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Abstract

A heuristic is proposed to optimize free parameter selection for Support Vector Machines,

with the goals of improving generalization performance andproviding greater insensitivity

to training set selection. The main points of the proposed heuristic are the inclusion of

extrinsic regularization to improve generalization error; the use of simulated annealing to

improve parameter search efficiency in comparison to an exhaustive grid search; and an

intensity-weighted centre of mass of the most optimum points to reduce solution volatil-

ity. Two standard classification problems are examined for comparison, and the heuristic is

applied to protein sequence alignment quality and retinal electrophysiology classification.

The heuristic is extended to univariate and multivariate regression problems, examining

environmental modelling and periodic gene expression. Input variable selection and sen-

sitivity are explored to determine the most significant segments of the electroretinography

waveforms.
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Chapter 1

Introduction

In this thesis, we propose a heuristic approach for optimal selection of the free parameters

of Support Vector Machines (SVM) (Vapnik, 1995), to improvegeneralization performance

for classification and regression problems. The parameter optimization heuristic includes

three main points:

• Extrinsic Regularization: SVM are based on the concept of intrinsic regularization

(Tikhonov, 1963), for a set of free parameters chosena priori. Here, we propose to

take further regularization into account during parameteroptimization, extrinsic to

the SVM algorithm itself. We improve generalization performance of the selected

model by considering a complexity penalty based on the number of support vectors

employed in the model representation, in addition to the cross-validated prediction

accuracy or mean squared error of the model over a set of knownobservations.

• Simulated Annealing: To improve computational efficiency while traversing the gen-

eralization error surface, we use the well-known method of simulated annealing

(Kirkpatrick et al., 1983). In contrast to a simple grid search, we show that such

a stochastic strategy focuses the evaluated points on the areas of interest to a much

greater extent, allowing high-precision results with fewer total evaluations.

• Intensity-Weighted Centre of Mass: We show that when using either a grid search

or a stochastic search based on simulated annealing, the final selected points may

be inconsistent across multiple runs. This is due to the volatile nature of the gen-

eralization error surface in non-separable problems, and is exacerbated byN -fold

cross-validation. Previous work has found that the same problem exists for pattern

search methods (Momma and Bennett, 2002), and has advocatedthe use of a mean

or median of the selected points across several runs, thereby increasing computa-

tional complexity. Here, we advocate the calculation of a centre-of-mass of the most

optimum points found during a single search through parameter space, weighted to

favour those points which achieve the best performance.

1
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The heuristic is applied to two well-known, benchmark classification problems and two

real-world classification problems. We will focus on optimal selection of the cost parameter

C, which controls the tradeoff between maximization of the margin width and minimizing

the number of misclassified samples in the training set (Boser et al., 1992), and the width

γ of the Radial Basis Function (RBF) kernel (Cortes and Vapnik, 1995). We then extend

the heuristic to Support Vector Regression (SVR) problems,in which we will also optimize

the constant noise thresholdε in theε-insensitive loss function (Vapniket al., 1997).

The goal of this heuristic is to improve generalization performance for volatile, noisy

data sets with a low number of sample observations but a high number of input dimen-

sions. For example, we will examine unprocessed, continuous waveforms from retinal

electrophysiology (see for example Sutter and Tran, 1992),and mitotic gene-expression

data from DNA microarrays (see for example Gilkset al., 2005), both of which may con-

tain a significant proportion of additive noise. We will explore the problem of input variable

selection, another important part of model optimization, and perform a sensitivity analysis

to determine the most significant segments of an input waveform.

Extrinsic regularization has been applied to Artificial Neural Networks (ANN) (see

for example Haykin, 1999), but has not, to our knowledge, been applied to SVM during

free parameter optimization. The main contribution of thisthesis is the combined use of

extrinsic regularization to improve generalization error, with two well-known techniques to

reduce computational complexity, to form a practical heuristic favouring blind application.

1.1 Thesis Structure

This thesis is structured as follows.

In Chapter 2, we introduce some of the concepts which will be discussed in this thesis,

give some historical and mathematical background on the development of SVM and discuss

similar work related to parameter optimization. We will show the volatile nature of the

generalization error surface to be traversed during parameter optimization. In Chapter 3,

we describe the heuristic proposed and implemented in this work in further detail.

In Chapter 4, we examine the resulting classification performance for two standard ma-

chine learning data sets — the Iris Plants Database and Wisconsin Breast Cancer Database

(Newmanet al., 1998) — and for real-life retinal electrophysiology and sequence align-

ment quality data sets obtained from research performed at Dalhousie University by other
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groups. In Chapter 5, we extend the heuristic to univariate SVM regression, and apply the

heuristic to three real-world environmental modelling problems. In Chapter 6, we further

extend the heuristic to regression of gene expression data,with multiple input and multi-

ple output dimensions, with a view to the imputation of missing data and the reduction of

additive noise.

In Chapter 7, we examine input variable selection and sensitivity measures, in order to

determine which parts of the electroretinogram (ERG) waveform explored in Chapter 4 are

most significant in terms of classification performance. Finally, in Chapter 8, we conclude

with a discussion of the results obtained in this thesis.

1.2 Conclusions and Future Work

Further analysis is warranted to determine the generality of this approach with a wider array

of practical problems, and to compare the results of this heuristic with other parameter

optimization methods such as Chapelleet al. (2002); Momma and Bennett (2002); Staelin

(2003). Our visualization of the generalization error surface suggests a possible analytic

solution, warranting further investigation into the nature and origin of the shape of this

surface. Another logical further step in this area is waveform estimation, that is multivariate

regression of observations(x1,y1), . . . , (x`,y`) wherex ∈ X = R
d andy ∈ Y = R

d.

This may be applied to the problem of approximating the output waveform generated by an

electrode directly attached to the optic nerve based on an input waveform generated by a

corneal electrode in retinal electrophysiology, or to estimation of the signal characteristics

of particular functional areas of the brain from continuouselectroencephalography (EEG)

signals.

Here we exclude detailed discussions on the intrinsic regularization performed by SVM

during training, but rather focus on extrinsic regularization during parameter optimization.

We also exclude application of the heuristic to the problemsof distribution estimation,

outlier detection or multi-class prediction, but instead focus on binary classification andε-

insensitive regression. We exclude implementation of other surface traversal methods such

as a geometric pattern search (Momma and Bennett, 2002; Presset al., 1992), instead com-

paring our heuristic employing simulated annealing with a high-resolution grid search over

the same parameter space: we focus on the number of evaluations performed in parameter

space, rather than using formal algorithm analysis.
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We conclude that support vector machines include robust intrinsic regularization, but

näıve choices of the free parameters will often result in unacceptable generalization error.

Appropriate selection of free parameters is essential to achieving high performance. By

including extrinsic regularization in the optimization offree parameters, we propose an

approach that balances model complexity with classification or regression error.



Chapter 2

Background

Support Vector Machines (SVM) (Boseret al., 1992; Cortes and Vapnik, 1995; Vapnik,

1995) map a set of observations from input space into a higher-dimensional feature space

using a non-linear transformation, then find a hyperplane inthis feature space which opti-

mally separates the known observations by minimizing empirical risk.

In 1968, two Soviet scientists, Vladimir N. Vapnik and Alexey Ja. Chervonenkis, pro-

posed a philosophy for pattern recognition based on statistical learning theory in an article

originally titled, O ravnomerno� chodimosti qastot po�vleni� sobyti� k ih

vero�tnost�m (Vapnik and Chervonenkis, 1968) and later translated into English as,On

the uniform convergence of relative frequencies of events to their probabilities(Vapnik and

Chervonenkis, 1971). This article led to a statistical theory of pattern recognition (Vapnik

and Chervonenkis, 1974), also known today asVapnik-Chervonenkis Theoryor VC Theory,

and later lead to the development of SVM. However, since these works were published in

Russian within Soviet academic publications, the work was not generally known in western

academia due to the political pressures of that era.

