
EnthusiASM:
A Tile-Based Visual Programming Language for High-Level Assembly

Matthew D. Boardman
Dalhousie University

Matt.Boardman@dal.ca

Abstract

In this paper, a visual programming environment for the
development of low-level and high-level assembly lan-
guage programs is proposed, and is evaluated in the
context of Green and Petre’s “Cognitive Dimensions”
framework. The system acts as a code generator for a
textual assembly compiler, and is designed to be flexible
enough to accommodate any hardware architecture and
operating system. As an implementation example, an in-
terface prototype for the common 32-bit Intel Architec-
ture is shown in this paper. In addition to low-level as-
sembly instructions unique to each hardware platform,
the language includes support for high-level assembly
language programming structures such as conditional
constructs, looping constructs and stack management.

1. Introduction

EnthusiASM is a realistic proposal for a Visual
Programming Language (VPL) designed for the devel-
opment of both low-level and high-level assembly lan-
guage programs. The proposed system is primarily tar-
geted towards education: students who wish to gain a
greater understanding of the inner workings of mod-
ern processors without regard to the arbitrary syntacti-
cal demands of assembly compilers and varied address-
ing schemes, such as compiler-specific directives, or
the notation for immediate, direct or indirect address-
ing modes. The system is also designed to simplify
interaction with external code modules, so that pro-
grammers used to high-level languages, who use as-
sembly language infrequently, may quickly and simply
design high-performance assembly modules for use in
applications that have the majority of their code writ-
ten in compiled high-level languages such as C or C++.
To alleviate tedious, repetitive tasks in assembly pro-
gramming, support for high-level structures are pro-
vided, such as if-then or case conditional statements,

do-while or repeat-until loops, and automated stack
management for the invocation of local procedures, pro-
cedures from object files in other languages, an assem-
bly compiler’s standard library procedures or operat-
ing system-specific Application Programming Interface
(API) functions to allow access to system hardware via
the kernel. Support for the API also means that full
Graphical User Interfaces (GUI) may be designed en-
tirely in assembly, by accessing standard GUI develop-
ment tools and including resources during compilation.

EnthusiASM is both a VPL and an Integrated De-
velopment Environment (IDE). It is designed to be flex-
ible enough to be applied to any hardware architec-
ture, assembly language compiler or operating system
by simply changing its configuration. In this paper, as
an implementation example, the common Intel Archi-
tecture 32-bit standard (IA-32) will be targeted (more
specifically, the Intel Pentium Pro or x686 architec-
ture) [10], using the MASM32 assembly compiler [12]
with the Microsoft Windows operating system [13]. Al-
though it would be natural for EnthusiASM to be imple-
mented in Java for portability, in Plate 1 the prototype
interface is shown using Microsoft Windows-specific
controls for convenience.

1.1. Assembly Language

Today’s general-purpose, stored-program comput-
ers use binary data to store both data and application
code. All high-level languages are converted at some
point to binary code for low-level execution at the ma-
chine level. Some high-level languages such as C
or C++ are converted directly into machine language
through compilation, while interpreted languages such
as Java execute through an intermediary: in Java this
intermediate layer is called the Java Virtual Machine
(JVM). The many binary instructions, or opcodes, mak-
ing up this machine code vary by processor family, and
are difficult for human programmers to remember. De-
pending on the addressing mode or length of immedi-



ate values (constants) used in the instruction, the binary
opcode may change in value. Complicating the matter
further is the fact that in some architectures, opcodes
may be of variable length: for example, in IA-32, an
opcode may be one, two or three bytes in length [10],
in addition to further bytes needed to identify specific
memory locations or immediate values, all for a single
instruction.

Assembly language was therefore created for con-
venience, to translate each opcode into a human-
readable symbolic interpretation. For example, in IA-
32 machine code, a simple instruction to add three to
the 16-bit register AX might appear as [10]

05 03 00

The first value specifies the “add 16-bit immediate to
AX register” opcode, and the next two values specify
the 16-bit constant. Note that here these values are in
hexadecimal for readability, and that since this example
uses the IA-32 standard, the immediate value appears as
little-endian, i.e. least significant byte first. However,
in symbolic assembly language, this same instruction
would be specified as

add AX,3

The symbolic interpretation, or mnemonic, of the ma-
chine code for this instruction is add, and since imme-
diate addressing is used and the register to employ in the
addition is specified, the assembly language compiler
knows to convert this instruction to the 05 machine
code. Note that the order of the AX and 3 arguments, or
operands, for this instruction is destination followed by
source, since we are using an Intel processor: in other
standards such as the Motorola 68000 processor family,
this order would be reversed [1]. This non-standardized
ordering of operands is another complication for novice
assembly language programmers, who must not only
deal with the syntactical idiosyncrasies of each assem-
bly language specific to a particular processor family or
assembly compiler, but also the often arcane address-
ing specifications, and any memory model architectures
specific to a particular operating system.

