
NAF: The NetSA
Aggregated Flow tool suite

Brian Trammell – CERT/NetSA, Carnegie Mellon University
Carrie Gates1 – CA Labs

ABSTRACT

In this paper we present a new suite of tools – NAF (for NetSA Aggregated Flow) – that
accepts network flow data in multiple different formats and flexibly processes it into time-series
aggregates represented in an IPFIX-based data format. NAF also supports both unidirectional and
bidirectional flow data by matching uniflows into biflows where sufficient information is
available. These tools are designed for generic aggregation of flow data with a focus on security
applications. They can be used to reduce flow data for long-term storage, summarize it as the first
step in numerical analysis, or as a back-end to flow data visualization processes.

Introduction

Many organizations, including universities, pri-
vate industry, Internet Service Providers (ISPs) and
government organizations, are monitoring and storing
network traffic information. Due to the overwhelming
volume of network traffic, many of these organiza-
tions have chosen flow formats over full packet cap-
ture or packet header information. This information is
then used for a variety of purposes, such as billing or
capacity planning, with security monitoring being par-
ticularly common.

A number of tools have been produced in the
past few years for processing flow data for both net-
work usage and security analysis. For example, OSU
FlowTools [4], argus [10] and SiLK [5] each have a
significant user base. However, each of these pro-
grams produces flow data in a different format, the
tools from each are not interoperable, and there are no
programs that can perform consistent analysis across
each of the different formats.

In this paper we present the NAF (NetSA Aggre-
gated Flow) suite of tools. These tools have been
designed for interoperability with a variety of flow
collection systems and analysis tools, with a focus on
common security analysis tasks using time-series
aggregated flow data. To that end, the nafalize flow
aggregator can read raw flow data from multiple input
formats (e.g., SiLK, argus) as well as from data
sources supporting the IPFIX [1] standard for flow
export. To bridge the gap between unidirectional and
bidirectional flow data formats, nafalize can match uni-
flows into biflows if both directions are available. The
nafscii flow printer converts aggregate flow data into
whitespace-delimited text for simple import into a
variety of numerical analysis tools.

nafalize was designed to be a general-purpose flow
aggregator. It provides a flexible aggregation facility for

1This work was performed while with the CERT Network
Situational Awareness Group at Carnegie Mellon University.

generating time-series aggregated flow data, supporting
aggregation by any set of flow key fields, and counting
of octets, packets, and flows in the aggregate, as well as
by distinct source and destination addresses. It includes
a facility for sorting aggregated flow data and limiting
output to produce time-series Top-N and watch lists.
The nafilter tool allows further filtering and sorting of
this aggregated flow data.

We begin with an overview of related work,
focusing on different suites of flow tools and the func-
tionality they provide. We then describe the NAF suite
of tools, including the functionality of each of the
tools along with a description of the options available.
We present details of the design and implementation
of the nafalize and nafilter tools and subsequently pro-
vide some usage examples that have been deployed in
an operational context. The last section includes con-
cluding comments and plans for future work.

Related Work

The conversion and aggregation of flow data for
analysis purposes is certainly not a new area of work,
and there exist several other tool sets which address
some of the problems the NAF suite was created to
address. Most of NAF’s functionality can indeed be
duplicated by stringing together combinations of these
tools; we believe that what NAF adds to the state of
the art is the combination of flexible, time-series
aggregation and sorting of flow data with multiple
input format support in a single, relatively easy to use
package. We examine some of these other tools below.

In its default mode of operation, the ipaggcreate
tool from the ipsumdump [3] suite, maintained by
Eddie Kohler at UCLA, works much like nafalize and
nafscii in series, with two important differences. First,
ipaggcreate is primarily designed to read various packet
trace formats; ‘‘flow-like’’ input support is limited to
Cisco NetFlow summary files and Bro connection sum-
maries. Second, ipaggcreate has no notion of time series;
it is analogous to running NAF with a bin size larger

20th Large Installation System Administration Conference (LISA ’06) 221

NAF: The NetSA Aggregated Flow tool suite Tr a m m e l l & Gates

than the entire scope of its input; using ipaggcreate to
generate time-series aggregates would require multiple
invocations.

The OSU FlowTools [4] flow-report tool can pro-
duce the same type of aggregate reports, with the same
caveat that it does not natively support time series data.

The SiLK [5] flow analysis suite can be used to
do many of the aggregation tasks performed by nafal-
ize and nafilter, though somewhat less easily.2 A set of
rwfilter invocations can be used to filter flows, simulat-
ing flow key masking for limited key spaces. The
rwcut tool provides only simple time binning and
aggregation. nafalize also supports biflow data
natively, and unique host and port counting, which are
not presently provided by SiLK.

The FlowScan [2] tool, maintained by Dave
Plonka from the University of Wisconsin, is another
time-series flow analysis environment. Unlike NAF, it
is focused specifically on visualization of summary
time series flow data, and as such uses the round-robin
database provided by RRDTool [13] for data storage
and aggregation. However, it does support import of
flow data in multiple formats; including CAIDA’s
cflowd, the OSU flow-tools package, QoSient’s argus,
and the Lightweight Flow Accounting Protocol.

NCSA’s CANINE [8] tool performs largely the
same function as nafalize’s first stage, transcoding
among a variety of flow formats as a conversion front-
end for NCSA’s flow data visualization tools.
CANINE is also capable of IP address and time
sequence anonymization. However, it does not itself
provide any support for aggregation of flow data.

