
   
Abstract--Genetic Programming arguably represents the most 
general form of Evolutionary Computation. However, such 
generali ty is not without significant computational overheads. 
Par ticular ly, the cost of evaluating the fitness of individuals in 
any form of Evolutionary Computation represents the single 
most significant computational bott leneck. A less widely 
acknowledged computational overhead in GP involves the 
implementation of the crossover operator . To this end a page-
based definition of individuals is used to restr ict crossover to 
equal length code fragments. Moreover, by using a register-
machine context, the significance of a priori internal register – 
external output definitions is emphasized. 
 
Index Terms--Genetic Programming, Register Machines 

I. INTRODUCTION 

Genetic Programming is a form of beam search in which 
the beam – set of candidate solutions – are computer 
programs, the selection criteria or cost function takes the 
form of a fitness ranking, and the contents of the beam is 
manipulated by genetically motivated operators 
(reproduction, crossover and mutation) [1]. This definition 
provides a very flexible environment for automatic problem 
solving. However, the structure of representation and the 
eff iciency of the operators used to advance the search i.e. 
manipulate the contents of the beam (population), have a 
significant effect on the overall performance. The first 
structure to reliably demonstrate characteristics suitable for 
what is now widely referred to as Genetic Programming 
(GP) was a tree based structure [1, 2]. Specifically, 
‘program trees’ are defined in terms of functional and 
terminal sets where such a set is defined a priori [3]. The 
function set defines the internal nodes of the tree and 
possess the property of syntactic closure. The terminal set 
defines the set of leaf nodes to the program tree and 
therefore represents the inputs to the program (variables or 
constants). The mutation operator randomly substitutes 
internal or leaf nodes with other elements from the 
functional or terminal set respectively. Crossover typically 
involves arbitrarily selecting nodes from a pair of trees and 
swapping the following branch (or leaf). 
 
Since this pioneering work, other structures have been 
defined. For example the work of Teller and Veloso uses 
graphs, hence including the case of a program tree as a 
special case [4]. The interest in this work however lies in 
structures that map eff iciently to computing platforms 

                                                           
  Dalhousie University. Faculty of Computer Science. 6050 University 
Avenue, Halifax, Nova Scotia. Canada. B3H 1W5. 
email: mheywood@cs.dal.ca 

based on the concept of a register machine. Such a GP 
structure is commonly referred to as a linear structure, and 
takes the form of assembly language type instructions [5]. 
By the term ‘ register machine’ it is implied that the 
operation of the host computing platform is expressed in 
terms of operations on sets of registers, where some 
registers are associated with specialist hardware. The work 
of Nordin et al. represents by far the most extensive work 
with linearly structured GPs [5-7]. Common to Nordin’s 
work however is the use of standard Von Neumann CPUs 
as the target-computing platform. In all cases a 3-address, 
32-bit instruction format is employed, where this decision is 
dictated by the architecture of the host CPU. Moreover, the 
original definitions of the mutation and crossover operators 
remain. In contrast, the purpose of this work is to provide 
succinct computing cores of a register machine nature, 
where the target computing platform takes the form of a 
custom computing machine (CCM) [8, 9]. To do so, all 
operations require analysis from a hardware perspective. In 
particular the classical definition of the crossover operator 
in Genetic Programming represents a significant memory 
management overhead, hence introducing hardware 
complexity. The crossover operator is therefore constrained 
to that of swapping equal length ‘pages’ f rom linearly 
structured individuals and a second mutation operator, 
swap, introduced where this interchanges two instructions 
from the same individual. 
 
The purpose of this paper is to summarize these ideas whilst 
investigating the significance of other micro-architectural 
features. In particular the significance of allowing GP to 
evolve the relationship between outputs and internal 
registers, and internal registers and constants is assessed. 
Moreover, the robustness of linearly structured GP is 
assessed within the context of solving problems requiring 
the evolution of constants. The significance of different 
scale factors is therefore also investigated over a set of 
benchmark symbolic regression problems. 
 
The remainder of the paper is organized as follows. Firstly 
the concept of page-based linearly structured GP is 
introduced, Section II . In addition specific micro-
architectural design decisions for the internal registers and 
outputs are discussed. This provides the basis for the 
simulation study in Section III . Finally, conclusions and 
recommendations for future work are given in Section IV. 

Page-based Linear Genetic Programming 

Heywood M.I., Zincir-Heywood A.N. 