With the fall of the former Soviet Union in the early 1990s, many Russian scientists

began moving to western institutions. Vapnik started working for AT&T Bell Labs in

1991, and in 1995 he became a professor of Computer Science and Statistics at the Royal

Holloway, University of London (Royal Holloway, 2006). While at AT&T, Vapnik and his

colleagues developed the SVM formulation as an optimum-margin classifier for separable

data, applied to the problem of handwriting recognition (Boseret al., 1992) based on his

earlier work with Chervonenkis. This work was later developed for non-separable data sets

using a soft-margin hyperplane (Cortes and Vapnik, 1995). Soon after, Vapnik published

the first edition ofThe Nature of Statistical Learning Theory(Vapnik, 1995), summarizing

statistical learning philosophy and the formulation of SVMfor classification, regression

and density estimation.

Today, the popularity of the SVM is growing in a wide variety of applications.The SVM

Applications List(Guyon, 2006), a web site maintained by Isabelle Guyon since1999,

encourages user submissions to describe the growth of SVM usage in many disciplines.

5
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Table 2.1: List of notation used in the formulation of an SVM.

Symbol Meaning
x A vector of inputs for known observations
X The set from which inputs are drawn
y A target for known observations
Y The set from which targets are drawn
` The total number of known observations
d The number of dimensions in the input observations
R

d The set of all real numbers, ind dimensions
nsv The number of observations defined as support vectors duringtraining
f() An unspecified function, drawn from the set of functionsF
K(x,x′) An unspecified SVM kernel function
αsv Kühn-Tucker coefficients of support vectors
b Offset threshold of SVM hyperplane
C Cost parameter of an SVM
γ Width parameter of an SVM with RBF kernel
ε Insensitivity-tube width ofε-SVR

Many supervised-learning problems in the fields of pattern recognition (Degroeveet al.,

2005; Vapnik, 1995), medical research (Milleret al., 2003; Wanget al., 2005), economics

(Ruedaet al., 2004) and bioinformatics (Shanet al., 2003; Wanget al., 2006), which fre-

quently use artificial neural networks (ANN) to evaluate inputs with continuous values and

targets with binary or continuous values, may be ideal candidates for SVM classification

and regression. SVM technology has been integrated into commercial data mining soft-

ware such as the Oracle Data Miner (ODM), an optional component of Oracle Database

10g (Milenovaet al., 2005). Support Vector Classifiers (SVC) have even been mentioned

in popular media, such as the CBS dramaNumb3rs(CBS Corporation, 2006) in which the

statistical learning philosophy was compared to Michelangelo’s philosophy of sculpting:

chipping away at the irrelevant marble (or irrelevant dimensions and observations) until

only the statue (the statistically-ideal model) remains.

2.1 The SVM Formulation

In the following sections, we will examine the formulation of an SVM based on the min-

imization of empirical risk, then describe the importance of extrinsic regularization and

show related work relevant to the optimization of SVM free parameters. A summary of the
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notation used in this section is shown in Table 2.1.

2.1.1 Supervised Learning

Suppose we are given a set of` observations

(x1, y1), . . . , (x`, y`) (2.1)

with inputsxi ∈ X = R
d, i = 1, . . . , ` that indicate targetsyi ∈ Y. In the general

problem of supervised learning, our goal is to find a functionf(x) in the set of functions

F which minimizes a loss functional on future observations (Chapelleet al., 2002). For

example, we may wish to find a function that minimizes the binary classification error

whereY = {−1,+1}, or minimizes the mean squared regression error whereY = R.

Specifically, we wish to minimize therisk functional(Vapnik, 1995)

R(α) =

∫

L(y, f(x, α)) dF (x, y) (2.2)

whereL(y, f(x, α)) describes thelossbetween the expected targetsy and a functionf(x, α)

which predicts the targets from a set of inputsx and some set of model parametersα. We

integrate over the joint probability distributionF (x, y) to find the risk. However, in prac-

tice, this distribution is rarely known.

For example, in SVM binary classification, this loss functional may be written as (Vap-

nik, 1995)

L(y, f(x, α)) =

{

0 if y = f(x, α),

1 otherwise.
(2.3)

whereas in SVM regression, the loss functional becomes (Vapnik, 1995)

L(y, f(x, α)) = (y − f(x))2 (2.4)

Since the joint probability distributionF (x, y) of the inputs and targets of the obser-

vations is unknown, we estimate this risk functional using the observations, to create an

empirical risk functional (Vapnik, 1995). In the case of classification, we discretize Equa-

tion 2.2 with the loss functional from Equation 2.3, to create the binary classification em-

pirical risk functional (Vapnik, 1995)

Remp(α) =
1

2`

∑̀

i=1

|yi − f(xi, αi)| (2.5)
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or classification error, whereas in regression, we use Equation 2.4 to form the regression

empirical risk functional (Vapnik, 1995)

Remp(α) =
1

`

∑̀

i=1

|yi − f(xi, αi)|2 (2.6)

or mean squared error.

2.1.2 A Quadratic Optimization Problem

Let us now consider the problem of binary classification, where the targets of each ob-

servationyi ∈ Y = {−1,+1}. In the separable case, where there is no overlap between

the distributions of each class, we construct a hyperplanew to optimally separate the two

classes as (Vapnik, 1995)

(w · x)− b = 0 (2.7)

whereb is an offset threshold. Themargin ∆ = 1 / |w| of the hyperplane then allows

classification of the inputs of the observationsx as (Vapnik, 1995)

y =

{

1 if (w · x)− b ≥ ∆

−1 if (w · x)− b ≤ −∆
(2.8)

The optimal hyperplane is that which maximizes this margin∆ (Boseret al., 1992),

as illustrated in Figure 2.1. In order to find this optimal hyperplane, we minimize the

functional (Vapnik, 1995)

Φ(w) =
1

2
(w ·w) (2.9)

subject to the set of inequality constraints (Vapnik, 1995)

yi [(xi ·w)− b] ≥ 1, i = 1, . . . , ` (2.10)

This optimization problem can be solved by minimizing the following Lagrangian ob-

jective function (Vapnik, 1995), also referred to as theprimal problem (Burges, 1998;

Smola and Scḧolkopf, 2004)

L(w, b, α) =
1

2
(w ·w)−

∑̀

i=1

αi ([(xi ·w)− b]yi − 1) (2.11)

with respect tow and b so that we obtain minimum complexity (Tikhonov, 1963), and

maximizing with respect to the Lagrange multipliersαi ≥ 0 so that we obtain a maximal

margin.
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Figure 2.1: A cartoon based on illustrations in Bennett and Campbell (2000), of the maxi-
mal margin for a linearly-separable data set with two classes (◦ and•). On theleft, we see
a hyperplanew1 separating the classes. However, the margin∆1 (dashed lines), the dis-
tance between the hyperplane and the nearest samples of eachclass, is quite small. On the
right, we see a hyperplanew2 with a much larger margin∆2. Both hyperplanes separate
the samples perfectly, but it is clear thatw2 is much more likely to correctly classify future
samples in this simple distribution.