Description

The NAF suite presently consists of four tools:
nafalize, which aggregates flow data into a common
aggregated flow data format (the NAF data format,
based upon IPFIX); nafilter, which sorts and filters
NAF data; nafscii, which prints NAF data as white-
space-delimited ASCII text; and nafload, which loads
NAF data into a relational database. The NAF data
format itself is handled by libnaf, a library installed
with the NAF tools; this arrangement allows the easy
creation of tools that interoperate with NAF.

All the tools support common options for input
and output routing. They can each run as command-
line tools or as daemons. In the latter case, the tools
can watch directories for input files, processing them
as they appear and forwarding the output to other
directories; in this manner, chains of daemons can be
built to support specific workflows.

nafalize reads raw flow data in a variety of for-
mats, filtering, aggregating, and sorting it into the
NAF data format. The aggregation function performed

2Indeed, one of the initial motivations behind NAF’s cre-
ation was to provide an easier method of producing time-se-
ries aggregates and unique counts from SiLK data.

by nafalize is specified on the nafalize command line by
an aggregation expression. This expression maps rela-
tively tightly to the design of nafalize; that is, each
‘‘clause’’ in the expression corresponds to a particular
process within nafalize’s data flow. The aggregation
expression is described by the following pattern:

bin [uniform | start | end] <n>
(sec | min | hr)

[uniflow] [perimeter <perimeter-ranges>]
[<filter-expression>]
aggregate [sip[/<mask>]] [dip[/<mask>]]

[sp] [dp] [proto] [sid]
count [hosts] [ports] [total]

[flows] [packets] [octets]
[<filter-expression>]
[<sort-expression>]
[label <output-label>]

[aggregate ...]

Note that multiple aggregate clauses are sup-
ported; this is used to specify fanout as in the
‘‘Fanout’’ section in ‘‘Stage 3,’’ below. The label
phrase serves to differentiate output files in this case.

The first filter expression is applied to the entire
data set so that all later processing is performed only on
this filtered data (and is described more fully in the
‘‘ S t a g e 2’’ section, below). The second filter expression
applies solely to the individual aggregation (see the
‘‘ S t a g e 3’’ section). Thus each individual aggregation
can be on data that has been filtered differently. The fil-
ter expression itself is described by the following pattern:

filter
[time <time-rangelist>]
[sip [not] <ipaddr-rangelist>]
[dip [not] <ipaddr-rangelist>]
[sp [not] <unsigned-rangelist>]
[dp [not] <unsigned-rangelist>]
[proto [not] <unsigned-rangelist>]
[flows <unsigned-rangelist>]
[packets <unsigned-rangelist>]
[octets <unsigned-rangelist>]
[shosts <unsigned-rangelist>]
[dhosts <unsigned-rangelist>]
[sports <unsigned-rangelist>]
[dports <unsigned-rangelist>]

The sort expression defines the ordering of records
in the output. The output is always sorted in time order
first. Within each bin, output records are given in arbi-
trary order by default. If a sort expression is present,
output records within each bin are sorted by the fields
given in ascending or descending order. The limit phrase
limits the output to the specified number of records per
time bin; it can be used to generate top-N lists. The sort
expression is described by the following pattern:

[sort (flows | packets | octets |
shosts | dhosts | sports |
dports | sip | sp | dip |
dp | proto)

[asc | desc]]
[sort ...]
[limit <n>]

222 20th Large Installation System Administration Conference (LISA ’06)

Trammell & Gates NAF: The NetSA Aggregated Flow tool suite

nafilter reads NAF aggregated flow data, filters
and sorts it, writing NAF aggregated flow data. As
with nafalize, nafilter’s operation is specified by a fil-
ter/sort expression, which has the same mapping to
nafilter’s internals as the aggregation expression above.
The filter/sort expression is merely a filter expression
followed by a sort expression, as defined above.

Each of the clauses in the expressions corre-
sponds to a process in the data flow of each applica-
tion; see below for more.

NAFlow

NAFMultiBin

pcap
input

ipfix
collect

SiLK
input

NAFlowRaw

partial
defrag

pcap
interface

pcap
dumpfile

IPFIX
file

IPFIX/
UDP

IPFIX/
TCP

argus2
.ra file

SiLK
.rw file

NAF
file

argus
input

renaf
input

driver
interface

bin and
match

perim.
reversal

prefilter

bintable
n

bintable
n+1

bintable
n+2

bintable
n+k-1

bintable
n+k. . .

NAFlowKey NAFlowVal NAFlowVUC

filter

mask

Aggregation
Table

flush

NAF
file

filter

mask

Aggregation
Table

flush

NAF
file

sortsort

Figure 1: Schematic diagram of nafalize.

nafscii is the NAF flow printer. It reads NAF
aggregated flow data and writes it out as whitespace-
delimited text. It is used for simple aggregated flow
display, and for exporting NAF aggregated flow data
to other analysis tools (e.g., the R [12] statistical com-
puting and visualization environment) which can han-
dle whitespace-delimited data.

nafload is an online loader for inserting NAF
aggregated flow data into a relational database. It was
built largely to support the internal workflow of a

specific project at the CERT Network Situational
Awareness Group.

Both nafscii and nafload are extremely simple in
design, reading in NAF aggregate flow records and
writing them out after transforming them; they will
therefore not be considered in further detail in this
paper.

Reference the manual pages in the NAF distribu-
tion for detailed usage instructions (available at
http://www.cert.org/netsa/tools/naf).