II . PAGE-BASED LINEAR GENETIC PROGRAMMING 

The principle operations of a GP based register machine are 
summarised as follows [10],  
 
1. the fetch decode cycle (as in a general purpose 

computer); 
2. evaluation of a suitable cost function, hence fitness of 

the population; 
3. application of suitable crossover and mutation 

operators; 
4. memory management in support of the latter two 

activities; and 
5. generation of random bit sequences (stochastic 

selection).  
 
It is assumed that the responsibilit y for forming an initial 
population of (linearly structured) individuals is performed 
off -line by the host (most custom computing machine  
(CCM) platforms take the form of PCI cards [9]). Point 5 
implies that random numbers are created off -line1 and read 
by the custom computing machine as and when required. 
Point 2 is application specific, but for the case of the results 
discussed in section 3, a scalar square error cost function is 
assumed. However, such an evaluation represents the inner 
loop of the GP, for which the principle method of 
accelerated evaluation remains paralleled register machines. 
Points 1, 3 and 4 are inter-related and therefore the focus of 
the following discussion. In particular we note that the most 
expensive operation (from the context of a CCM) is that of 
a memory access. That is to say, the crossover operator is 
responsible for creating significant overheads in terms of 
memory management and memory accesses. Classically the 
central bottleneck of any computing system is the memory–
processor interface. It is therefore desirable to minimise I/O 
as much as possible, a design philosophy that has resulted 
in most Von Neumann CPUs dedicating half of the 
available sili con real estate to memory. Such a solution is 
not applicable to a CCM due to the low (sili con) eff iciency 
in realising memory using random logic elements typical to 
(typically Field Programmable Gate Array based) CCM 
platforms [8, 9].  
 
In the particular case of the crossover operator, as 
classically applied, the main memory management problem 
comes from the requirement to swap code fragments of 
differing lengths between pairs of individuals. This means, 
for example, that enough memory space needs reserving for 
each individual up to the maximum program length 
(irrespective of the individual’s actual program length), and 
entire blocks of code physically shuff led. Moreover, both 
instances have to be implemented directly in hardware c.f. 
the spatial implementation of any algorithm on a CCM 
platform, thus resulting in a lot of ‘messy’ control circuitry. 

                                                           
1 By using a reconfigurable computing platform supporting 
both FPGA and DSP we are able to generate random 
number sequences using the DSP whilst dedicating the 
FPGA to evaluation of the GP. 

 
One approach to removing the undesirable effects of 
crossover is to drop the crossover operator completely. This 
has indeed been shown to produce very effective GPs in the 
case of tree based structures [11]. However, this approach 
requires the definition of a more varied set of mutation 
operators, some of which effectively replace a terminal with 
a randomly grown sub-tree, hence another memory 
management problem. The approach chosen here therefore 
is to define the initial individuals in terms of the number of 
program pages and the program page size. Pages are 
composed of a fixed number of instructions (common to all 
individuals) and the crossover operator is constrained to 
defining the pages that are swapped between two parents. 
Hence we do not allow more than one page to be swapped 
at a time. This means that, following the initial definition of 
the population of programs – the number of pages each 
individual may contain (uniformly randomly selected over 
the interval [min program length, max program length]) – 
the program length of an individual remains constant. The 
memory management now simpli fies to reading programs 
and copying the contents of parents to their children. 
 
In addition to the typical approach to mutation – perform a 
logical ExOR between the candidate instruction and a 
random bit sequence – a second mutation operator is 
introduced. In this case an arbitrary pairwise swap is 
performed between two instructions in the same individual. 
The motivation here is that the sequence in which 
instructions are executed within a program has a significant 
effect on the solution. Thus a program may have the correct 
composition of instructions but specified in the wrong 
order. 
 
The overall algorithm is summarized by figure 1. Attention 
is drawn to the use of steady-state tournament based as 
opposed to generational population wide selection. That is 
to say, only a small subset of the total number of 
individuals compete to have their fitness assessed over the 
data set. From a hardware perspective, this implies that: (1) 
there are the same number of register machines as there are 
individuals in the tournament, providing for parallel 
evaluation of the individuals; and (2) the fitness ranking 
may now also be performed directly in hardware, as the 
number of individuals ranked is decoupled from the size of 
the overall population. 
 