The Karush-K̈uhn-Tucker (KKT) conditions for solving this primal problem may be

stated as (Burges, 1998)

∂L
∂wν

= wν −
∑̀

i=1

αiyixiν = 0, i = 1, . . . , `, ν = 1, . . . , d

∂L
∂b

= −
∑̀

i=1

αiyi = 0, i = 1, . . . , `

αi ([(xi ·w)− b]yi − 1) = 0, i = 1, . . . , `

αi ≥ 0, i = 1, . . . , ` (2.12)

Since this is a convex problem, the KKT conditions arenecessaryandsufficientfor

w, b, α to be a solution of the primal problem (Burges, 1998). The optimal hyperplane

forming the solution to the primal problem, with these KKT conditions, lies at the saddle

point at which∂L/∂b = ∂L/∂w = 0 (Vapnik, 1995). We formulate this optimal hyper-

plane as (Vapnik, 1995)

w =
∑̀

i=1

yiαixi = 0, αi ≥ 0, i = 1, . . . , ` (2.13)

We define a set ofsupport vectorsas inputs for those observations for which we achieve

equality in Equation 2.10, such thatαsv > 0 (Burges, 1998). The optimal hyperplane may
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then be reformulated as (Vapnik, 1995)

w =
∑

support vectors

yiαixi = 0, αi > 0 (2.14)

Combining these new conditions with the primal Lagrangian in Equation 2.11, we ob-

tain theWolfe dualobjective function (Burges, 1998)

W(w, b, α) =
∑̀

i=1

αi −
1

2

∑̀

i=1

∑̀

j=1

αiαjyiyj (xi · xj) (2.15)

which should be maximized subject to the conditions (Vapnik, 1995)

∑̀

i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , ` (2.16)

This dual formulation of the optimization problem removes the dependence of the vec-

tor w (Boseret al., 1992) in the primal formulation from Equation 2.11, and hasmuch

simpler constraints (Vapnik, 1995). There is a single, global maximum forming the solu-

tion, with no local extrema. This convex problem can quicklybe solved using quadratic

optimization methods such as Sequential Minimum Optimization (SMO) (Platt, 1998), and

is a large part of the reason behind the great computational efficiency of the SVM formula-

tion.

Given the solutionαsv to this quadratic optimization, classification of any future obser-

vationx is then made from (Burges, 1998; Vapnik, 1995)

f(x) = sign

(

∑

support vectors

yiαi(xi · x)− b

)

(2.17)

2.1.3 The Non-Separable Case

In the non-separable case, where there may be some overlap between the two distributions

of opposite class, we wish to construct asoft marginhyperplane (Cortes and Vapnik, 1995;

Vapnik, 1995) which allows some number of observations to bemisclassified in order to

optimally separate the remaining observations.

We introduce non-negativeslack(Burges, 1998) variablesξi ≥ 0 to Equation 2.9, such

that (Vapnik, 1995)

Φ(w, ξ) =
1

2
(w ·w) + C

(

∑̀

i=1

ξi

)

(2.18)
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whereC is a free parameter provided by the user, referred to as thecostparameter (Vapnik,

1995), that imposes a penalty on misclassified samples (Burges, 1998).

We now wish to minimize Equation 2.18 subject to the constraint from Equation 2.10

which, with the introduction of these slack variables, becomes (Vapnik, 1995)

yi [(xi ·w)− b] ≥ 1− ξi, i = 1, . . . , ` (2.19)

Since we have added a series of constants, the dual formulation of the optimization

problem remains the same, but we must now maximize Equation 2.15 subject to

∑̀

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , ` (2.20)

which is as Equation 2.16, but with a new upper bound on the Lagrangian multipliers.

Classification on future observations is then performed as above, from Equation 2.17.

2.1.4 The Kernel Trick

To this point, we have considered only the input space: the space in which the inputs of

the observations are defined. However, the SVM formulation allows us to translate this

input space into a higher-dimensionalfeaturespace (Boseret al., 1992; Cortes and Vapnik,

1995), then determine the optimum soft-margin hyperplane in this feature space using the

dual Lagrangian formulation as above, without the need to determine the transformation

itself (Müller et al., 2001; Vapnik, 1995).

This can be done easily, since we require only the convolution between two input vec-

tors in feature space, described by the dot product in Equations 2.15 and 2.17. If the

mapping between input space and feature space is given by

Ψ : R
d 7→ R

D (2.21)

whered is the dimensionality of the input space andD of the feature space, then the dot

productu · v in input space is given in feature space by (Cortes and Vapnik, 1995)

Ψ(u) ·Ψ(v) ≡ K(u,v) (2.22)

which is defined to be akernel function(Boseret al., 1992). This kernel function has the

Hilbert-Schmidt expansion (Burges, 1998; Cortes and Vapnik, 1995)

K(u,v) =
∞
∑

i=1

λi Ψi(u) ·Ψi(v) (2.23)
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Table 2.2: The following non-linear kernels (Burges, 1998;Müller et al., 2001; Smola and
Scḧolkopf, 2004; Vapnik, 1995) are commonly used to perform a dot product in mapped
feature space in the SVM formulation.

Name Parameters Kernel Function
Polynomial c ∈ R, p ∈ N K(x,x′) = (x · x′ + c)p

Radial Basis Function γ ∈ R K(x,x′) = e−γ ‖x−x
′‖2

Sigmoidal or ANN κ ∈ R, δ ∈ R K(x,x′) = tanh(κ(x · x′)− δ)

whereλi ∈ R. To ensure that the expansion coefficientsλi are positive in this expansion,

which is sufficient to ensure that the kernel defines a dot product in feature space (Cortes

and Vapnik, 1995) as Equation 2.22, the kernel function mustsatisfy Mercer’s condition.

Briefly, this states that (Cortes and Vapnik, 1995)
∫∫

K(u,v) g(u) g(v) du dv > 0 (2.24)

must be satisfied for any functiong(x) with a finite L2 norm, that is all functionsg(x)

which satisfy (Cortes and Vapnik, 1995)
∫

g(x)2 dx < ∞ (2.25)

Three kernels, summarized in Table 2.2, have been shown to satisfy Mercer’s condi-

tion and are commonly used with SVM. The sigmoidal kernel will only satisfy Mercer’s

condition for particular values of the free parameters (Burges, 1998; Smola and Schölkopf,

2004), but has been used successfully in practice (Vapnik, 1995). The polynomial kernel,

of degreep, is inhomogeneous in that it allows the additive constantc to be larger than zero

(Boseret al., 1992; Smola and Schölkopf, 2004) for additional degrees of freedom.

The RBF kernel is translation invariant, that isKγ(x,x′) = Kγ(x − x′) (Smola and

Scḧolkopf, 2004), and has an infinite number of dimensions (Vapnik, 1995). Another sig-

nificant advantage of the RBF kernel is that it adds only a single free parameterγ > 0,

which controls the width of the RBF kernel asγ = 1/2σ2, whereσ2 is the variance of the

resulting Gaussian hypersphere. The RBF kernel has been shown to perform well in a wide

variety of practical applications (see for example Degroeve et al., 2005; Hsuet al., 2003;

Wanget al., 2005).

With this kernel replacing the dot product, the classifier inEquation 2.17 becomes

f(x) = sign

(

∑

support vectors

yiαiK(x,xi)− b

)

(2.26)
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This so-calledkernel trick(Müller et al., 2001) is quite powerful: a problem which is

non-separable in input space may have a transformation intoan unknown feature space in

which the problem becomes linearly separable (Burges, 1998). This kernel trick has also

been proposed for many other mathematical techniques, suchas probability density esti-

mation using SVM (Vapnik, 1995), Kernel Principal Component Analysis (KPCA) (M̈uller

et al., 2001; Scḧolkopf et al., 1999b) and Kernel Fisher Discriminants (KFD) (Müller et al.,

2001). Other kernels have also been proposed, such as the multiquadric and inverse mul-

tiquadric kernels (M̈uller et al., 2001), and the linear or non-linear spline with a finite or

infinite number of nodes (Vapnik, 1995).

In practice, a kernel is chosena priori based on the problem at hand: in this thesis we

will primarily use the popular Radial Basis Function (RBF) kernel.