Design and Implementation

In this section, we describe the common data
model and storage format these tools use, then explore
the design of nafalize and nafilter in detail.

Data Model

NAF’s internal data model is based on time-
binned, aggregated, bidirectional flows. Each NAF
record represents a collection of flows sharing a given
flow key or subkey within a given finite time period

20th Large Installation System Administration Conference (LISA ’06) 223

NAF: The NetSA Aggregated Flow tool suite Trammell & Gates

(bin). Flow keys (type NAFlowKey in the NAF source)
are composed of some combination of source and des-
tination IP address and prefix length, IP protocol,
source and destination port, and source (or sensor)
identifier. Flow values (type NAFlowVal) are composed
of six aggregate counters (for octets, packets, and
flows, each in the forward and reverse directions) and
four unique value counters (for distinct source and
destination IP addresses, and distinct source and desti-
nation ports).

NAF uses an IPFIX-based external data format,
as described in the IPFIX Protocol Specification [1]
and the IPFIX Information Model [11]. Bidirectional
flow information is represented as in Biflow Imple-
mentation Support in IPFIX [14]. IPFIX was chosen
for its self-describing nature; the ability to dynami-
cally define record templates, useful because nafalize
can produce output with any subset of key and value
fields; and for ease of present and future interoperabil-
ity with IPFIX-based flow metering and collection
tools. Each NAF data file is a serialized IPFIX mes-
sage stream containing the IPFIX templates required
to interpret the records contained within the file.

nafalize

nafalize is the NAF flow aggregator. It is an
input-driven application, capable of converting a vari-
ety of flow formats. It can read flow data from files,
function as an IPFIX Collecting Process (reading
IPFIX messages over TCP or UDP), or capture pack-
ets from an interface via libpcap.

nafalize is roughly organized into three stages,
with well-defined interfaces between them. These
three stages are raw flow input, binning and matching,
and aggregation and output; they are described below.
A schematic diagram of nafalize appears in Figure 1.

It should be noted that presently, all of these
stages run in series – for example, when a packet or
flow is received from the first stage that causes a new
bintable to be enqueued, and a bintable is dequeued,
that bintable is aggregated and flushed (multiple
times, in case of fanout) before the next packet or flow
is processed. This may lead to dropped data when
NAF is collecting data from a live interface or via
IPFIX over UDP. The strict layering of these stages
was chosen for future performance enhancement; by
splitting each stage into its own thread for running on
its own processor in a multiprocessor system, for
example.

Stage 1: Raw Flow Input

nafalize supports three raw flow input types:
multi-format flow input from files; IPFIX over TCP,
UDP, or serialized streams via libfixbuf; and packet
capture via libpcap [7]. A given nafalize invocation can
only read input from a single type.

The file input facility includes flow format drivers
for reading from QoSient Argus [10] 2.0.6, CERT/

NetSA SiLK [5], and NAF files themselves for re-
aggregation. New flow format drivers are relatively
simple to add, but at this time require integration into
the NAF source code; there is no support for dynami-
cally-loaded flow format drivers.

The IPFIX input facility can read from serialized
IPFIX message stream files, and IPFIX messages via
UDP or TCP. It is capable of reading both unidirec-
tional and bidirectional flows.

The packet capture facility can read from pcap
dumpfiles (as produced by tcpdump -w), or from a live
ethernet or loopback interface via libpcap. It does par-
tial fragment reassembly – enough to ensure subse-
quent fragments of a fragmented datagram are
accounted to the correct source and destination UDP
or TCP port. When capturing packets, nafalize simu-
lates counting TCP ‘‘flows’’ by looking for SYN or
SYN+ACK packets. Each packet, SYN or not, is then
treated as a separate raw flow for purposes of binning
and matching, as below.

Each of these facilities successively reads flow
or packet records from their respective sources, and
normalizes them into NAF raw flow records (type
NAFlowRaw), which are then passed to the second
stage.

Stage 2: Bin and Match

The second stage of nafalize consists of four pro-
cesses: binning, perimeter reversal, prefiltering, and
matching. Perimeter reversal and prefiltering are
optional, depending on configuration.

Each raw flow is first split into time bins. If a
raw flow’s start and end times fit entirely within a sin-
gle bin, that raw flow is assigned to the bin in which it
fits. Otherwise, the flow is assigned to bins according
to a user-selectable bin selection strategy. Three of
these strategies are presently supported: start, end, and
uniform. The ‘‘start’’ strategy bins the raw flow com-
pletely into the bin containing the flow’s start time;
conversely, the ‘‘end’’ strategy bins the raw flow com-
pletely into the bin containing the flow’s end time.
The ‘‘uniform’’ bin selection strategy divides the
flow’s values equally into each bin covered by the
time span between the flow’s start and end time, pre-
serving remainders so that values are robust across re-
aggregation.

Note that, as a packet has only a single time-
stamp, every packet-derived ‘‘raw flow’’ will always
fit into a single bin. Therefore, packet capture input
has the effect of ‘‘start’’ binning no matter what bin
selection strategy is employed.

NAF supports optional perimeter reversal of
flows. If the user specifies a network perimeter based
on a set of IP address ranges and/or CIDR blocks, all
raw flows are conditionally reversed such that
addresses external to the perimeter are ‘‘source’’
addresses, and addresses internal to the perimeter are

224 20th Large Installation System Administration Conference (LISA ’06)

Trammell & Gates NAF: The NetSA Aggregated Flow tool suite

‘‘destination’’ addresses. Flows not crossing the
perimeter are dropped. This is compatible with the
semantics of some security tools, such as snort and
QRadar, which typically assign source addresses to the
‘‘attacker.’’ This facility is provided for users of such
tools, who are more comfortable thinking of networks
in terms of ‘‘interior ’’ and ‘‘exterior.’’