1.2. Modern Assembly Languages

In addition to the syntactical and addressing diffi-
culties for novice programmers mentioned above, the
complexities of CISC (Complex Instruction Set Com-
puting) processors compound the problem by provid-
ing an intimidating plethora of available instructions
[1, 3]. Programmers must also consider the byte-order
of stored simple data elements—whether a processor
is little-endian as for Intel processors or big-endian as

for Motorola processors—which complicates matters
for programmers switching from one hardware architec-
ture to another. Generally speaking, reading and writ-
ing assembly programs is prone to error from many di-
rections, complicating maintenance efforts [18]. High-
level languages such as C or C++ are compiled directly
into machine code: modern compilers are quite adept
at writing efficient machine code, and are able to con-
sider many more factors than most human program-
mers, such as out-of-order execution[16], speculative
execution of conditional branches[2], multiple, deep
instruction pipelines [11] and advanced cache mecha-
nisms [16]. So why is assembly necessary?

Other than those programmers who actually de-
velop the compilers, it is useful for any student of mod-
ern computer languages to understand assembly lan-
guage, in order to better understand the execution envi-
ronment of the underlying hardware architecture [1, 3].
Execution performance and smaller code size have been
raised as good reasons to program in assembly [8, 18],
and in limited environments such as for use with embed-
ded devices [18] or for time-critical kernel operations,
these may be important factors.

It is possible that an expert assembly language pro-
grammer may always be able to create better code than
even the best compilers, simply because the human pro-
grammer can always look at the output of the compiler
and make small, fine-grained adjustments to “tweak”
the result [8]. For this reason, it is quite conceivable
that an application with intensive data processing, such
as data encryption and compression, or that moves large
amounts of data between hardware devices, as with
multimedia, might have the vast majority of its code cre-
ated in a high-level language but have specific modules
of code written in assembly language in order to achieve
the highest possible level of performance [2, 8, 9]. Also,
it is well-known that many virus writers use assembly
language to create the smallest possible code to “infect”
valid executables in order to avoid detection.

For applications with a greater proportion of time-
critical code, it may be necessary to write the major-
ity of application code in assembly. Indeed, recent
advances in high-level assembly compilers allow pro-
grammers to provide a complete GUI through system
calls to the operating system [9], such as MASM32
and FASM for Microsoft Windows [5, 12], or NASM
for Linux [19]. High-level assembly language provides
a further level of abstraction from the hardware archi-
tecture, in which high-level macros, or pre-defined se-
quences of instructions, automate common tasks such
as the creation of conditional statements, loop structures
or the invocation of kernel API. These are provided for
code readability and convenience, but since each macro

2



translates directly to a series of assembly instructions,
they are still architecture-dependent.

IDEs for these modern assembly compilers allow
fully developed GUI to be created entirely within the
confines of assembly, with roughly the same level of
difficulty as programming such an application in C [9],
by using high-level macros to call operating system-
specific API and by employing standard memory mod-
els, such as 32-bit protected mode in an Intel environ-
ment and the Microsoft Windows-specific Portable Ex-
ecutable (PE) standard [9] for the format of executable
programs, to free the developer from the concerns of
memory segmentation.

1.3. The Intel x686 “Pentium Pro”

In this paper, the proposed EnthusiASM implemen-
tation will consider the Intel x686 processor architec-
ture, as this the most common Intel standard currently
in use.

