multi  

500 82 439 
5 bit even parity 

75 16 4,625 
125 22 3,604 

 
Std 

500 14 6,011 
75 20 2,578 
125 12 3,584 

 

500 10 8,031 
75 30 2,314 
125 22 3,117 

 
Dyn 

500 22 3,684 
75 32 2,004 
125 14 3,929 

 
multi  

500 24 3,239 
6 bit even parity 

75 0 Non 
converge 

125 2 17,915 

 
std 

500 Non converge 
75 3 11,560 
125 6 12,854 

 
bitmut 

500 2 30,032 
75 12 5,896 
125 20 3,760 

 
dyn 

500 2 40,447 
75 6 11,587 
125 0 Non 

converge 

 
multi  

500 6 14,418 
 

TABLE IX – PARAMETER SETTING FOR CLASSIFICATION PROBLEMS 

Objective Find a function correctly classifying the data 
set 

Terminal Set d0,…,dk where k is the problem specific set of 
features (table II) . 
Constants as per table IV. 

Functional Set +, –, * , %, cos, sin, arg2 – 1 
Fitness Cases See table II  
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Fitness Number of matching fitness cases 
Hits As per ‘Fitness’  
Node Limit 64, 128, 256 
Pop. Size 125 
Wrapper IF arg < 0.5 THEN class 0; ELSE class 1 
Termination Hits matching the number of Fitness Cases 

(success) or 200,000 evaluations (fail ) 
Experiments 50 independent runs 

TABLE XI – C5.0 TEST SET CLASSIFICATION ERROR 
 

Problem Test Set Classification 
Liver 65.1% 
Breast 95.4% 
C-heart 75% 
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Fig 1. Two Boxes Problem – Computational Effort (×1000).  

‘Pg’ denotes page-based L-GP; ‘Blk’ denotes block-based L-GP; ‘Tree’ denotes T-GP; and ‘n-c’ denotes none converged. 
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Fig 2. Two Boxes Problem – Average Solution Length.  

‘n-c’ denotes none converged. With respect to page and block-based L-GP: ‘2 Reg.’ denotes 2 registers; ‘4 Reg.’ denotes 4 registers; and 
‘8 Reg.’ denotes 8 registers. 
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Fig 3. 5-bit Even Parity Problem – Computational Effort (×1000). 

‘Tree’ denotes T-GP and ‘Pg’ page-based L-GP. ‘Pop. N’ denotes a population of size ‘N’  
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Fig 4. 4-bit Even Parity Problem – Computational Effort (×1000).  

‘Tree’ denotes T-GP and ‘Pg’ page-based L-GP. ‘Pop. N’ denotes a population of size ‘N’ . 
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Fig 5. Even Parity Problem – Average Solution Length.  

No T-GP cases converge on 6-parity. 500, 125, 75 denote population sizes. 
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Fig 6. Test Classification Accuracy – Liver Data Set.  

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of 
‘N’ . 
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Fig 7. Test Classification Accuracy – C-heart Data Set.  

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of 

‘N’ . 
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Fig 8. Test Classification Accuracy – Breast Data Set.  

‘Pg’ denotes page-based L-GP; ‘Blk’ block-based L-GP; and ‘Tree’ T-GP. ‘N Max. Instr.’ denotes a Maximum Instruction (node) limit of 

‘N’ . 
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Fig 9. Classification Problems – Average Solution Length.  

‘Page’ denotes page-based L-GP; ‘Block’ block-based L-GP; and ‘Tree’ T-GP. 64, 128, 256 denote Maximum Instruction (node) limits. 

 