After perimeter reversal, each binned flow is
then subjected to an optional prefilter. See the ‘‘Filter-
ing’’ section below for a detailed description of filter-
ing in nafalize. Prefiltering is provided for perfor-
mance improvement. Though each flow can also be
filtered after matching, matching requires a flow to be
held in memory until it is ready for aggregation.
Therefore, early elimination of irrelevant flows before
matching will increase nafalize’s performance.

The binned flows are then inserted into the
multibin (type NAFMultiBin). This structure is a bin-
indexed, time-ordered queue of flow tables (type NAF-
BinTable). The appropriate bin table is accessed by
time bin; if no table exists yet for a given bin (because
a binned flow is the first one assigned to the given
bin), new bin tables are created and inserted at the
head of the queue.

The multibin’s queue length is determined by the
horizon. This horizon h is chosen such that the pro-
cessing of a flow of start time t enables the assumption
that no flows with a start time before t − h will be pro-
cessed subsequently. When processing raw flow or
IPFIX data, this is generally set to the active timeout
interval of the flow metering process; for packet cap-
ture input, the horizon can be the same as the bin size,
keeping only one bin table active at once. This design
implies that NAF’s input must be at least roughly
sorted by time.

When new bin tables are enqueued at the head,
old bin tables expire from the tail. These bin tables are
dequeued, and passed on to the third stage.

sip

aggregate sip/16

m m psp dp

192.0.2.4 192.0.2.532 32 64097 80

dip

192.0.0.0 0.0.0.016 0 00 0

aggregate sip dp proto

192.0.2.4 0.0.0.032 0 60 80

Figure 2: Illustration of mask operation.

Stage 3: Aggregate and Output

The third stage of nafalize consists of five pro-
cesses: filtering, masking, aggregation, sorting, and

output. As with prefiltering in the second stage, filter-
ing is optional, and is described in the ‘‘Filtering’’ sec-
tion below.

Each binned flow that passes the optional filter is
masked. Masking consists of projecting each record’s
flow key into a subset of the flow key. Subkeys are
derived either by dropping fields from the key or by
masking IP addresses by a more restrictive prefix
length. The masking process is illustrated in Figure 2.

This subkey is then used to create and update
aggregate flow records into an aggregation table. The
values of each binned flow are added to the corre-
sponding aggregate flow record, and distinct values
for flow keys dropped from the subkey (such as hosts
or ports) are counted. Once all the binned flows in a
bin table have been aggregated, the aggregation table
is optionally sorted as described in the ‘‘Sorting’’ sec-
tion below, then written to the output file.

Fanout

NAF is capable of fanout; that is, it can run mul-
tiple third stages off a single second stage. Each of
these third stages has a different filter and mask, and a
separate aggregation table, and writes to a different
file. This can lead to significant performance improve-
ment over processing the same data twice, because in
many cases the second stage is much more memory-
and CPU-intensive than the third.

Filtering

As noted above, nafalize may optionally filter raw
flows before binning and matching, and binned flows
before aggregation. The filtering facility is identical in
either case. Each filter is built from a user-supplied fil-
ter expression, and contains one or more field speci-
fiers (e.g., source IP, protocol) and ranges of accept-
able values for the given field. If a field specifier is
present in a filter, then that field must have one of the
values in the associated range in order for the flow to
pass the filter. Flows that do not pass the filter are sim-
ply dropped.

This filtering algorithm does not support arbi-
trary boolean predicates; instead, it can be viewed as
the intersection of a set of unions (or ‘‘AND-of-OR’’).

When filtering on time ranges, a flow matches a
time range if the flow’s start time falls within the time
range. For purposes of filtering, the start time of a
binned flow is the bin’s start time.

Sorting

As noted above, nafalize may optionally sort
aggregated flows on output. If a sort expression is sup-
plied by the user for a given aggregation, all aggre-
gated flows in each time bin are placed into an array
on output, then sorted using a sort comparator derived
from the sort expression. Note that this design con-
strains the output to be sorted in ascending time order.

The sorting function also supports a limit, which
will output only the first N flows per bin in sort order.

20th Large Installation System Administration Conference (LISA ’06) 225

NAF: The NetSA Aggregated Flow tool suite Trammell & Gates

In this way nafalize can be used to build time-series
Top-N lists.

NAF
file

NAFlow

NAFlowKey NAFlowVal

naf
input

filter

sort

flush

NAF
file

Figure 3: Schematic diagram of nafilter.

nafilter

nafilter is the NAF aggregated flow filter/sorter.
Like nafalize, it is an input-driven application, though
it is limited to only reading files written by nafalize. It
is roughly organized into two stages: filtering and
optional sorting. A schematic is shown in Figure 3.

Filtering operates as described in the ‘‘Filtering’’
section; indeed, the filter implementation is shared
between nafalize and nafilter. It is important to note that
the filter operates on raw flows in nafalize but on
aggregated flows in nafilter, so filtering on value fields
will have different results in each application. Con-
sider the example of a filter that passes only records
with a packet count of one. In nafalize, this filter will
build aggregates of single-packet raw flows, while in
nafilter, it will only pass aggregate flows that them-
selves only have a single packet.