Intel’s development of the “Pentium Pro” proces-
sor in 1995 represented a significant departure from the
purely CISC architecture which Intel had used in the
past [16]. In order to maintain binary compatibility with
the Intel family, the processor needed to interpret the
legacy Intel Architecture (IA) opcodes. However, in or-
der to take advantage of recent Very Large Scale Inte-
gration (VLSI) hardware advances, a RISC (Reduced
Instruction Set Computing) architecture with a fixed-
length opcode were needed. Intel reconciled these con-
flicting goals by adding translator hardware to parse
each IA-32 opcode into a series of fixed-length micro-
ops [16], which then execute on a RISC platform. In ad-
dition, the restrictive set of eight General Purpose Reg-
isters (GPR) in the IA-32 standard were replaced with
forty, 32-bit multipurpose GPRs for use by these micro-
op instructions [11, 16].

The processor allows a 32-bit addressing for a
maximum of 4 GB of addressable memory space per
process, but 36-bit physical memory addressing for
64 GB of physical address space [11, 16]. Few addi-
tional IA-32 instructions were added with the first Pen-
tium Pro processor, but subsequent Intel processors us-
ing this same CISC to RISC translation scheme, such
as the Pentium II through Pentium IV, have added addi-
tional instruction sets and register sets such as the MMX
instructions and registers used for multimedia applica-
tions [10].

1.4. Visual Assembly Programming

Many IDEs for assembly languages claim to be vi-
sual, yet do not incorporate VPL methodologies such

as a data-driven execution model [17] or visual algo-
rithm creation [4, 20]. Such IDEs are generally limited
to coloured syntax highlighting or the inclusion of re-
source editors for drawing icons and creating GUIs [4].

Genuine VPLs with graphical methods for building
algorithms have been proposed and several have been
commercially successful, such as LabVIEW from Na-
tional Instruments, designed for use by scientists and
engineers with a hardware connection paradigm [4, 20],
and Prograph from Pictorius, Inc., which was designed
as a general-purpose visual language employing object-
oriented concepts [6]. However, many of these VPLs
are specific to a particular problem domain, and com-
monly employ a data flow model in which dependen-
cies within the data guide the execution path [17]. In
the case of general-purpose, low-level assembly pro-
gramming, which is naturally a control-flow language
consisting of a sequence of imperative commands [17],
it is difficult to imagine how a data flow model might be
employed.

Tile-based VPLs have been proposed such as
AgentSheets [15], in which autonomous Agents, in a
rough parallel to class objects in object-oriented de-
sign, are represented by graphical tiles which can be
manipulated by the programmer as building blocks to
create graphical simulations of real-world events. Vi-
sual processor simulations have been proposed, such
as [1, 14] for the Motorola 68000 processor or [3] for
early Intel processors, in order to visualize the execu-
tion of assembly instructions for educational purposes.
The simulation proposed in [1] consists of “templates,”
unique to each assembly instruction, which are filled in
to provide a functional processor instruction to be visu-
alized. Visual assembly language editors have also been
proposed, such as EasyAssembly [18] for the MIPS
mainframe architecture, which allows instructions to be
created by dragging registers to memory or stack loca-
tions in a graphical environment.

2. EnthusiASM

The proposed EnthusiASM system combines ele-
ments from several of these approaches. Programs are
created by building a vertical series of fixed-height tiles,
executed from top to bottom, to maintain sequential, im-
perative control flow. Each tile may represent a machine
instruction, a high-level macro consisting of a group of
several instructions, a pre-defined conditional or itera-
tive construct, or an invocation of another procedure.
Larger conditional and iterative constructs may include
several tiles: for example, a repeat-until loop has an
initial tile indicating the start of the repeat structure and
an ending tile indicating the condition for termination.

3



Colour is an integral component of these tiles to quickly
convey meaning: green tiles are native processor in-
structions, yellow tiles indicate a high-level macro or an
invocation tile, whilst blue tiles indicate conditional or
iterative high-level constructs. In a practical implemen-
tation, it would be advisable to allow these colours to be
modified by the user to account for colour-blindness or
low contrast displays.

For example, a common mov instruction to copy
data from a register to a memory location might appear
in machine language as

mov Line No,EAX

To create this instruction in EnthusiASM, a developer
would drag-and-drop a mov tile from a list of available
tiles to the needed location in the current list of tiles,
then drag a register location from a window depicting
available registers within the current processor archi-
tecture, and finally drag a memory value from a list of
pre-defined variable locations for the current project.

Figure 1. A mov instruction tile.