1. Initialize the population of ‘N’ individuals. 
2. Choose ‘M’  individuals to participate in a tournament 

(M << N). 
3. Evaluate the fitness of individuals participating in the 

tournament. 
4. Rank individuals from tournament in ascending order 

of fitness. 
5. Copy fittest M / 2 individuals over worst (denotes the 

children). 
6. Apply pairwise crossover test. 
7. Apply test for standard mutation. 
8. Apply test for swap based mutation. 



9. Replace individuals in original population 
corresponding to M / 2 worst case ranked tournament 
individuals with M / 2 children from step 8. 

10. If fittest individual satisfies stop criteria END, else 
return to step 2. 

Fig 1. Algorithm for the Genetic Program 

In addition to the above comments, several other micro-
architectural decisions regarding the relationship between 
internal registers and global interfaces are likely to have a 
significant effect on the algorithm. In particular, consider 
the relationship between outputs and internal registers (i.e. 
from where are results taken), and to which internal 
register(s) are constants loaded. In the case of the following 
study, we are interested in assessing the significance of two 
different contexts. In the first case, outputs are a priori 
assigned to internal registers 0 to n, where there are n + 1 
internal registers in total. All i nstructions loading a constant 
to a register are assigned to register n + 1 [5, 6]. In the 
second case, no constraints are imposed on the register 
acting as the target, and outputs are defined by the internal 
register with the best fitness over the entire data set. 
 
In effect, the first case enforces an a priori methodology 
common to all i ndividuals. Any individuals not conforming 
to this structure are likely to have a poor fitness measure, 
hence penalized during selection. This means that 
individuals first need to learn the a priori relationship 
between internal registers (constants) and the outputs, and 
then begin to evolve solutions2. In the second case, each 
individual is free to define their own relationships between 
internal registers and results (constants). The penalty for 
this freedom, however, is an increase in computational 
effort during evaluation of fitness, and the possibly of an 
incompatibilit y between individuals during crossover 
(individuals are now have their own contexts, where this 
may be incompatible). One of the purposes of the following 
study is to provide an empirical assessment of the 
significance of these issues. 

III . SIMULATION 

The modifications proposed above to the GP search 
operators, represent significant departures from the normal 
linear GP. The purpose of the following study is therefore 
to demonstrate that these modifications do not inhibit the 
problem solving properties of the GP. To this end a 
software implementation3 is used to assess the effects of 
these re-defined operators using well -known function 
approximation (symbolic regression) benchmarks of y = x4 
+ x3 + x2 + x, x ∈  [-1, 1]; y = (x + 1)3, x ∈  [-1, 0); and y = x6 
– 2x4 + x2, x ∈  [-1, 1]. The first problem has been used 
widely as a benchmark problem [3, 11]. The cubic problem 
introduces the need to evolve constants, as well as having 
                                                           
2 A further alternative would be to try to incorporate any a 
priori definition of register purpose during initialisation c.f. 
population seeding. 
3 Watcom C++, version 11.0, Windows 95, Pentium III 
500Mhz, 64Mb RAM. 

multiple solutions [12]. The sextic polynomial has also 
been widely used as a benchmark problem, in particular by 
Koza, during the evaluation of Automatic Defined 
Functions in Tree-based GP [3]. 
  
The details for the address formats employed here are 
summarised in Table 1. In each case we design to provide: 
up to 8 internal registers; up to 7 opcodes (the eighth is 
retained for a reserved word denoting end of program 
(EOP)); an eight bit integer constant field; and up to 8 input 
ports. Table 2 summarizes the labels used throughout the 
following tests to distinguish different GP configurations. 
 
In terms of specific tests, the significance of the swap based 
mutation operator has already been established [10]. The 
purpose of the following study is therefore to: (1) 
demonstrate the significance of the relationship between 

Table 1. Formats of 2- and 3- register address instructions. 

3-register address instruction format 
Field Bits/ 

field 
Description 

Mode 2 <0 0> two internal register sources; <0 1> 
internal and external register sources; <1 
0> two external register sources; <1 1> 8 
bit const. to target reg. 

Opcode 3 Only 6 defined <+, -, %, * , NOP, EOP> 
Target register 3 Internal register identifier 
Source 1 
register 

3 Register identifier c.f. mode bits 

Source 2 
register 

3 Register identifier c.f. mode bits 

2-register address instruction format 
Mode 2 <0 0> internal register source; <0 1> 

external register source; <1 ×>  8 bit const. 
to target reg. 