Sorting operates as described above; the sorting
implementation is also shared with nafalize.

Usage Examples

Here we describe two examples of actual NAF
deployments in operational contexts. The first is as
part of an internal data collection project at the CERT
Network Situational Awareness Group. The second
deployment occurred on the network of a large

computing conference as part of a security support
effort using SiLK and NAF.

NetSA Preanalysis

NAF is used in the preprocessing of Argus 2.0.6
flow data from a distributed collection infrastructure
operated by the Network Situational Awareness group
at CERT. The generated aggregate flows support ‘‘at-a-
glance’’ visualization and statistical anomaly detection.

Raw Argus flow files (generated by argus and
preprocessed themselves through ragator) are aggre-
gated into four separate labeled files (using the fanout
feature described below). These files are then loaded
via nafload into a relational database, from which fur-
ther analyses are done.3 The nafalize command line for
this output is:

nafalize --daemon --lock --intype argus2
--nextdir argus-cache --faildir naf-fail
--in "argus/*.rag" --out naf-out
bin 5 min
aggregate count flows packets octets
label volume
aggregate count hosts
label talkers
aggregate sip count flows octets
label sources
aggregate dp proto count hosts octets

packets flows
filter proto 6,17
label pdb

The four labeled files contain, in 5-minute time series:
total flow, packet and octet volume (example nafscii
output in Figure 4); total distinct source and destina-
tion hosts (Figure 5); total flows and octets per source
IP address (Figure 6); and total distinct source and
destination hosts, flow, packet, and octet counts from
per destination port and protocol (Figure 7).4

The relational database into which the aggregate
flow data is loaded is presently used for two purposes.

First, periodic queries are run against the rela-
tional database, and the results are fed into Tobias
Oetiker ’s rrdtool [13] to generate time-series graphs
for each of the variables produced (e.g., total data vol-
ume per sensor in octets, talkers per sensor, etc.). This
provides a simple ‘‘dashboard’’ visualization for the
distributed collection system.

Periodic queries are also used to select all the
variables available for a given time bin; these are used

3This is not precisely how this works in production. First,
the nafalize command line is slightly different due to deploy-
ment concerns. Second, nafalize is run twice for site-specific
reasons, with the second nafalize instance processing the out-
put of the first instance, using naf’s ability to reaggregate its
own output. Third, the aggregation expressions in produc-
tion use the srcid field to aggregate data from multiple sen-
sors.
4The example data was not generated from production data

from the distributed collection system; it is presented as an
example of output from the command-line shown.

226 20th Large Installation System Administration Conference (LISA ’06)

Trammell & Gates NAF: The NetSA Aggregated Flow tool suite

as independent-variable input into a statistical anom-

aly detection process based upon Mahalanobis dis-

tance [6], which compares each bin to a baseline

derived from a larger window of recent aggregate

data, and detects time bins which deviate significantly

and therefore may benefit from further analysis of the

full-flow data. The result of this process is a single

time-series ‘‘deviance’’ metric, which is itself fed into

rrdtool as above.

date time flo rflo pkt rpkt oct roct
2006-03-03 13:20:00 363 12 4873 5552 739388 5956007
2006-03-03 13:25:00 279 16 7026 7612 1337665 8042156
2006-03-03 13:30:00 343 11 2599 2208 639824 1616504
2006-03-03 13:35:00 190 9 1355 1077 311763 729521
2006-03-03 13:40:00 223 6 1631 1422 320408 1040939
2006-03-03 13:45:00 223 7 5031 6147 653908 7736319

Figure 4: Argus preprocessing example volume output.

date time shosts dhosts
2006-03-03 13:20:00 35 62
2006-03-03 13:25:00 37 60
2006-03-03 13:30:00 37 70
2006-03-03 13:35:00 31 38
2006-03-03 13:40:00 34 50
2006-03-03 13:45:00 28 48

Figure 5: Argus preprocessing example talkers output.

date time sip flo rflo oct roct
2006-03-03 13:20:00 10.146.0.13 1 0 64 0
2006-03-03 13:20:00 10.146.0.73 27 2 91604 433619
2006-03-03 13:20:00 10.146.0.74 14 0 1436 837
2006-03-03 13:20:00 10.146.0.77 23 0 9286 15266
2006-03-03 13:20:00 10.146.0.82 27 3 7766 5544
2006-03-03 13:20:00 10.146.0.83 14 0 4647 22963
2006-03-03 13:20:00 10.146.0.91 11 0 23202 31724
2006-03-03 13:20:00 10.146.0.95 8 0 3618 35124
2006-03-03 13:20:00 10.146.0.99 2 0 56 0

Figure 6: Argus preprocessing example sources output.

date time dp proto shosts dhosts flo rflo pkt rpkt oct roct
2006-03-03 13:20:00 22 6 1 1 4 0 42 47 3910 7894
2006-03-03 13:20:00 80 6 5 15 81 0 1033 1141 107152 1120657
2006-03-03 13:20:00 143 6 1 1 2 0 48 49 2534 34490
2006-03-03 13:20:00 443 6 4 7 40 0 423 431 64404 282673
2006-03-03 13:20:00 445 6 3 1 3 0 3 0 144 0
2006-03-03 13:20:00 993 6 1 1 2 0 4 2 320 266
2006-03-03 13:20:00 53 17 8 6 53 0 91 55 6411 11104
2006-03-03 13:20:00 67 17 5 2 5 0 9 4 3024 1312
2006-03-03 13:20:00 137 17 7 3 9 0 54 0 4203 0
2006-03-03 13:20:00 138 17 5 1 6 0 7 0 1615 0
2006-03-03 13:20:00 5353 17 3 1 6 0 11 0 1365 0

Figure 7: Argus preprocessing example pdb output.