2.1.5 The Vapnik-Chervonenkis Dimension

The SVM formulation allows an estimate of the capacity of theresulting classifier. In clas-

sification, we consider the capacity to be the number of observations which can beshattered

by a family of hyperplanes (Burges, 1998; Vapnik, 1995), as illustrated in Figure 2.2. This

capacity measure is called theVapnik-Chervonenkis dimension, or VC dimension.

The VC dimensionh is simply measured by the degrees of freedom in the formulation,

that isn + 1 wheren is the number of dimensions available (Vapnik, 1995). However,

in practice, the VC dimension may be considerably lower: it is bounded by the inequality

(Vapnik, 1995)

h ≤ min

(

R2

∆2
, n

)

+ 1 (2.27)

whereR is the radius of the minimum sphere in feature space that willenclose all inputs

xi, and∆ = 1 / |w| is the margin. This allows us to estimate the VC dimension of an SVM

for a given set of observations as simplyR2 |w|2 (Vapnik, 1995).

The VC dimension is useful for determining a bound on the expected error: a smaller

VC dimension will lead to a smaller estimate of the probability of misclassifying a sample

(Burges, 1998). Specifically, with probability1 − η, the probability that any given test

observation is classified incorrectly is (Vapnik, 1995)

Perror ≤
m

`
+

ε̂

2

(

1 +

√

1 +
4m

`ε̂

)

(2.28)
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Figure 2.2: A cartoon based on illustrations in Burges (1998); Hastieet al. (2001); Vap-
nik (1995), showing the concept of a hyperplaneshatteringa set of points. A hyperplane
w in this two-dimensional feature space can always separate binary classes for any three
observationszi, regardless of how those observations are labelled. Three example class
distributions are shown (note that there are actually2` = 8 possible class-label combina-
tions (Burges, 1998); only three are shown here for clarity). But two-dimensional space is
insufficient when a fourth observation is added, as shown in thebottom right: for example,
z2 andz4 cannot be separated fromz1 andz3 when the class labels are as shown. The VC
dimension of this set of hyperplanes is thereforen + 1 = 3, as we would expect from
Equation 2.27.
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where (Vapnik, 1995)

ε̂ = 4
h
(

ln 2`
h

+ 1
)

− ln η

4

`
(2.29)

andm is the number of misclassified training observations.

2.1.6 ε-Insensitive Support Vector Regression

An SVM for regression or function estimation can be constructed in a similar fashion, using

the loss function described by Equation 2.4 to minimize the empirical risk in Equation 2.6

which describes the mean squared error.

However, a powerful technique suggested in Vapnik (1995), and later refined in Drucker

et al.(1997); Smola (1996); Smola and Schölkopf (2004); Vapniket al.(1997), is the use of

a loss function which is insensitive to a small, constant amount of additive noise, described

by a free parameterε. This so-calledε-insensitive, linear loss function is described as

(Vapnik, 1995)

L(y, f(x, α)) =

{

0 if |y − f(x, α)| ≤ ε

|y − f(x, α)| − ε otherwise.
(2.30)

and is shown in Figure 2.3. Observations that are withinε from the predicted value of the

SVM will have zero loss, allowing the SVM to tolerate a small amount of noise without

that noise affecting the resulting model. Outside of this tube of width2ε, the loss grows

linearly according to the cost parameterC, as a function of the absolute distance between

the observation and prediction. A quadraticε-insensitive loss function has also been pro-

posed as simply the square of Equation 2.30, however the solution becomes somewhat

more complex (Vapnik, 1995).

In SVM classification, the cost parameterC controls the tradeoff between classification

accuracy and preserving a large margin width. However, in SVM regression, the cost para-

meter controls the tradeoff between theflatness(described by the norm of the hyperplane

‖w‖2) of the function resulting from the regression model, and the number and magnitude

of deviations larger thanε that will be allowed (Smola and Schölkopf, 2004).

In a similar manner to the introduction of slack variables inthe objective function for

non-separable data in Equation 2.18, we introduce two non-negative slack variablesξi, ξ
∗
i
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Figure 2.3: A cartoon based on illustrations in Bennett and Campbell (2000); Smola and
Scḧolkopf (2004); Vapnik (1995), showing the linear,ε-insensitive loss function and its
use for a small toy data set. If the error between a particularobservation’s target value
and that observation’s predicted value is less thanε, the loss function is zero. If, however,
the prediction error is outside this “tube” of width2ε, the loss function grows linearly
according to the differenceζ. On theleft, we a small number of samples (•) with a single
outlier (◦). The outlier is a distanceζ + ε from the predicted target value, and so will be
assigned a loss as shown on theright. The loss of the remaining points, however, will be
zero, as the target values for each of the remaining observations fit within theε bounds.

(corresponding to the positive and negative parts of theε-tube) to form the functional (Vap-

nik, 1995)

Φ(w, ξ, ξ∗) =
1

2
(w ·w) + C

(

∑̀

i=1

ξi +
∑̀

i=1

ξ∗i

)

(2.31)

which should be minimized according to the constraints (Vapnik, 1995)

yi − [(w · xi) + b] ≤ ε + ξ∗i , i = 1, . . . , `

(w · xi + b)− yi ≤ ε + ξi, i = 1, . . . , `

ξi, ξ
∗
i ≥ 0, i = 1, . . . , ` (2.32)

From these, we desire to find the vector (Vapnik, 1995)

w =
∑̀

i=1

(α∗
i − αi)xi (2.33)

where the solution is defined by two sets of Lagrange multipliersα andα∗ in the objective
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function (Vapnik, 1995)

W(α, α∗) = − ε
∑̀

i=1

(α∗
i + αi) +

∑̀

i=1

yi(α
∗
i − αi)

− 1

2

∑̀

i=1

∑̀

j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) (2.34)

subject to the constraints (Vapnik, 1995)

∑̀

i=1

α∗
i =

∑̀

i=1

αi

0 ≤ α∗
i ≤ C, i = 1, . . . , `

0 ≤ αi ≤ C, i = 1, . . . , ` (2.35)

Future targets may then be predicted from (Smola and Schölkopf, 2004)

f(x) =
∑̀

i=1

(α∗
i − αi)(xi · x) + b (2.36)

2.2 The Importance of Generalization

SVM typically deliver excellent accuracy, computational efficiency and generalization per-

formance, with a sparse model representation and few free parameters (Bennett and Camp-

bell, 2000; Burges, 1998; Hsuet al., 2003; Vapnik, 1995). However, when these free para-

meters are improperly selected, just as with neural networks or any other classifier, SVM

will yield poor generalization performance and poor computational efficiency.

One of the strengths of the SVM lies in the ability to form a general solution from a low

number of samples. In Figure 2.4, we see an illustration of the necessity of generalization

in classification. A linear classifier (the dashed line) and apolynomial classifier (the solid

line) both classify the small subset of observations shown on the left, but the polynomial

overfitsthe data in order to eliminate any classification error. As more observations are

added on the right, it is clear that the simpler model is actually the correct one. This extreme

example shows the importance of achieving a tradeoff between classification accuracy and

generalization performance.

In the case of regression problems, generalization is just as important. In Figure 2.5,

we show a real bioinformatics univariate regression problem, based on the mitotic-gene

expression data examined in Chapter 6. All four examples perfectly fit the data, with zero
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Figure 2.4: A cartoon based on illustrations in Müller et al.(2001), showing the importance
of generalization. On theleft, we see binary classification problem with a low number of
observations (◦ and•). Both the polynomial (solid line) or linear (dashed line) decision
boundaries separate the two classes, but which is correct? The polynomial achieves greater
accuracy (100%), whereas the linear hyperplane allows two samples to be misidentified.
As more observations are added on theright, however, we see that the linear classifier
is actually the correct one: in this case, we are better off with the simpler linear model,
even though it did not perform as well on the original training set in terms of classification
accuracy.

mean squared error, since in all four cases each observationfits within the specifiedε-

insensitive tube. But which is correct? It is clear that the model in (d) is overfitting, as

any future observations would be given simply the mean valueof the observations. Since

we expect periodicity in this data set, we might see (a) as theideal solution. But both (b)

and (c) might be correct as well. This example, with thousands of such genes to analyze,

shows the importance of having an automatic mechanism to balance the tradeoff between

allowing regression outliers and achieving a low mean squared error.