Opcode 3 Only 6 defined <+, -, %, * , NOP, EOP> 
Target/ source 
1 register 

3 Internal register identifier 

Source 2 
register 

3 Register identifier c.f. mode bits 

 

Table 2. GP versions 

GP id Description 
VarRegXX Variable constant and output registers allocation. 
FixRegXX Fixed constant and output registers allocation. 
XX Max limit of 8 bit constants (0 – XX) 

Table 3. GP Parameter Tableau for all experiments 

Terminal Set x 
Functional Set +, -, ×, %, 8 bit constant (0-255, or 0-5; table 2). 
Search Operators Crossover 90%; Std Mutation 50%; Swap 90%. 
Fitness 25 patterns in the interval –1…1 
Hits SSE over all 25 patterns 
Selection Cases below absolute error of 0.01 
  
Pop Size 125 
Initial Pop Uniform random generation of integers with 

instruction type bias of: 16% constants; 50% 
input; 33% internal registers. Max populations 
of 8×4, 16×4 or 32×4. 

Termination 30,000 tournaments 
Experiments 38 independent runs per parameter setting 

(population limit, register address mode; and 
table 2). 

 



internal registers and output; and (2) evaluate the 
significance of different normalizations to the range of 
constants, where this has already been identified as a 
significant factor in tree based GP [12]. Moreover, as the 
page-based crossover operator results in individuals of 
fixed length, experiments are conducted across maximum 
numbers of pages of 8, 16 and 32 (4 instructions per page in 
each case) – actual number of pages per individual is 
selected as a uniform random variate from 1 to max number 
of pages. 
 
Time constraints dictate that only 25 patterns are used to 
evolve individuals, however, 250 independent patterns 
employed to verify the generality of the relation learnt. 
Table 3 summarizes the GP parameters employed during 
the study. 

A. Simple Symbolic Regression: y = x4 + x3 + x2 + x 

The simple symbolic regression problem represents a 
problem in which no constants are necessary. Hence, our 
interest lies in whether this favours a particular GP 
algorithm, and whether any favouritism is carried over to 
problems requiring constants. Results are firstly 
summarised in terms of the average number of tournaments 
(converging instances alone) and number of converging 
instances (38 trials per test); Table 4. It is evident that the 
configurations with a priori fixed relations between internal 
registers typically converge faster and more frequently than 
GP without a priori definitions. In both cases, the 3 address 
cases are both slower and provide a lower number of 
converging instances than the 2 address cases. Moreover, 
there is littl e difference between performance of programs 
using different ranges of constant (0 to 255 verses 0 to 5). 
 
Table 5 summarises minimal computational effort as 
expressed by the following expression of Koza [3].  

)),(1log(
)1log(
iTC

z
iTE

−
−××=  

where T is the tournament size (= 4); i is the generation at 
which convergence of an individual occurred; z (= 0.99) is 
the target probabilit y of success; and C(t, i) is the 
cumulative probabilit y of seeing a converging individual in 
the experiment. The data reported in table 5 is for i*, the 
generation minimizing computational effort. 
 
This re-emphasizes the preference for the predefined 
register format and short program lengths. 

Table 4. Simple Symbolic Regression – Convergence Properties 

VarReg255 
 2 address 3 address 
Max. Pages 8 16 32 8 16 32 
Av. Tournament 746 2167 4375 3358 3587 3783 
Converg. Cases 34 37 28 37 37 35 

FixReg255 
Av. Tournament 520 532 1259 5354 3111 4378 
Converg. Cases 37 36 37 31 36 34 

VarReg5 
Av. Tournament 2692 2818 5173 4052 4185 7779 
Converg. Cases 32 34 24 35 36 33 

FixReg5 
Av. Tournament 483 755 1571 4531 3572 4831 
Converg. Cases 38 37 36 34 34 33 

Table 5. Simple Symbolic Regression – Computational Effort. 

 2 address (×1000) 3 address (×1000) 
Max. Pages 8 16 32 8 16 32 
VarReg255 11.4 20 33.4 4.4 42.7 65.4 
FixReg255 6.7 6.7 11.9 58.5 37.2 51.3 
VarReg5 26 31.2 84.7 44.6 52.1 65.0 
FixReg5 4.8 9.1 13 53.4 39.6 75.5 

 

Table 6. Cubic Problem – Convergence Properties. 