Note that we store time-series summary flow data

in the relational database, and keep raw flow data in its

native (Argus) format for a period of time to permit

detailed flow analysis. NAF was deployed in this envi-

ronment to replace a system which inserted raw flow

data into the database for intermediate-term storage,

and where all aggregation was done via SQL queries.

This system did not scale adequately for our needs; a

more detailed look at the use of relational database
technology in raw flow storage is given in [9].

Conference Security

SiLK [5] and NAF5 were deployed as part of an
effort to provide security support for a large comput-
ing conference in late 2005. The example usage and
output results presented here were all gathered from
this conference. We have represented IP addresses
internal to the security conference facility as 192.168.
128.0/17, while external addresses have been ran-
domly chosen from 241.0.0.0/8.

NAF is used here as a post-processor for SiLK
raw flow data; the per-key binning provided by nafalize

5This deployment used an earlier version of the NAF tools
which did not support fanout and consequently used a slight-
ly different aggregation expression; the examples have been
corrected to use aggregation expressions that will operate
with NAF as it is presently available.

20th Large Installation System Administration Conference (LISA ’06) 227

NAF: The NetSA Aggregated Flow tool suite Trammell & Gates

is more convenient to use than the equivalent opera-
tions using the SiLK rw tools alone, and SiLK did not
at the time of this deployment support unique host or
port counting as in the third example.

In our first example, we first use the SiLK tools
(rwfilter) to filter the data to include only those flows
that originated from within the internal network, but
that were not destined for an internal address. One
hour of such TCP data is piped into the following
command:

nafalize -t silk bin 1 hr
aggregate sip
count hosts | \
nafscii | \
gawk ’{if ($1 !˜ /date/) { split($3, a, ".");
printf "%d | %d0, a[1]*256*256*256 +
a[2]*256*256 + a[3]*256 + a[4], $4}}’

0
2

0
0

4
0

0
6

0
0

8
0

0

IP Addresses

N
u
m

b
e

r
o

f
H

o
s
ts

C
o

n
ta

c
te

d

192.168.128.0 192.168.160.0 192.168.192.0 192.168.224.0 192.168.255.255

Figure 8: Hosts Contacted Per Hour.

The nafalize command aggregates the results
from the SiLK commands into one hour bins by source
IP address and counts the total number of hosts con-
tacted. These results are converted into ASCII (via naf-
scii). The gawk command takes the IP address, which
is provided in dotted quad notation, and converts it
back to its integer form, printing this value along with
the number of hosts contacted by that IP. The results
from this command have the following form:

2363326977 | 1
2363326978 | 1
2363326980 | 2
2363327150 | 32
2363327161 | 7

These results are then presented graphically (hence the
requirement for an integer representation of the addresses)
so that a user can gain a sense over time of what was con-
sidered normal activity for the network. We present an
example graph in Figure 8. This figure indicates five out-
liers that are potentially worth further investigation.

Figure 9 demonstrates a second command run peri-
odically on the conference network. In order to detect
unusual TCP activity, we select TCP traffic that was
inbound to the network and that did not originate from
within it over a one day period, restricted to only those
flows representing failed connection attempts (i.e., where
the SYN flag was set but not the ACK flag). This selec-
tion is done via the SiLK rwfilter command. We again
nafalize this into one hour bins by source IP address,
counting packets and bytes. nafscii then converts the out-
put for processing by gawk to print the average number of
bytes per packet observed, the number of packets, the
start date and time for the record and the source IP
address in dotted quad. As the selected flows represent
failed connection attempts, we would expect the majority
of traffic to be 40, 44, 48 or 52-byte single-packet flows.
However, here we observe unusual activity. We expect
that the cases where there are a large number of packets
that average 40 or 44 bytes per packet are indications of
scanning activity. For example, the case where IP address
241.194.61.230 has 14,374 packets with an average of 59
bytes per packet might indicate someone who was scan-
ning and trying an exploit against those hosts that
responded. This would indicate an IP address whose traf-
fic warrants further investigation.

228 20th Large Installation System Administration Conference (LISA ’06)

Trammell & Gates NAF: The NetSA Aggregated Flow tool suite

In the third example (Figure 10), we examine all
TCP traffic for a single day that is incoming to the
conference network and that did not originate from
within it. Again we aggregate in one-hour bins by
source IP address. We convert to ASCII and process
the results, printing out the integer value for the IP
address, the number of destination hosts contacted, the
start date and time for the record, and the dotted-quad
version of the IP address. As there is little reason for
an external IP address to connect to a large number of
internal IP addresses, this analysis indicates likely
scanning activity. Note that IP 241.194.61.230 appears
again in this data, lending credence to our hypothesis
above regarding their activity.