2.3 Free Parameter Selection

Initially, Vapnik (Boseret al., 1992; Cortes and Vapnik, 1995; Vapnik, 1995) recommended

direct setting of the kernel parameters and cost function byexperts, based on knowledge

of the particular data set to be evaluated. However, in practical situations, sucha priori

knowledge may well not be available. An automatic method is therefore desired to optimize

selection of the free parameters, to obtain the desired level of accuracy and generalization

performance for any given supervised learning problem.

Grid searches over an arbitrary range of parameter values are a common technique
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(a) A good general solution.
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(b) An example of underfitting.
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(c) An example of overfitting.
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(d) Severe overfitting.

Figure 2.5: Inappropriate selection of the free model parameters inε-SVR is likely to lead
to improperly modelled data. In this figure, we see examples from a real bioinformatics
data set describing the periodic expression of mitotic genes in fission yeast, which is exam-
ined in Chapter 6. Four regression models for the C222.06 gene are shown. Incidentally,
this gene was not identified as periodic in prior analyses of this data (Gilkset al., 2005;
Rustici et al., 2004) due to its small change in expression, however our model does find
statistically significant periodic activity. (a) Anε-SVR model trained using the heuristic
proposed in this thesis, adapted for SVM regression. (b) An example of underfitting: in
this case, theε-tube width, corresponding to the expected noise level, is too high. Such a
model overgeneralizes, ignoring all but the most extreme values in the training data. (c) An
example of overfitting: in this case, theC cost parameter is too high, disallowing outliers
such that every observed point must be within theε-tube bounds. A model such as this
contains many support vectors and is not likely to generalize well. (d) An example of se-
vere overfitting: in this case the model fits all observed points, but such a model would be
useless for imputing missing observations.
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Figure 2.6: Comparison of the positions of evaluated pointsin a uniform random search
pattern (left) and a stochastic algorithm based on simulated annealing (right). Although
both searches contain exactly 660 evaluations, the simulated annealing approach focuses
on the area of interest to a much greater extent. These figureswere created from the Protein
Sequence Alignment Quality data set (Inadequate vs. other)examined later in this thesis.
An example of the stochastic path followed through three-dimensional parameter space for
regression problems is shown in Figure 5.1.

when such knowledge is unavailable (Hsuet al., 2003; Scḧolkopf et al., 1999a; Staelin,

2003). However, such searches may be computationally expensive, and the precision of the

results is subject to the chosen granularity of the grid. In Chapelleet al. (2002); Fanet al.

(2005), gradient descent methods are proposed based on the minimizing the generalization

error, allowing a larger number of parameters to be considered. However, in practical

problems such methods may be affected by the presence of local extrema (Imbault and

Lebart, 2004). This effect may be exacerbated inN -fold cross-validation from random

partitioning of the training data. Leave-one-out cross-validation (whereN = `) helps to

reduce the effects of local extrema through the complete evaluation of all permutations of

the training set at each point in the parameter search (Mommaand Bennett, 2002), but this

becomes computationally prohibitive when` is large. In Friedrichs and Igel (2004), an

evolutionary approach to SVM parameter optimization employs a genetic algorithm based

on a covariance matrix, in order to greatly increase the number of hyperparameters which

may be considered. In Momma and Bennett (2002), a nearest-neighbor sampling pattern is

progressively evaluated as an alternative to gradient descent, but due to the volatile nature

of the evaluated surface, the average of multiple locally-optimal models is used, increasing

the computational burden.

In Chapelle and Vapnik (1999), an analytical approach is proposed based on rescaling
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the inputsxi in relation to thespanof the support vectors. Forε-insensitive Support Vector

Regression (ε-SVR) in particular, in Cherkassky and Ma (2004) an analytical approach to

selection of the cost parameterC is proposed based on the mean and standard deviation

of the target valuesyi. Milenova et al. (2005) describes the analytical approach of the

Oracle Data Miner (ODM) product, which estimatesC based on the distribution of the

Lagrangian multipliers calculated for a small, random sample of training data. Analytical

selection ofε is proposed in Vapnik (1995) based on the noise level of the inputsxi, and

in Cherkassky and Ma (2004) also considering the number of training samples̀. In Smola

and Scḧolkopf (2004), a combination of analytical and combinatorial parameter selection

is proposed, such that the choice ofε is tuned to a particular noise density but the choice of

C is chosen through a numerical approach.

The well-known parameter optimization method of simulatedannealing (Kirkpatrick

et al., 1983) has recently been proposed as a stochastic method fortraversing SVM free

parameter space. In Figure 2.6, a comparison between a purely random search and such

a guided, stochastic search is presented. The points evaluated by the simulated annealing

algorithm concentrate on the area of interest to a much greater extent. Such techniques

have been applied to synthetic and noisy image data for optimization of the cost and kernel

parameters (Imbault and Lebart, 2004), feature selection for audio classification with a

linear SVM (Degroeveet al., 2005) and colon cancer recognition using radial basis function

classifiers (RBFC) (Wanget al., 2005).

Regularization for artificial neural networks is well understood. An excellent descrip-

tion of Tikhonov’s method for the extrinsic regularizationof ill-posed problems (Tikhonov,

1963) as applied to ANN may be found in Haykin (1999), in whichthe complexity penalty

is a function of the norm of the internal synaptic weights matrix. Indeed, the formulation

of the SVM includes intrinsic regularization from this sameprinciple, as we have seen in

the derivation of the Lagrangian functional from Equation 2.9. While this intrinsic regular-

ization allows a tradeoff between model complexity and classification accuracy to enhance

generalizability in the non-separable case (Vapnik, 1995), the overall generalization perfor-

mance is still highly dependent on appropriate selection oftheC andγ free parameters.

Thus, in this thesis, we propose to take this regularizationinto account extrinsic to the

SVM itself, when tuning free parameters to find the most optimum solution. We will refer

to this asextrinsic regularizationin this work.
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2.4 Visualizing Generalization Performance

If we examine the topology of a surface representing the generalization performance of

an SVM classifier, training the classifier using parameters selected by varying the cost

parameterC and the width parameterγ of the RBF kernel over a loge range of values,

some interesting patterns begin to develop.

In Figures 2.7, 3.1, 3.2, 3.3 and 4.1, light areas correspondto parameter values which

yield high accuracy and dark areas to those that yield poor accuracy. In many cases, we

see a surface fraught with many sharp local extrema, narrow valleys and sharp cliffs. This

effect may be exacerbated by the noisy nature ofN -fold cross-validation, resulting from the

random partitioning of training data. These effects may be reduced by taking the mean of

several evaluations at each point, thereby increasing computational complexity, or by using

leave-one-out cross-validation, which is naturally less prone to these random fluctuations

due to the completeness of the combinatorial search. While the effects of these sharp

extrema may well be magnified by the log operation, we must take them into account since

the loge space is the surface we wish to traverse.

Although the shape of this generalization error surface is naturally problem dependent,

for many data sets the surface follows a quite similar overall shape (see for example Hsu

et al., 2003; Staelin, 2003). However, this general shape is far from guaranteed: a surface

with two fully linearly-separable Gaussian distributions, for example, may allow a much

wider region of parameter values to achieve high accuracy (see Figure 3.2).

