
CSCI 6304: Visual Languages

A Shape-Based Computational Model

November 2, 2005
Matt.Boardman@dal.ca

2

Research Article

“Computing with Shapes”

Paulo Bottoni (Rome)

Giancarlo Mauri (Milan)

Piero Mussio (Brescia)

Gheorghe Păun (Bucharest)

Journal of Visual Languages and Computing, Vol. 12, No. 6, 2001

Main concept: “Shape Completion System”

3

Outline

Introduction and Terminology

Shape Completion Systems

Turing Computational Completeness

Variations

Open Issues

Conclusions

4

Introduction

Visual languages address communication challenges

Computability framework: Shape Completion Systems

Associate meaning with the interaction of shapes

Use this interactive meaning to create visual sentences

Interactive visual languages (IVL) define sets of visual sentences

A Shape Completion System is an implementation of IVL

5

Introduction: Familiar Shape Completion Systems

Image: Wikipedia (Dominoes)

6

Introduction: Familiar Shape Completion Systems

Images: Apple IIGS Gaming Memory Fairway

7

Introduction: Familiar Shape Completion Systems

Shape completion systems don’t need to be square:

… but here we will only consider the square case.
Image: The GIMP Documentation (Jigsaw Filter Example)

8

Introduction: Applications and Related Work

Pattern recognition and image processing
Algebraic characterization of images or time series

Urban planning and industrial manufacturing
Shape-fitting algorithms to assemble parts in minimum space

Plane tessellation (mosaics)
Based on connecting tiles with like edges (colours, symbols)

DNA computing
A similar system, based on DNA replication (Kari et al, 1998)

9

Shape Completion Systems

Consider a set of “polyominoes” in two-dimensional
space, created from square “pixels”

Image adapted from: Bottoni et al, 2001

10

Shape Completion Systems

In formal language theory, we define:

an alphabet “V” is a finite, non-empty set of abstract symbols

e.g. V = { a, b, c }

the empty string λ

a free monoid “V*” is the set of possible sequences that can
be created by combining zero or more elements of V

e.g. V* = { λ, a, ab, abc, caacb, … }

a free semigroup “V+” is the non-empty subset of V*
e.g. V+ = { a, ab, abc, caacb, … }

the length |w| of a word w ∈ V*

11

Shape Completion Systems

Two-dimensional shapes map to one-dimensional
sentences (i.e. a sequence of operations)

Interactions between different polyominoes describe a
meaningful “language”

Reveal implicit and explicit dependencies
e.g. We cannot add an int to a float without an intermediate step

e.g. “I” before “E” except after “C”

12

Shape Completion Systems

We can define a “correct” computation:

1. Start with a specific polyomino

2. Add other polyominoes in a “sequence mapping”

A sequence mapping defines which polyominoes can be added
at each step, based solely on the previous polyomino.

3. At all steps in the computation, the adjoined polyominoes
must be orthogonally connected

Orthogonal means horizontal or vertical, but not diagonal.

4. To be considered correct, we must end with a complete
rectangle

13

Shape Completion Systems

A “Shape Completion System”:

γ = (V, P, p0, next, lab)

… where:

V is an alphabet

P is a finite set of polyominoes

p0 is the initial polyomino, p0 ∈ P

next is a sequence mapping, next: P → 2P (a transition mapping)

lab is the label mapping, lab: P → V*

14

Shape Completion Systems

A “Computation” is a sequence:

σ = p0 p1 p2 … pn , n ≥ 1

… where the sequence of polyominoes is controlled
by the sequence mapping:

pi ∈ next (pi-1) , 1 ≤ i ≤ n

Without this condition, we would call this a “simple”
shape completion system

i.e. next (p) = P ∀ p ∈ P

15

Shape Completion Systems

We can use the label mapping to associate a string with
each computation, simply through concatenation

i.e. lab(σ) = lab(p0)lab(p1)lab(p2) … lab(pn) , n ≥ 1

The resulting language of all strings that can be
generated from the computations in γ is denoted L(γ)

A sparse definition of lab with values in V ∪ { λ }
indicates that γ is “reduced”

Authors’ assertion: “Any finite language can be generated
by a reduced, simple shape completion system.”