% rwfilter --syn=1 --ack=0 --daddr=192.168.128.0/17 \
--not-saddr=192.168.128.0/17
--pass=stdout --proto=6 --start=2005/11/15 | \
nafalize -t silk bin 1 hr aggregate sip count packets octets | \
nafscii | \
gawk ’{if ($1 !˜ /date/) printf "%d | %d | %s %s %s \n", \

$5/$4, $4, $1, $2, $3}’

40 | 1 | 2005-11-15 00:00:00 241.192.13.14
52 | 2 | 2005-11-15 00:00:00 241.10.21.189
48 | 1 | 2005-11-15 00:00:00 241.11.246.197
44 | 1929 | 2005-11-15 00:00:00 241.34.98.164
59 | 14374 | 2005-11-15 00:00:00 241.194.61.230
40 | 23347 | 2005-11-15 16:00:00 241.192.100.123
740 | 1 | 2005-11-15 23:00:00 241.71.1.154

Figure 9: Inbound bytes-per-packet by source.

% rwfilter --daddr=192.168.128.0/17 --not-saddr=192.168.128.0/17 \
--pass=stdout --proto=6 --start=2005/11/15 | \
nafalize -t silk bin 1 hr aggregate sip count hosts | \
nafscii | \
gawk ’{if ($1 !˜ /date/) { \

split($3, a, "."); printf "%d | %d | %s %s %s \n", \
a[1]*256*256*256 + a[2]*256*256 + a[3]*256 + a[4], $4, $1, $2, $3}}’

1000079635 | 1 | 2005-11-15 21:00:00 241.156.1.19
1006778434 | 2 | 2005-11-15 23:00:00 241.2.56.66
1022911850 | 3 | 2005-11-15 03:00:00 241.248.101.106
3514611848 | 283 | 2005-11-15 20:00:00 241.124.184.136
3703717350 | 14509 | 2005-11-15 00:00:00 241.194.61.230
1022903300 | 15881 | 2005-11-15 16:00:00 241.248.68.4

Figure 10: Inbound destination host count by source.

% rwfilter --bytes=1400-99999999 --dur=30-3600 --dport=445 --ack=1 \
--flags-initial=S/SA --start=2005/11/15 --proto=6 --pass=stdout \
--not-saddr=192.168.128.0/17 --daddr=192.168.128.0/17 | \
nafalize -t silk bin 1 hr aggregate sip dip count total flows octets | \
nafscii | \
gawk ’{if ($1 !˜ /date/) { if ($6 > 10000) \

printf "445 | %s %s | %s %s | %d | %d\n", $1, $2, $3, $4, $5, $6}}’

445 | 2005-11-15 10:00:00 | 241.146.88.212 192.168.190.233 | 18 | 1209855
445 | 2005-11-15 11:00:00 | 241.146.88.212 192.168.190.233 | 1 | 44824
445 | 2005-11-15 16:00:00 | 241.214.211.244 192.168.190.248 | 3 | 231372

Figure 11: Inbound potential SMB compromise detection.

Our last example demonstrates commands run
periodically to detect potentially compromised internal
machines. In this case we select TCP flows from an
external host to an internal host on port 445, lasting

more than thirty seconds, representing completed con-
nections where more than 1400 bytes were sent. This
should extract those hosts that might have compromised
the SMB port on a Windows machine. We then use NAF
in order to bin on an hourly basis, extracting the start
date and hour, the source and destination IP address, the
number of flows and the number of bytes. The results
from running this command are provided in Figure 11.
In this case we find two IP addresses that have poten-
tially compromised a single internal host each.

During the conference, we performed a similar
analysis on ports 135 and 22. While much of the traf-
fic destined for port 22 was legitimate, we examined
the number of internal IP addresses to which different
external IP addresses had connected. We also exam-
ined where the external IP addresses were registered,
to ensure that they matched known participants rather
than likely compromisers.

20th Large Installation System Administration Conference (LISA ’06) 229

NAF: The NetSA Aggregated Flow tool suite Trammell & Gates

Conclusions and Future Work

We have introduced a new flow aggregation tool
suite, the focus of which is interoperability with multi-
ple flow sensor technologies and the reduction of flow
data for network security analysis purposes. These
tools are designed to be reasonably generic, and apply
to a wide variety of analysis tasks. We have explored
the design of two of these tools in detail, and provided
examples of their usage in two real-world applications.

NAF is under continuing active development at
the CERT Network Situational Awareness Group. We
have planned several enhancements for the tool suite
that will appear in future releases:

NAF’s internal data model and aggregation opera-
tions presently only support flows with IPv4 addresses;
we plan to add support for IPv6 addresses, as well.

To support NAF’s use in data sharing applica-
tions, future releases of the tool suite will include sup-
port for data anonymization, when the aggregation
operations do not discard sufficient information to
meet an organization’s dissemination policy needs.
Indeed, the extent to which aggregation operations
obfuscate data needs to be better quantified; this is an
area for future research.

The use of a single data format at the core of the
NAF tools’ design also makes it reasonably easy to
build new consumers for that data; currently planned
is a NAF-to-SVG ‘‘printer ’’ analogous to nafscii or
nafload. This would allow the generation of time-series
graphs from NAF data without the present need to
convert the data into rrdtool round-robin databases.

Likewise, the layered architecture of nafalize
eases the addition of new types of flow input to the
tool. Additional flow input drivers will continue to be
added to the distribution on an ‘‘on-demand’’ basis.

Furthermore, as NAF’s output format is based
upon IPFIX, it will be reasonably simple to add sup-
port for using nafalize as an IPFIX Exporting Process;
that is, to allow it to send output over the IPFIX Proto-
col. When combined with existing Collecting Process
support, nafalize will be deployable as a ‘‘drop-in’’
aggregating IPFIX proxy.