The difficulties of traversing such a complex, volatile surface are immediately apparent.

Gradient ascent methods (Chapelleet al., 2002; Fanet al., 2005) may become stuck in local

extrema, while hill-climbing algorithms such as the geometric approaches in Momma and

Bennett (2002) may traverse such space inefficiently as theywind their way through a long,

narrow valley (Presset al., 1992). In addition, if we choose an optimum point in parameter

space near the edge of a sharp cliff or other local extrema (Imbault and Lebart, 2004), it is

quite possible that small variations in the sample data may cause the surface to subtly shift,

causing the classifier to “fall” from the cliff to an area of lower accuracy.

When a high-resolution close-up of a small region of the surface is viewed in Figure 2.7

(lower right), smoothed over the mean of several iterationsat each point, the chaotic pat-

terns seen at a high level seem to be formed by the convergenceof multiple, smaller regions.

In this image, over40 000 points were evaluated, with several iterations at each evaluated
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Figure 2.7: Error surfaces resulting from SVM classification by varying theC andγ free
parameters over a loge range of values. Dark areas correspond to high error, whereas light
areas correspond to high accuracy. Triangles (N) indicate the optimum point found through
a grid search of loge space, considering only the classification accuracy and disregarding
model complexity. Theupper rightimage shows the result of a typical grid search on the
Wisconsin Breast Cancer Database (Newmanet al., 1998). The remaining images show
results from a high-resolution grid search on the three-class Protein Sequence Alignment
Quality data set examined later in this thesis (Shanet al., 2003): Valid vs. other (upper
left), Inadequate vs. other (lower left) and a close-up of Inadequate vs. other (lower right)
showing the convergence of multiple smaller regions. The optimum point is not shown
on the close-up for clarity. Additional examples of this visualization of the generalization
error surface in loge space are shown throughout this thesis.
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point to smooth the noise from 10-fold cross-validation. Closer investigation may deter-

mine that the optimal point may really be formed from the convergence of such regions

to a single point in parameter space. One might speculate that a mathematically-rigorous

analysis of such regions may one day lead to a widely-applicable, analytical solution to the

problem of SVM parameter optimization.



Chapter 3

Proposed Heuristic

Waveform classification is a challenging problem for any classifier, as the number of di-

mensions may be much larger than the number of available observations (̀ � d): with

such a large number of dimensions, it is statistically more likely that one or more of those

dimensions may be fully separable simply by chance, and therefore a classifier may achieve

high accuracy by basing predictions on only that dimension during training. This is a sig-

nificant advantage for SVM (Smola and Schölkopf, 2004), which are much less sensitive

to any one input as the margin classification takes place in mapped (feature) space, where

each dimension is created from many input dimensions (Boseret al., 1992). An example

of this is shown in Section 7.3.2. To further reduce the impact of this effect, proper cross-

validation is critical for generalization performance. Wewill useN -fold cross-validation in

the majority of experiments in this thesis, with the important exception of the retinal elec-

trophysiology data set: in this binary classification experiment, due to the low number of

observations, leave-one-out cross-validation was used resulting in a smoother error surface.

In this chapter, we present the heuristic employed throughout this thesis for the prob-

lems of classification and regression using SVM. We then demonstrate how this heuristic

improves generalization performance for separable and non-separable data sets, in com-

parison to an SVM with default parameters, an SVM with parameters optimized by a grid

search and a classical neural network trained using backpropagation. A summary of the

notation used in this section is shown in Table 3.1.

3.1 Simulated Annealing

Simulated Annealing is a well-known, stochastic techniquefor combinatorial optimiza-

tion based on a thermodynamic analogy of slowly cooling metals, which in nature reach

a minimum energy state (Kirkpatricket al., 1983). Use of a stochastic algorithm such as

simulated annealing allows efficient searching through a noisy, multidimensional parame-

ter space, such as simultaneous optimization of the RBF kernel parameterγ and the cost

parameterC, without the need for gradient calculations at each point. Acomparison of the

guided, stochastic approach in simulated annealing to a uniform, random search pattern is

25
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Table 3.1: List of notation used to define the proposed heuristic.

Symbol Meaning
λ Extrinsic regularization parameter
E (f) Cost functional measuring performance of functionf
Es(f) Cost functional component describing generalization performance
Ec(f) Cost functional component describing model complexity penalty
Γ Non-linearity introduced to complexity penalty
P A point in loge parameter space
P∅ The origin in loge parameter space:P∅ = {loge(0), loge(0)}
Popt The optimum point in loge parameter space
Psugg The suggested point in loge parameter space
α Proportion of origin bias in heuristic
β Maximum threshold of detrimental jumps in heuristic
δ Proportion of temperature reduction in heuristic
m In heuristic, the temperature is reduced everym steps
T0 Initial temperature in heuristic
TC Ending temperature in heuristic
r0 Maximum radius threshold fromPopt

ξ Maximum cost functional threshold fromPopt

pacc Probability of accepting a detrimental jump in heuristic
pres Probability of reset to best point found so far in heuristic

illustrated in Figure 2.6.

In this thesis, we use this approach to traverse the generalization error surface examined

in Section 2.4. Here we adapt the continuous,N -dimensional implementation of this algo-

rithm shown in Presset al. (1992), but employ a simple move generator, with a small bias

towards the originP∅ = {loge(0), loge(0)}. This bias will favour accurate models with

low complexity: we have found that in practice, the extremesof these free parameters will

tend to result in a model which largely overfits with very highcomplexity, or underfits with

very low complexity, and which prevents the SVM training algorithm from quickly con-

verging to a solution. We also implement occasional restarts to the most optimum points

found thus far, with low probability, an alternative suggested in Presset al. (1992).

With this heuristic, the ending point of the simulated annealing path is not guaranteed

to be the optimum point, as small ascents in the cost functional are allowed — with a

lower probability of acceptance — in order to climb from local extrema. Rather than the

path’s end point, therefore, the overall best point found throughout the search is used as
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the optimum pointPopt. Details of the specific implementation of the simulated annealing

mechanism used in this thesis are summarized in Section 3.5.

3.2 Extrinsic Regularization

At each evaluated point in this stochastic path through parameter space, a score is com-

puted based not only on the cross-validated accuracy or meansquare error obtained from

testing a model trained with these parameters, but also on a measure of the model complex-

ity, in order to improve generalization performance and lower sensitivity to volatile input

fluctuations even at some expense of the absolute accuracy ofthe model on the training set.

Adopting the notation of Haykin (1999), which applied a similar Tikhonov regulariza-

tion (Tikhonov, 1963) to ANN, we wish minimize the regularization functional

E (f) = Es(f) + λ Ec(f) (3.1)

The regularization parameterλ allows control over the tradeoff between classification

accuracy and model generalizability. Using this functional, the costE (f) at the point

Pi = {Ci, γi} in parameter space is determined not only by the loss functionalEs(f) of an

SVM trained using the parameters defined by that point, for example from the empirical,

binary classification risk in Equation 2.5:

Es(f) =
1

2`

∑̀

i=1

|yi − f(xi)| (3.2)

for which Es(f) ∈ [0, 1], or by evaluating the overall risk across a separate validation data

partition, but also by a complexity penaltyEc(f) ∈ (0, 1] defined by the number of support

vectorsnsv in the model representation off(xi), expressed as a ratio to the total number of

observations̀, as

Ec(f) =
(nsv

`

)Γ

(3.3)

where the free parameterΓ introduces a non-linearity to shift the sharpest effect of the

complexity term to either the upper range of values, which our experiments found was

useful for classification problems (see Chapter 4), or the lower range of values, which our

experiments found was useful for regression problems (see Chapter 6).