16

Shape Completion Systems: Example 1

Image adapted from: Bottoni et al, 2001

p0 pi

a0 = λ
ai

a1

a2

a3

…

w1= a1

w2= a2

w3= a3

17

Shape Completion Systems: Example 1
V = { a1, …, an }
L1 ⊆ V*
L1 = { w1, …, wm }

For each wi where i = 1, 2, …, m
we consider the set of polyominoes

P = { p0 , pi }
to create:

γ1 = (V, P, p0, lab)
where lab(p0) = λ

lab(pi) = ai

(Simple, but not necessarily reduced)
Image adapted from: Bottoni et al, 2001

p0 pi

Result: L(γ1) = L1

18

Shape Completion Systems: Example 2
V = { a1, …, an }
L2 ⊆ V*
L2 = { w1, …, wm }

For each wi = ai,1 ai,2 … ai,ki

where ai,j ∈V 1 ≤ j ≤ ki

1 ≤ i ≤ m
we consider polyominoes

P = { p0 , pi,j }
to create:

γ2 = (V, P, p0, lab)
where lab(p0) = λ

lab(pi,j) = ai,j Image adapted from: Bottoni et al, 2001

p0 pi,1 pi,j pi,ki

Result: L(γ2) = L2

19

Turing Computational Completeness

What does it mean to be Turing-complete?

System can be emulated by a Turing machine

Imperative languages: BASIC, C

Object-oriented languages: C++, Java, Smalltalk

Visual languages: Prograph, LabView

But not: SQL, Spreadsheets

20

Turing Computational Completeness

Recursively Enumerable languages can be evaluated by
a Turing Machine

“Pure characterization” of shape-based languages in
this paper is formal proof that IVL have the same
computational power as Turing machines!

no non-pictorial elements

no non-terminal symbol or operation

no matching colours

no deformations of placed elements

21

Turing Computational Completeness

Chomsky Hierarchy:

Noam Chomsky based a hierarchy of grammars on linguistics

Type 0: Recursively Enumerable Grammars

May be evaluated using Turing machine

Type 1: Context Sensitive Grammars

May be evaluated using Linear-Bounded Automaton

Type 2: Context Free Grammars

May be evaluated using Pushdown automaton

Type 3: Regular Grammars

May be evaluated using Finite State Machine

Image in public domain

22

Turing Computational Completeness

SL = RE

SSL

RSSL

REG

CF

CS

= unknown relation?
= “incomparable to” (Bottoni et al)
= “is a proper subset of” (Chomsky Hierarchy)
= “is a proper subset of” (Bottoni et al)

Regular Grammars
(Type 3, Finite State Machine)

Reduced and
Simple Shape
Languages

Simple Shape
Languages

Shape Languages can represent all
Recursively Enumerable Grammars
(Type 0, Turing Machine)

Context-Sensitive Grammars
(Type 1, Linear-Bounded
Automaton)

Context-Free Grammars
(Type 2, Pushdown Automaton)

Figure based on: Bottoni et al, 2001

23

Additional Variations

Some stronger variations:

Specify stop polyomino, in addition to initial polyomino

Impose a limit on the height of final rectangle

Matching colours or symbols (Wang, Penrose tiles)

Designate particular segments as sticky (Kari DNA)

Stationary computations: stop when no steps possible

Proposed computational complexity measure:
Ratio of surface area of final rectangle to length of output string

24

Open Issues

Implementation issues:
“Shape fitting” algorithm?

See e.g. S. Har-Peled, Y. Wang, “Shape Fitting with Outliers,” SIAM
Journal of Computing, 33(2), 2004, pp. 269-285.

Allow rotation, other transformations?
Left to particular implementation (not allowed here).

Design of next sequence mapping?
Left to particular implementation (none specified here).

How to address logical decidability?
There may exist formulas or inputs which are undecidable, i.e. there is no
algorithm with a finite number of steps to determine semantic validity.

Advantages? Disadvantages?
To compare a similar system with biological plausibility, see L. Kari, Gh.
Păun, G. Rozenberg, A. Salomaa, S. Yu, “DNA computing, sticker
systems, and universality”, Acta Informatica, 35(6), pp. 401-420, 1998.