The result of these actions is shown in Fig. 1, with
three drag-and-drop locations (an instruction to the left,
a source at the upper right, and a destination at the lower
right) separated by dotted lines. A small arrow point-
ing downwards reminds the user which location is the
source and which is the destination: this allows addi-
tional abstraction from the peculiarities of a specific as-
sembly compiler syntax, as the tile would appear identi-
cal for Intel notation and Motorola notation even though
in the textual syntax the order of the operands would be
reversed [1].

The conceptual compilation architecture of En-
thusiASM is shown in Fig. 2. A project may consist
of one or several assembly files, each of which may
contain one or several procedures. In order to gener-
ate the proper textual syntax for the required assembly
compiler, EnthusiASM needs to know the specifications
of the processor, such as the available instructions and
addressing modes, and the segmented memory model
used by the particular operating system. The system
also needs a series of pre-defined macro tiles specific to
each processor, operating system and/or assembly com-
piler. During compilation, EnthusiASM generates the
required assembly files from the user-created sequential
lists of tiles, in the syntax of the configured assembly
compiler, which then creates binary object files. These

Figure 2. The EnthusiASM compilation architecture.

files may be linked with other binary object files created
by higher level languages such as C, or with standard li-
brary files specific to a particular operating system such
as math libraries and kernel APIs. The result of this
compilation of a project is a single executable program.

2.1. Graphical User Interface

An example of the proposed EnthusiASM GUI is
shown in Plate 1. The user is currently dragging a tile
to create a mov memory instruction (dashed red line at
lower left). All windows are resizable according to the
user’s preference, and may be hidden or positioned any-
where within the main window.

In this figure, Code Viewer and Tiles windows
show visual and textual views of the same assembly
procedure hello, in the hello.asm assembly file, for the
hello.prj project. The text windows uses coloured syn-
tax highlighting for readability. The user may not mod-
ify its contents, however, since the contents of the win-
dow are kept in synch with instructions created in the
Tiles window, comparing these two views enables the
novice assembly programmer to learn the instruction
mnemonics and addressing modes used by the proces-
sor architecture, as well as the syntax of the assembly
compiler. This aids in presenting a gentle learning curve
for novice users.

The Navigator window orients the user by showing
that the current project contains a single assembly file
hello.asm, with two procedures, main and hello. Dot-
ted lines in this Navigator show which procedures are
in which file, while solid arrows show a simple call-

4



ing hierarchy to provide a view of program structure.
The user is free to move these boxes anywhere within
the Navigator window; the arrows and dotted lines are
moved with them automatically. If a line crosses a box,
the line is drawn on top of the box, to aid visibility.
Buttons along the right edge allow the user to zoom in
and out, and change the colour assignment for each sub-
routine at their own discretion. For example, the user
may choose to colour procedures for the user interface
in green and information processing procedures in blue,
or may choose a colour based on the level of testing
performed. By clicking on a particular assembly file in
the Navigator window, the user is presented with a list
of options for that particular file, as shown in the figure,
such as the memory model or procedure calling conven-
tion: although these options have defaults in all cases, it
may become necessary for a user to change one of these
values (for example, to include an additional library).

A hierarchical list of pre-defined tiles for this ar-
chitecture is shown in Available Tiles window, provid-
ing a convenient organization for quickly locating any
given instruction so that the user can drag-and-drop a
tile to the Tiles window to create a new instruction.
Within each grouping the mnemonics are presented in
alphabetical order, and a search bar is provided to find
a specific, known mnemonic quickly. This hierarchi-
cal approach is particularly needed for CISC proces-
sors, which may have an enormous list of available in-
structions: for example, the software reference man-
ual listing instructions for the Intel processor family (as
of this writing) comprises two volumes and totals over
1200 pages [10]. For this architecture, the memory in-
structions such as Load, Store and Move are presented
first, followed by instructions for Integer and Floating
Point operations and so on. Following these processor-
specific instruction tiles, conditional and iterative tile
structures are shown. Next we see high-level macros—
tiles with a group of pre-defined processor instructions
to automate repetitive tasks—defined in either global
scope (available to all projects) or local scope (avail-
able to this project only). Finally, we see the operating
system-specific tiles for API invocation.