Present experience with nafalize suggests that its
performance is bound by I/O (how fast records can be
read from disk or the network) and the size of the active
flow table. While the performance is obviously depen-
dent on both the data and the aggregation expressions
used, nafalize run on a stock Dell 1850 tends to process
between 100 k and 250 k records per second with
between 5 k and 10 k concurrent flows in the second-
stage NAFMultiBin. We plan on performing detailed profil-
ing and optimization in order to increase this throughput.

One performance enhancement suggested by
nafalize’s three-stage design would be to split the stages
into separate threads. This may increase throughput on
multicore hardware, but more importantly, it will isolate

output delay from input processing; especially impor-
tant in the aggregating IPFIX proxy case above.

The NAFBinTable is presently limited to the size
of available memory. nafalize may be extensible to
work with extremely large datasets by replacing the
underlying bintable implementation with one that can
utilize on-disk storage when necessary, sacrificing per-
formance for flexibility as needed.

Author Biographies

Brian Trammell is the Engineering Technical
Lead at CERT Network Situational Awareness Group.
He designs, builds and maintains software systems for
the collection and analysis of security-relevant mea-
surement data for large-scale networks. He is also an
active contributor to internet-measurement related
working groups in the Internet Engineering Task
Force. He received his bachelor’s degree in computer
science in 2000 from the Georgia Institute of Technol-
ogy, where he also worked as the UNIX systems
administrator for the School of Civil Engineering for
three years. He can be reached at bht@cert.org .

Carrie Gates is a Research Staff Member with
CA Labs where she performs research in enterprise
security. She received her Ph.D. in May, 2006, from
Dalhousie University. While completing her disserta-
tion, she spent three years working with CERT Net-
work Situational Awareness at Carnegie Mellon Uni-
versity doing security research for large-scale net-
works. Previous to her doctoral studies, Carrie was a
systems administrator for six years. She can be
reached at carrie.gates@ca.com .

Bibliography

[1] Claise, B., IPFIX Protocol Specification, (work
in progress), June, 2006, Internet-Draft draft-ietf-
ipfix-proto-22 .

[2] Plonka, Dave, ‘‘FlowScan: A network traffic
flow reporting and visualization tool,’’ Proceed-
ings of the 14th Large Installation Systems
Administration Conference (LISA 2000), New
Orleans, Louisiana, USENIX Organization, pp.
305-317, December, 2000.

[3] Kohler, Eddie, ipsumdump and ipaggcreate,
2006, http://www.cs.ucla.edu/ kohler/ipsum-
dump/ , (Last Visited: 11 May 2006).

[4] Fullmer, M., and S. Romig, ‘‘The OSU flow-
tools package and Cisco Netflow logs,’’ Pro-
ceedings of the 14th Systems Administration
Conference (LISA 2000), New Orleans,
Louisiana, USENIX, pp. 291-303, December,
2000.

[5] Gates, C., M. Collins, M. Duggan, A. Kom-
panek, and M. Thomas, ‘‘More NetFlow tools:
For performance and security,’’ Proceedings of
the 18th Large Installation Systems Administra-
tion Conference (LISA 2004), Atlanta, Georgia,
USENIX, pp. 121-132, November, 2004.

230 20th Large Installation System Administration Conference (LISA ’06)

Trammell & Gates NAF: The NetSA Aggregated Flow tool suite

[6] Lazarevic, A., L. Ertoz, V. Kumar, A. Ozgur, and
J. Srivastava, ‘‘A comparative study of anomaly
detection schemes in network intrusion detec-
tion,’’ Proceedings of SIAM International Con-
ference on Data Mining, San Francisco, Califor-
nia, Society for Industrial and Applied Mathe-
matics, May, 2003.

[7] LBNL Network Research Group, TCPDUMP
public repository, 2005, http://www.tcpdump.org ,
(Last Visited: 9 May 2006).

[8] Luo, K., Y. Li, A. Slagell, and W. Yurcik,
‘‘CANINE: A NetFlows converter/anonymizer
tool for format interoperability and secure shar-
ing,’’ FloCon 2005: Proceedings, Pittsburgh,
Pennsylvania, CERT Network Situational Aware-
ness Group, September, 2005, http://www.cert.
org/flocon/2005/proceedings.html .

[9] Navarro, J.-P., B. Nickless, and L. Winkler,
‘‘Combining Cisco NetFlow exports with rela-
tional database technology for usage statistics,
intrusion detection and network forensics,’’ Pro-
ceedings of the 14th Large Installation Systems
Administration Conference (LISA 2000), New
Orleans, Louisiana, USENIX, pp. 285-290,
December, 2000.

[10] QoSient, LLC, argus: network audit record gen-
eration and utilization system, 2004, http://www.
qosient.com/argus/ , (Last Visited: 9 May 2006).

[11] Quittek, J., S. Bryant, B. Claise, and J. Meyer,
Information Model for IP Flow Information
Export, June, 2006, Internet-Draft draft-ietf-
ipfix-info-12 (work in progress).

[12] R Project, The R Project for Statistical Comput-
ing, 2006, http://www.r-project.org , (Last Vis-
ited: 12 May 2006).

[13] Oetiker, Tobias, RRDtool, 2006, http://oss.oetiker.
ch/rrdtool/ , (Last Visited: 11 May 2006).

[14] Trammell, B., and E. Boschi, Bidirectional Flow
Export using IPFIX, August, 2006, Internet-
Draft draft-ietf-ipfix-biflow-00 (work in progress).

20th Large Installation System Administration Conference (LISA ’06) 231