VarReg255 
 2 address (×1000) 3 address (×1000) 
Max. Pages 8 16 32 8 16 32 
Av. Tournament 3.7 7.3 4.1 4.5 4.7 7.1 
Converg. Cases 32 35 32 37 36 34 

FixReg255 
Av. Tournament 6.5 8.3 7.3 10 12 9.3 
Converg. Cases 16 28 21 28 24 25 

VarReg5 
Av. Tournament 6.8 10.1 12.5 10.4 9.8 10.3 
Converg. Cases 16 24 17 31 23 29 

FixReg5 
Av. Tournament 7.3 7.5 7.6 10.4 10 11.8 
Converg. Cases 17 29 30 28 30 28 

Table 7. Cubic Problem – Computational Effort. 

 2 address (×1000) 3 address (×1000) 
Max. Pages 8 16 32 8 16 32 
VarReg255 50 49 28 58 58 57 
FixReg255 237 156 229 224 364 159 
VarReg5 276 290 462 246 233 237 
FixReg5 256 103 98 222 249 239 

 

Table 8. Sextic Problem – Convergence Properties. 

VarReg255 
 2 address (×1000) 3 address (×1000) 
Max. Pages 8 16 32 8 16 32 
Av. Tournament 7.7 8.2 10.6 9.55 8.7 9.2 
Converg. Cases 12 12 13 9 24 19 

FixReg255 
Av. Tournament N/a 15.4 11.9 12.6 29.4 21.9 
Converg. Cases 0 2 11 2 1 3 

VarReg5 
Av. Tournament 4.6 13.4 11.6 12.1 9.1 12.1 
Converg. Cases 3 11 14 5 6 6 

FixReg5 
Av. Tournament 12.1 9.69 9.1 14.1 17.3 12.1 
Converg. Cases 11 21 26 4 11 9 

Table 9. Sextic Problem – Computational Effort. 

 2 address (×1000) 3 address (×1000) 
Max. Pages 8 16 32 8 16 32 
VarReg255 295 54.6 34.5 110 222 197 
FixReg255 N/a 6,295 220 383 20,319 4128 
VarReg5 737 164 649 54 55 32 
FixReg5 648 54.6 32.5 527 1,115 904 

 



B. Cubic Problem: y = (x + 1)3 

This problem introduces the requirement to evolve 
constants and is summarised by tables 6 and 7. A definate 
partition in performance is now apparent. Two address 
based instruction always out perform their 3 counterpart. 
However, within the case of each address type the 
following observations are made. On 2 address instructions 
with maximum constant range of 0-255, evolved output 
relations (VarReg255) are at least 3 times as eff icient (as 
measured by Computational Effort) as the fixed register 
case (FixReg255). Changing to a constant range of 0-5 
reverses this relationship, but not to the same extent. The 
same pattern appearing when comparing 3-address 
instructions alone. 

C. Sextic Problem: y = x6 – 2x4 + x2 

The final and most diff icult problem considered is the 
sextic symbolic regression problem first used by Koza [3]. 
As per the above cubic problem, multiple solutions exist 
and constants are necessary to solve the problem. Tables 8 
and 9 summarize performance. The preference identified 
above for 2-address operation appears to also hold true in 
this case. Moreover, Thus ‘VarReg255’ instances provide 
the highest number of converging trials, lowest 
computational effort and locate solutions in the minimum 
number of tournaments. In addition when using 3-address 
instructions, the evolved register-output programs 
(VarRegXX) are always preferred to the a priori defined 
cases (FixRefXX). 
 
One further test is performed. Our interest here is whether 
the programs are in effect still t oo long to favour the coding 
format of 3-address instructions. We therefore repeat the 
sextic problem for a maximum page size of 6 (all other 
parameters remain unchanged). These results are 
summarised in table 10. Performance of the 2-address 
register instruction format is still significantly better than 
that of 3-address. Moreover, the number of converging 
cases has dropped significantly in both cases from that 
achieved using longer programs, suggesting that the optimal 
maximum program length for both 2 and 3-address 
instruction formats was larger than that provided by 6 
pages. 

IV. CONCLUSION 

The crossover operator is modified to minimize memory 
management overheads in linearly structured GP. This 
results in the description of individuals in terms of the 

number program pages, where a program page is defined by 
a fixed number of instructions, constant across all the 
individuals. The number of pages for each individual, 
however, is determined randomly at initialization. 
Simulation on benchmark problems has previously 
ill ustrated the appropriateness of the method from the 
context of different register addressing modes.  There we 
concentrate on assessing the significance of evolved verses 
a priori defined register to output and register to constant 
relationships. It is found, at least for the single-input, 
single-output problems considered here, that by leaving 
these relations open to evolution, significantly better results 
are achieved. 
 