The Processor window shows the available reg-
ister locations for the particular processor, organized
in a manner logical to the particular architecture us-
ing tabbed canvases. In IA-32, for example, the GPRs
are shown on the first tabbed canvas. The status regis-
ters, EIP (the instruction pointer, or program counter)
and EFLAGS (showing single-bit flags such as Over-
flow, Carry and Interrupt [16]), are shown on the sec-
ond canvas. Other less-used register groupings, such
as segment, debug and control registers, are shown on
subsequent canvases. The eight, 80-bit Floating Point

Unit (FPU) data registers and six control registers [10]
also require their own canvases, and further canvases
can be defined for advanced features such as MMX reg-
isters. These are provided so that the user may drag a
specific register to the Tiles window while creating an
instruction in a similar manner to [18], and also provide
additional functionality during debugging.

The Memory window shows the list of local (near)
variables and constants that have been defined by the
user within the current procedure’s data segment, or
vector (far) variables for use with indirect addressing
in another segment [2], which may be dynamically al-
located such as arrays whose size may be unknown un-
til runtime. On other tabbed canvases in this window,
we see the input and output stacks that have been de-
fined for the current procedure: defining variables in
these areas provides automated stack management, so
that a programmer no longer needs to manually spec-
ify push and pop instructions to fill and empty the
memory stack manually before and after each procedure
call. This also ensures that each argument has the cor-
rect length in bytes. The size of each variable or con-
stant is shown in both the number of bytes and in the
lingo of the particular architecture, for example BYTE,
WORD, DWORD or QWORD for 8, 16, 32 or 64-bit
integers; SZ for a zero-terminated array of characters;
or DWORD, QWORD or TWORD for 32, 64 or 80-bit
floating point variables.

Note that the user is completely isolated from any
syntactical requirements for the addressing modes of
the particular architecture and assembly compiler, and
as a direct result of this the programs are much less
prone to error. No provision for higher level struc-
tures (such as would be created as class data in C++
or a struct in C) is included, other than reserving
space and providing a dynamic pointer to the top of such
structures: the developer would be responsible for cre-
ating local macros which perform the input and output
for such customized structures. In this way, for exam-
ple, a C programmer might combine C modules to ma-
nipulate complex data structures with assembly mod-
ules to process a high volume of simpler data elements.
As with the Processor window, the user may drag a
variable or constant to the Tiles window to specify the
source or destination for an instruction.

2.2. Program Structure

In Plate 1, note the tiles included in the Tiles win-
dow defining the hello procedure. From the top, we
have a “start” label, a mov memory instruction tile and
an incomplete lea load instruction tile surrounded in
red (to indicate that the tile cannot be used in debugging

5



or compilation). Note that in EnthusiASM, the graphi-
cal icon for each instruction doesn’t have to necessarily
be unique, as this would require the user to memorize
hundreds of icons rather than hundreds of mnemonics.
Rather, the icon indicates a more general category of
mnemonic. For example, in the Available Tiles win-
dow in Plate 1, the list includes two load instructions
that are associated with the same graphical icon. By
hovering the mouse over any graphical icon, the user is
shown the exact mnemonic in a popup help box.

These are followed by a yellow macro tile with a
kernel invocation (the MessageBox procedure from the
User32 kernel API group [9]). The procedure to call in
the invocation may be specified either by dragging an
appropriate invocation tile from the list, or by dragging
an empty invocation tile and typing the name of the pro-
cedure. If the procedure does not yet exist in any scope,
a new, empty procedure will be created in the current
project. Right-clicking on an invocation tile shows a
popup menu, from which the user can choose to modify
the input and output stacks for the invocation.

Next, an inc integer instruction tile is shown,
which adds one to the AX register (note that the sec-
ond operand is unnecessary in this case and therefore
is disabled). This is followed by a simple conditional
structure: all macro tiles for conditional and iterative
structures begin with a blue tile, with a graphical icon
specifying its function. In this case, the question icon
shows that this is a conditional statement, and the in-
clusion of the condition in the initial tile indicates that
this is an if-then-else structure. In this case, if the AX
register is greater than the value of the COUNT mem-
ory location, an add instruction and a mov instruction
will be executed, otherwise a jmp unconditional jump
instruction will be executed. Note that nested structures
are quite legal within this syntax, with the indentation
in these high-level constructs entirely controlled by the
GUI (although if only low-level instructions are used
with no high-level tiles, no indentation is necessary). A
case structure would be similar, but would have only the
variable or register to be tested in the initial macro tile,
additional tiles between each case to indicate this case’s
match value, and a final otherwise case.