25

Conclusions

Complex languages can be created using Shape
Completion Systems

Even without next sequence mapping (i.e. SSL or RSSL)

IVL are Turing-complete
Shape Completion System is a variant of IVL

“A picture is worth 1000 words”
Mathematical proof of the power and complexity of visual languages

26

References
P. Bottoni, G. Mauri, P. Mussio, Gh. Păun, “Computing with Shapes,” Journal of Visual
Languages and Computing, 12(6), 2001, pp. 601-626.

P. Bottoni, M. F. Costabile, S. Levialdi, P. Mussio, “Defining Visual Languages for
Interactive Computing,” IEEE Transactions on Systems, Man, and Cybernetics – Part A,
27(6), 1997, pp. 773-782.

The GIMP Documentation, “Jigsaw Filter Example” (Figure 10.40),
[http://docs.gimp.org].

S. Har-Peled, Y. Wang, “Shape Fitting with Outliers,” SIAM Journal of Computing,
33(2), 2004, pp. 269-285.

L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa, S. Yu, “DNA computing, sticker
systems, and universality”, Acta Informatica, 35(6), pp. 401-420, 1998.

A. Pajitnov, “TETPИC (Tetris): The Soviet Challenge,” Academy Soft – ELORG /
Spectrum Holobyte – Sphere Inc., 1987. Images: A. Lee, “The Apple IIGS Gaming
Memory Fairway”, 2001 [http://www.whatisthe2gs.apple2.org.za].

Schadel, “Image of Turing Machine” (in public domain), 2005.

M. A. Tapia, J. P. Duarte, “Shape Grammars,” MIT, 1999 [http://shapegrammar.org].

Wikipedia contributors, “Dominoes” (Image), “Chomsky Hierarchy,” “Decidability
(logic),” “Free Monoid,” “Recursively Enumerable Language,” “Turing
Completeness,” “Turing Machine,” Wikipedia: The Free Encyclopedia, 2005,
[http://en.wikipedia.org/wiki].

27

Appendix: Visual Sentences

For Interactive Visual Languages (IVL), we define:

“i” image: an abstract arrangement of shapes

“d” description: the meaning of shape interactions

“int” interpretation: explicit relation from i → d

“mat” materialization: explicit relation from d → i

“vs” visual sentence: quadruple of these four definitions

i.e. vs = (i, d, int, mat)

Source: Bottini et al, 1997

28

Appendix: Turing Computational Completeness

Looping constructs:

Conditional statements, Boolean operations:

“AND” “OR”

29

Appendix: Proof of Theorem 5

Theorem: Reduced, simple shape completion systems
can produce fairly complex languages which are non-
context-free.

RSSL – CF ≠ ∅

30

Appendix: Proof of Theorem 5

Here we consider a one-
letter, non-regular,
simple, reduced shape
completion system:

γ = ({ a }, P, p0, lab)

where:

P = { p0, p1, p2, p3, p4, p5 }

lab(pi) = a 0 ≤ i ≤ 5

31

Appendix: Proof of Theorem 5

These shapes can only be used to create squares (no
rectangles are possible).

Call n the number of times
that p1 is used (shown green).

For example, here we have
n = 1.

32

Appendix: Proof of Theorem 5

Here we have n = 2.

33

Appendix: Proof of Theorem 5

We can calculate the size of the resulting square, as a
function of n:

S(n) = (8n + 4)2 n ≤ 1

In constructing a square of size n, we use:

one copy of p0

n copies of of p1 copies of of p2

n copies of of p3 2(n-1)+2 = 2n copies of of p5

copies of of p4

∑
−

=

−
=

1

1 2
)1(n

i

nni

∑
−

=

−−=−+
)1(2

1

2 12)1(2
n

i

nnni

34

Appendix: Proof of Theorem 5

Since all polyominoes are labelled with a, we get a
string of a’s for a square of size n:

… which is always an integer, since n(n+1) is always even.

122
2

)1(1 2 −−++
−

+++= nnnnnnnwn

2
)1(5 +

=
nn

35

Appendix: Proof of Theorem 5

We therefore have:

… which is not a regular language. Since one-letter,
context-free languages are regular, L(γ2) ∉ CF
(i.e. it is non-context-free).

QED

{ }1)(]2/)1(5[≥= + naL nnγ