Future work will i nvestigate extensions to arbitrary length 
programs, where this has been previously demonstrated 
using the concept of register based I/O [6, 7]. Attention is 
drawn to the significance of internal register sets, where the 
identification of optimal register requirements is 
undoubtedly problem dependent. Future work will  therefore 
incorporate the definition of register sets into the cost 
function using the concept of Maximum Description 
Length. Finally, we are also interested in providing 
dynamic modification of page size definitions during the 
evolutionary process. The motivation in this case being to 
encourage the generation of code fragments from page sizes 
of 1 or 2 up to some maximum page size limit, say 4 or 8, 
as the error profile of the individual changes. Finally 
significant interest also lies in the assessment of the page-
based crossover operator in minimizing the effects of 
introns or code bloat [12]. 

ACKNOWLEDGEMENT 

The authors gratefully acknowledge Mahmut Tamersoy, 
Computer Processing Center of the TebaÒ  Company Group, 
for supplying the computational faciliti es on which this 
research was conducted. This work was also supported by 
TUBITAK research grant 199E023. 

REFERENCES 
[1] Koza J.R..: Hierarchical genetic algorithms operating on 

populations of computer programs. Proc. of the 11th International 
Joint Conference on Artificial Intell igence. (1989) 768-774. 

[2] Cramer N.L.: A Representation for Adaptive Generation of 
Simple Sequential Programs. Proc. 1st Int. Conf. on Genetic 
Algorithms and their Applications. (1985) 183-187. 

[3] Koza J.R..: Genetic Programming: On the programming of 
computers by means of natural selection. MIT Press (1992). 

[4] Teller A., Veloso M.: PADO: A new learning architecture for 
object  recognition. In Ikeuchi K., Veloso M. (eds): Symbolic Visual 
Learning. Oxford University Press (1996). 

[5] Banzhaf W., Nordin P., Keller R.E., Francone F.D.: Genetic 
Programming An Introduction: On the automatic evolution of 
computer programs and its applications. Morgan Kaufmann. ISBN 1-
55860-510-X (1998). 

[6] Nordin J.P.: Evolutionary Program Induction of Binary Machine 
Code and its Applications. Krehl Verlag. IBSN 3-931546-07-1 
(1997). 

[7] Banzhaf W., Nordin P., Francone F.D., Eff icient Evolution of 
Machine Code for CISC Architectures using Instruction Blocks of 
Homologous Crossover, in Advances in Genetic Programming. 
Volume 3. Spector L. et al. (eds) MIT Press, pp 275-301, ISBN 0-
262-19423-6, 1999. 

Table 10. Sextic Problem – Max 6 Page Programs 
2 address 

 VarReg255 FixReg255 VarReg5 FixReg5 
Av. Tourna. 14,006 10,586 16,241 11,896 
No. Converg. 6 2 2 2 
Comp. Effort 1.9 × 106 9.6× 106 6.45× 106 4.5× 106 

3 address 
Av. Tourna. 15,036   20,659 17,246 
No. Converg. 6 None 6 2 
Comp. Effort 2.0× 106   3.3× 106 7.8× 106 

 



[8] DeHon A., “Reconfigurable Architectures for General Purpose 
Computing,” AI Tech Report 1586, MIT  AI Laboratory 1996. 

[9] http://www.io.com/~guccione/HW_list.html 
[10] Heywood M.I., Zincir-Heywood A.N., “Register Based Genetic 

Programming on FPGA Computing Platforms,” European 
Conference on Genetic Programming, EuroGP’2000, Lecture Notes 
in Computer Science. 1802. pp 44-59, 2000. 

[11] Chellapilla K.: Evolving Computer Programs without subtree 
Crossover. IEEE Trans. on Evolutionary Computation. 1(3) (1997) 
209-216. 

[12] Daida J.M., et al., “Analysis of Single-Node (Building) Blocks in 
Genetic Programming,” in Advances in Genetic Programming. Vol. 
3, Spector L., et al. (eds), (1999), pp 217-241. 

[13] Langdon W.B., “Size Fair and Homologous Tree Crossovers for 
Tree based Genetic Programming,” Genetic Programming and 
Evolvable Machines, 1(1/2), pp 95-120, April 2000. 