We then see another mov memory operation, fol-
lowed by a looping construct. Since the condition for
the looping construct is shown in the initial tile, this
is interpreted as a do-while loop. A repeat-until loop
would look similar, but would specify no condition in
the initial macro tile: an additional loop tile at the end
of the loop would instead show the condition, with a
stop icon to indicate that this is the stopping condition.
Finally, we see an empty location into which the user
is currently dragging a mov instruction from the list of

available tiles. Although not shown in the figure to save
space, textual comments can be placed anywhere in the
tile diagram using a right-click. These comments then
appear in the generated assembly code, as shown in the
Code Viewer window in the figure.

2.3. Debugging Environment

Arbitrary constraints imposed by the processor ar-
chitecture are followed by checking the legality of each
instruction in the context of the chosen assembly com-
piler upon the completion of each instruction. For ex-
ample, the IA-32 mov instruction takes two operands: a
source and a destination. The source is allowed to be an
immediate value such as a constant, a register or a mem-
ory location. The destination is allowed to be a register
or memory location. However, for historical reasons,
only one access to memory is allowed per instruction.
Although this restriction would seem unnecessary in the
Pentium Pro architecture, since all instructions are con-
verted to micro-op instructions prior to execution [16],
this restriction is maintained in the translation engine
of the processor and therefore must be enforced during
assembly language compilation. In EnthusiASM, if the
developer creates a mov instruction with both the source
and destination specified as variables, the operation will
be surrounded by a red box to indicate an error. By hov-
ering the mouse over such an instruction, the user may
be informed of the particular error in a popup help box.

During development, a procedure may be called at
any time without compilation. This capability is pro-
vided by a simulation layer, in which each processor
instruction corresponds to a particular action within the
simulator, in a similar manner to [1, 14]. Reverse execu-
tion of simple instructions is carried out by remember-
ing what has changed after each instruction is executed,
in an “undo”-like manner, but is limited to instruction
tiles (not macro tiles). This provides a progressive ex-
ecution environment, in a similar manner to Prograph
[4, 6]. While the program is “paused” at a breakpoint or
during step-wise execution, the user is free to insert and
remove tiles both before and after the current instruc-
tion, or modify the contents of the registers. Enabled
breakpoints are shown with a red stop icon, and tem-
porarily disabled breakpoints are shown with a yellow
exclamation icon. A green caret between the add in-
struction and the conditional structure in the Tiles win-
dow of Plate 1 shows where the current execution has
paused: this caret is present in both the Code Viewer
and Tiles views.

Fig. 3 shows the Debug Toolbar, which appears
to the right of standard toolbar buttons such as cut,
copy and paste as shown in Plate 1. From the left,

6



these buttons are Stop (enabled during continuous ex-
ecution), Step Backwards (for step-wise reverse execu-
tion), Step Forwards (for step-wise forward execution),
Run to Next Breakpoint and Run Continuously. This
last option does not use the instruction simulation layer,
but rather runs natively on the processor hardware; it is
enabled only when the current architecture matches the
configured target architecture.

Figure 3. EnthusiASM’s Debug Toolbar.

During debugging, each register location in the
Processor window shows its current value, and is
shown in grey if it has not yet been modified within the
current procedure. A Stack Watcher window informs
the user of the current call stack (which procedures in
which files have been called in what order) and the cur-
rent memory stack created by push and pop opera-
tions or by procedure invocation macro tiles.

3. Discussion

The “Cognitive Dimensions” framework proposed
by Green and Petre [4] provide a basis for the evaluation
of VPLs. Here, we will compare EnthusiASM to textual
assembly languages in this context, assuming familiar-
ity with these dimensions from the reader.

By freeing the user from syntactical trivialities
such as the ordering of operands and various address-
ing modes, EnthusiASM provides a greater detachment
from the hardware, offering a great advantage in the Er-
ror Proneness dimension: this is furthered by providing
a simple drag-and-drop interface to virtually eliminate
typing errors. Since the same visual syntax is used re-
gardless of hardware architecture, this provides an ad-
vantage in the Consistency dimension, even to experi-
enced users switching from one processor to another.