The number of support vectors was obtained by training the SVM model using para-

meters determined by the test pointPt for all observations in the training set, and counting
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the number of support vectors in the resulting model. For theclassification problems in

this thesis, we give equal weight to both accuracy and complexity by settingλ = 1 for

each of the following experiments. We also set the free parameterΓ = 1

2
to sharply penal-

ize solutions which obtain high accuracy through high complexity. For the univariate and

multivariate regression problems, this functional is modified somewhat to include the mean

squared error rather than classification error, as will be discussed in Chapters 5 and 6.

In Figure 3.1 (lower right), this complexity penalty is added to the generalization error

surface from a grid search through parameter space for theIris versicolour class in the

Iris Plant Database, examined in Chapter 4: the resulting surface is smoother than that

of Figure 3.1 (lower left), which considers only generalization error, indicating that the

number of support vectors in the complexity penalty is less volatile than the cross-validation

accuracy.

One might also consider use of the VC dimension (Vapnik, 1995) as an alternative

model complexity measure, which can be estimated in practice from Equation 2.27.

3.3 Intensity-Weighted Centre of Mass

Once the cooling schedule has elapsed, we select the absolute best point foundPopt as

that which achieves the minimum possible value of Equation 3.1. In the case that several

points achieve the same score, which is possible in classification with a finite training set,

we select the point closest to the originP∅ as above.

We examine the points surroundingPopt to select those within a small loge radiusr0

and with a cost functionalE ≤ (1+ξ)Eopt whereξ > 0 is small, then, borrowing a standard

method from the field of image processing (see for example Stelzer, 1998), we calculate an

intensity-weighted centre of mass of these points where theintensity is(1−E ). This has the

effect of reducing the volatility of the resulting end-point arising from the random nature

of the generalization error surface, as we show in Section 4.1.4. The resulting point in

parameter spacePsugg defines the suggested parameters to be used for a particular problem.

Figure 3.1 illustrates the importance of this centre-of-mass operation. In theupper left,

we show a surface for the highly separableIris setosaclass, for which many parameter

values will achieve 100% accuracy: in this case, the optimumpointPopt is selected as that

closest to the originP∅. The centre-of-mass operation selects those points withina radius

r0 from this optimum point: in this case, the resulting pointPsugg shifts somewhat to the



29

loge (cost)

lo
g

e
(g

a
m

m
a

)

-10

-5

0

5

-5 0 5 10 15 20

loge (cost)

-5 0 5 10 15 20

lo
g

e
(g

a
m

m
a

)

-10

-5

0

5

loge (cost)

-5 0 5 10 15 20

lo
g

e
(g

a
m

m
a

)

-10

-5

0

5

loge (cost)

-5 0 5 10 15 20

lo
g

e
(g

a
m

m
a

)

-10

-5

0

5

Figure 3.1: Visualizing the generalization performance ofa grid search through loge space
for Iris Plant Database (Newmanet al., 1998), showing use of the centre of mass and the
difference in the resulting plot when a complexity penalty is employed. Circles (◦) indicate
the group of best points found. The triangle (N) shows the optimum point calculated from
this group of points, using an intensity-weighted centre-of-mass operation. In theupper
left, we show a surface for the highly separableIris setosaclass. In theupper right, we
show a surface for the non-separableIris virginica class. On thelower left, we show a
surface for the non-separableIris versicolourclass. In thelower right, a complexity penalty
is added to the generalization error surface from theIris versicolourclass.
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right, away from the sudden drop in accuracy on the leftmost portion of this illustration.

In the upper right, we show a surface for the non-separableIris virginica class. In

this case, the centre-of-mass operation places the suggested point at the centre of a shallow

oval: 100% accuracy cannot be achieved, so the centre-of-mass operation selects the overall

best pointPopt and then a group of points near this point that have an accuracy within

ξ of the accuracy achieved atPopt. On the lower left, we show a surface for the non-

separableIris versicolour class. In this case, we see an example of how the centre-of-

mass operation moves the optimum point further away from a region of lower accuracy,

improving generalization performance for finite training sets since the addition of further

training examples, without adjusting the training parameters, could potentially shift the

generalization error surface such that the selected pointsare no longer optimum.

Although this can potentially reduce accuracy somewhat in comparison to the optimum

point Popt, the resulting point in parameter space is likely to be further from any steep

cliffs in the evaluated generalization surface. Since we have a finite set of observations,

the decision boundary of the classifier will likely change asadditional training samples are

evaluated. For example, if we have a large number of observations, it may be prudent to

use a small subset of the training data to find optimum parameters, but employ the full set

of training data to train the final classifier: this is the approach we take in Chapter 5. This

volatility may cause the generalization surface to shift slightly as more samples are added

to the training, such that a point in parameter space selected without those samples, close

to an edge such as illustrated here, may “fall” from the edge to a region of lower accuracy.

This is largely prevented by using a centre-of-mass operation, resulting in a “safer” model.

3.4 Examining Known Distributions

To illustrate how this heuristic is affected by separability in binary classification, we first

examine two binary classification problems with known distributions.

In Figure 3.2, we see classification of a balanced, toy data set consisting of two Gaussian

distributions centred at (5,5) and (-5,-5), with 50 sample points per class. The upper figure

shows the generalization error surface formed by varying the cost parameterC and the

width parameter of the RBF kernelγ over a loge range of values, as in Figure 2.7. The

triangle (N) indicates the suggested point in parameter space resulting from the grid search,

but with an intensity-weighted centre of mass operation as discussed in Section 3.3. Note
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that high cross-validation accuracy is achieved across much of the parameter space, as we

would expect for such highly-separable data.

In the lower figures, we compare the decision boundary resulting from several different

classifiers. The data points for positive (◦) and negative (+) classes are shown for compar-

ison, and the solid line indicates the decision boundary foreach classifier. In Figure 3.2(a),

an SVM is trained with default parameters which, in the LIBSVM implementation em-

ployed here, are an RBF kernel width ofγ = 0.5 and a cost parameter ofC = 1. The

classifier model contains 23 support vectors, selected fromthe 100 training samples. In

Figure 3.2(b), an SVM is trained using parameters obtained from the grid search using 10-

fold cross-validation. The classifier model contains 19 support vectors. In Figure 3.2(c),

an SVM is trained using the fast-cooling heuristic proposedin this thesis. The classifier

model contains only two support vectors, one from each class. Note the greatly increased

generalizability, even with a fully separable data set. In Figure 3.2(d), the results from a

multilayer perceptron (MLP) with 5 hidden nodes is shown forcomparison: here we use

a neural network implementation from Netlab Nabney (2002),trained using backpropa-

gation with quasi-Newtonian optimization. The class separation is nearly identical to the

SVM classifier regularized by the proposed heuristic. All four classifiers achieve 100%

cross-validation accuracy on the training set, but (c) and (d) clearly will achieve better

accuracy on future predictions as they both offer a far more general solution.