The graphical icons employed in the visual syntax
also offers an advantage in the Role Expressiveness di-
mension: although the meaning of mnemonics such as
add or mov are straightforward, many instructions are
much more obscure, such as lea (Load Effective Ad-
dress) or cvtdq2pd (Convert Packed Doubleword In-
teger to Packed Double-Precision Floating Point Value).
Although this is furthered by the colours of tiles used in
the high-level visual syntax, such as green for instruc-
tions, yellow for invocation and blue for looping and
iterative structures, the same can be said of any modern
text editor with syntax highlighting. For this reason, En-
thusiASM offers no real advantage in the Secondary In-

formation dimension: although comments can be added
for each instruction and procedure, the same is true of
textual assembly.

The high-level macros in EnthusiASM also offer
a detachment from the hardware. If we consider the
problem domain of general-purpose assembly to be the
hardware architecture itself, this provides an advantage
in the Closeness of Mapping dimension. Although these
match with the macros in textual assembly compilers,
the ability to create new procedures by specifying the
procedure name for an invocation tile manually in text
gives the user the freedom of top-down design, allow-
ing EnthusiASM to be considered abstraction-tolerant
in the Abstraction Gradient dimension, whereas textual
assembly languages are by nature abstraction-hating
[4]. The continuous execution environment for debug-
ging sessions provided by the simulation layer, in which
the user is free to add and remove tiles during step-wise
execution of a procedure, allows a significant advantage
in the Progressive Evaluation dimension in a similar
manner to Prograph [4, 6].

Many VPLs are considered to have disadvantages
in the Viscosity and Premature Commitment dimensions
[4], however, EnthusiASM does not lock the user into
any inflexible structures such as LabVIEWs iterative
structures [4, 20], and even high-level tiles may be in-
serted or removed at will, with EnthusiASM automat-
ically providing the indentation for nested structures.
Procedures can be moved from one assembly file to an-
other in the Navigator window, with EnthusiASM re-
solving dependencies such as variable and constant al-
locations. EnthusiASM therefore has an advantage over
most VPLs in these dimensions, and may even have a
small advantage over textual assembly.

This ability to resolve dependencies in the proce-
dures also gives some flexibility in the Hidden Depen-
dencies dimension, at least for procedures local to a
particular project. The Navigator window explicitly
shows these dependencies through the use of solid ar-
rows detailing the calling hierarchy. Since the variables
and constants are defined entirely within the Mem-
ory window, changing variable names here immedi-
ately changes variable names in tiles that examine or
change these memory locations throughout the proce-
dures within the same assembly file: this is roughly
equivalent to a search-and-replace [4] in textual assem-
bly although it is entirely automated by the GUI. Where
global dependencies are concerned, however, such as
when a global macro available to all projects is changed,
projects in EnthusiASM are not made aware of this until
compilation, just as with textual assembly.

There are advantages and disadvantages in the Vis-
ibility dimension. Just as with textual assembly, given

7



unlimited screen dimensions, the entire code sequence
for any procedure is visible, and any two procedures
may be juxtaposed for comparison by opening two Tiles
windows. The hierarchical organization and search ca-
pabilities provided by the Available Tiles, Processor
and Memory windows help the user to quickly locate
an instruction, register, variable or constant. However,
when using high-level assembly, the input and output
stacks of invocation tiles are only visible upon request:
this is a necessary tradeoff in order to maintain a con-
sistent tile height to aid in program comprehension.

Finally, since EnthusiASMs visual tiles map one-
to-one with textual assemblys instruction mnemonics
and high-level structures, allowing the visual syntax to
be just as terse, there is no advantage or disadvantage
in the Diffuseness dimension. In fact, we see in Plate 1
an example where the visual and textual version of the
same procedure is shown in roughly the same amount
of screen real estate, noting that the comments are not
shown in this figure due to space considerations. This
one-to-one mapping also means that there can be no ad-
vantage in the Hard Mental Operations dimension, al-
though solutions to the problem at hand may be some-
what easier to visualize during development since the
logical thought process of which instructions must pre-
cede and follow other instructions is the same in both
visual and textual assembly.

4. Conclusion

We have introduced a tile-based VPL for the de-
velopment of assembly language programs, targeted to-
wards students of machine organization and computer
languages, and programmers of higher-level languages
who program in assembly infrequently but wish to in-
clude high-performance assembly modules in their ap-
plications. We have illustrated the use of this language
with a realistic prototype IDE, and have formally com-
pared the system to textual assembly languages.

Other than full implementation, future work may
include porting the proposed system to other hardware
architectures, assembly compilers and operating sys-
tems, such as the new Intel 64-bit Itanium architecture
[10] with the new generation of 64-bit Linux operating
systems. Since the EnthusiASM IDE would be devel-
oped with a highly portable Java GUI, porting to an-
other operating system such as Linux would involve
simply redefining the list of available kernel-specific
macro tiles. Porting to another processor, however,
would involve defining the available instruction set, reg-
isters and addressing scheme, the syntax of compiler di-
rectives, creating a simulation for each instruction and
register for debugging and reverse execution, and the

inclusion of any arbitrary restrictions for the particular
architecture to check instruction legality.

References

[1] M. Beaumont, D. Jackson. Visualisation as an aid to
low-level programming. Proc. IEEE Frontiers in Edu-
cation Conf. 27, 3:1158–63, 1997.

[2] P.A. Carter. PC Assembly Language. pp.4–43, 2005,
[http://www.drpaulcarter.com/pcasm].

[3] W.F. Decker. Making concepts and phenomena visual
in machine and assembly language programming. Proc.
SIGCSE Technical Symposium on Computer Science Ed-
ucation 18, pp. 432–41, 1987.

[4] T.R.G. Green, M. Petre. Usability Analysis of Visual
Programming Environments: A ’Cognitive Dimensions’
Framework. Journal of Visual Languages and Comput-
ing, 7(2):131–74, 1996.

[5] T. Grysztar. Flat Assembler (FASM). 2004–2005,
[http://flatassembler.net].

[6] D. Hils. Visual Languages and Computing Survey: Data
Flow Visual Programming Languages. Journal of Visual
Languages and Computing, 3(1):69–101, 1992.

[7] R. Hyde. The Art of Assembly Language. 2001.
[8] R. Hyde. The Great Debate: A series of essays on the

need for assembly language in modern systems. 2000,
[http://webster.cs.ucr.edu/Articles/GreatDebate].

[9] Iczelion. Win32 Assembly Tutorials.
[http://win32assembly.online.fr].

[10] Intel Corp. IA-32 Intel R©Architecture Software Devel-
oper’s Manual. ON: 253665, 253666, 253667 and
253668, 2005.

[11] Intel Corp. Intel Architecture Optimization Manual.
ON: 242816-003, 1997.

[12] MASM32 Development Team. MASM32 Project. 1998-
2004, [http://www.masm32.com].

[13] Microsoft Corp. Microsoft Macro Assembler (MASM)
and Microsoft Windows R©. 1981–2005.

[14] M. Newsome, C.M. Pancake, C. Ward. Visual execution
of assembly language programs. Proc. ACM Conf. on
Computer Science, pp. 38–43, 1993.

[15] A. Repenning, A. Ioannidou, J. Zola. AgentSheets: End-
User Programmable Simulations. Journal of Artificial
Societies and Social Simulation, 3(3), 2000.

[16] T. Shanley. Pentium R©Pro Processor System Architec-
ture. MindShare, Addison–Wesley, pp. 61–80, 1996.

[17] J. Sharp. Data Flow Computing. Ellis Horwood, pp. 17-
38, 1985.

[18] Z. Shi, P.T. Cox. EasyAssembly: A Real Visual Assem-
bly Language. Proc. IEEE Newfoundland Electrical and
Computer Engineering Conf. 11, 2001.

[19] S. Tatham, J. Hall, H.P. Anvin, J. Fine, K. Bennett, G.
Clark, A. Crabtree. NetWide Assembler (NASM). 2003,
[http://nasm.sourceforge.net].

[20] K.N. Whitley. Visual Programming Languages and the
Empirical Evidence For and Against. Journal of Visual
Languages and Computing, 8(1):109–42, 1997.

8


	Introduction
	Assembly Language
	Modern Assembly Languages
	The Intel x686 ``Pentium Pro''
	Visual Assembly Programming

	EnthusiASM
	Graphical User Interface
	Program Structure
	Debugging Environment 

	Discussion
	Conclusion