In Figure 3.3, we see a similar comparison, but now with 25 times the variance in the

sample data to allow some overlap, creating a non-separabledata set. We see a much more

volatile error surface, with narrow valleys of high accuracy. Note that all four cases do

not generalize well: the SVM trained with default parameters has severe overfitting, with

89 support vectors in the underlying model, whereas the decision boundaries created by

the other three classifiers appear to approach a more logicallinear solution. The models

trained using the heuristic and using the grid search have only 12 support vectors, and the

resulting models are quite similar. However, in the illustration of the generalization error

surface, we find that the cost parameter found by the grid search is near the extreme of the

range of values considered, whereas the cost parameter chosen by the heuristic is closer

to the origin. The decision boundary chosen by the heuristicseems quite different than

that of the MLP, however the generalization performance is about the same on the training

set. Notice, however, that there is a limited region of inaccuracy for both SVM models,

whereas the region of inaccuracy for the MLP appears to stretch to infinity: again, an SVM
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Figure 3.2: Applying SVM classification to a linearly-separable toy data set. Theup-
per image shows the generalization error surface resulting from a grid search using cross-
validation. Thelower images show decision boundaries resulting from classification with
(a) SVM with default parameters (•), (b) SVM from above grid search (N), (c) SVM using
the heuristic proposed in this thesis including extrinsic regularization (�), and (d) an MLP
with five hidden nodes. Training data for positive (◦) and negative (+) classes are shown
for comparison.
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Figure 3.3: Applying SVM classification to a non-separable toy data set. Theupperimage
shows the generalization error surface resulting from a grid search using cross-validation.
The lower images show decision boundaries resulting from classification with (a) SVM
with default parameters (•), (b) SVM from above grid search (N), (c) SVM using the heu-
ristic proposed in this thesis including extrinsic regularization (�), and (d) an MLP with
five hidden nodes. Training data for positive (◦) and negative (+) classes are shown for
comparison.
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with optimized parameters offers a more general solution.

We first conclude from these experiments that proper optimization of the free parame-

ters in SVM is critical to achieving high generalization performance: in both cases, the

default parameters (with no optimization) do not perform well. We also find in both exper-

iments that parameters chosen from a reasonable grid searchwill achieve as good or better

accuracy on the finite training set, however the generalization performance to classify fu-

ture observations is clearly made better by including a model complexity term, such as is

done in the heuristic proposed in this thesis. By including this model complexity term,

we achieve high generalization performance on the trainingset, but also high accuracy on

future observations, comparable to a well-optimized neural network.

3.5 Implementation Details

The details of the simulated annealing heuristic used in this thesis are as follows. These

steps are illustrated in Figures 3.4 and 3.5.

1. Initialize a high temperatureT ← T0, and set the starting pointPi ← P0 within the

loge parameter space.

2. Determine a new test pointPt, taken in a random direction fromPi (with uniform

distribution), and a random scalar distance (with normal distribution) multiplied by

the ratioT/T0 and the width (or height) of the parameter space.

3. Add a small origin biasPt ← α(Pi − P∅) whereP∅ defines the loge origin andα

is a small scalar. Check that the current pointPt lies within the boundary conditions

of the parameter space: if not, select a new point at random anywhere within the

parameter space.

4. Determine a scalar cost functionalEt for the current positionPt, including the clas-

sification error and model complexity of an SVM model trainedusing the parameters

at this point. If the cost functionalEt for Pt is less than that ofEi of Pi (or if this is

the first evaluated point), accept this point as the new position in the parameter space.

If not, but the resulting ascent in cost is small, perhaps accept this point with a small

probabilitypacc. Otherwise, reject it.



35

Simulated Annealing
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For all evaluated 

points i

Psugg ) Psugg + (1-Ei) Pi ,
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Figure 3.4: Illustration of proposed heuristic, detailed in Section 3.5. (a) Overall process
of training an SVM on a set of known observations. (b) Intensity-weighted centre-of-mass
operation. Here we assume a singletraining and validationpartition, as is done in most
problems in this thesis due to the low number of observationsavailable: we therefore use
N -fold cross-validation. However, in Chapter 5, we have sufficient available observations
to create a separatevalidation partition: in this case, as each point in parameter space is
evaluated, we will use the regression performance on the validation set rather than cross-
validation.
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Initialize temperature T ) T0 ,

starting point Pi at random
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Figure 3.5: Illustration of simulated annealing in proposed heuristic, detailed in Section 3.5.
Some details have been removed for clarity, such as bounds checking.
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5. If the point was accepted, setPi ← Pt and Ei ← Et, then compare the cost

functionalEi with Eopt of the most optimum points obtained thus far: if the cost is

lower, replace the existing list with the current point; if the cost is approximately

equivalent within a small margin of error, add the current point to the existing list.

6. If the costEi > (1 + β)Eopt, whereβ is a small scalar, then with a very small reset

probabilitypres � pacc, jump to a randomly selected point from the list of optimum

points.

7. Drop the temperatureT ← T (1 − δ) everym iterations. If the temperature is still

higher than the termination criteriaTC , continue through further iterations from step

2. Otherwise, determine a single optimum pointPopt as the point in the set of opti-

mum points that lies closest to the originP∅.

8. Gather a set of points from the list of all evaluated pointswhich have a cost within

E ≤ (1 + ξ)Eopt of the best costEopt, whereξ is a small scalar, and which lie within

a small radiusr0 from the optimum pointPopt.

9. Determine the suggested pointPsugg as the intensity-weighted centre of mass of this

set of points, using(1 − Ei) as the intensity for each pointi, and retrain the model

with the parameters determined by this suggested point using all training points.

A MATLAB implementation of this heuristic using either LIBSVM (Chang and Lin,

2001) or SVMlight (Joachims, 1999) may be downloaded fromhttp://www.cs.dal.

ca/ ˜ tt .



Chapter 4

Classification Results

In this chapter, we apply the heuristic proposed in Chapter 3to two well-known classifi-

cation problems and to two real-world classification problems arising from research per-

formed at Dalhousie University by other groups.

In our experiments, we have obtained reasonable results with the proposed heuristic by

setting the arbitrary cooling schedule to start atT0 = 100 and cool toTC = 0.1, reducing

the temperature everym = 10 iterations byδ = 0.01 (for slowcooling) or byδ = 0.1 (for

fastcooling). The fast cooling schedule therefore results in 660 evaluations, whereas the

slow cooling schedule results in 6880 evaluations. We chosethese schedules such that the

number of evaluations would approximately match those of coarse- and fine-grained grid

searches over the same parameter space, and did not tune these schedules for any particular

experiment as we desire an automatic method for parameter selection. Theε termination

criteria for the quadratic optimization (not to be confusedwith theε-insensitive tube width

for regression problems) was found to make little difference in practice, so this was left at

the LIBSVM defaultε = 0.001 (Chang and Lin, 2001).

In each of the following experiments, the origin bias was setto α = 0.1 (one tenth

the magnitude of the move selected by random walk). The probability of accepting a test

point with a detrimental cost was set topacc = 0.1, so long as the cost is withinβ = 0.1

of the current point. At any point in the search, the probability of abandoning the current

path in favour of a random selection amongst the best points found so far waspres =

0.01. The intensity-weighted centre of mass calculation after the completion of the cooling

schedule included those points within a loge radius ofr0 = 1 from the best point found

Popt, and which have a cost functionalE ≤ (1 + ξ)Eopt whereξ = 0.02. No fine-tuning of

these parameters was performed for any particular experiment, since we wish to evaluate

generalization performance when the heuristic is employedblindly.

4.1 Classic Classification Problems

We first apply this heuristic to two standard classification problems, in order to compare

the results of the stochastic heuristic above including themodel complexity measure, with

38
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Table 4.1: Sample classification results using the slow- andfast-cooling heuristic on the
Wisconsin Breast Cancer Database (Mangasarian and Wolberg, 1990) and Iris Plant Data-
base (Fisher, 1936), compared to a reasonably–sized grid search:Bestindicates the overall
best point found during the grid search, andSuggestedadds an intensity-weighted centre of
mass, as in the heuristic. For each test, the 10-fold cross-validation accuracy, the number
of support vectors, and the number of evaluated points in loge parameter space are shown.

Database Search Method Accuracynsv Evals.
WBCD Fast-Cooling Heuristic 96.5 36 660

Slow-Cooling Heuristic 96.0 34 6880
Grid Search: Best 97.4 129 7373
Grid Search: Suggested 97.1 77 7373

Iris database: Fast-Cooling Heuristic 100 3 660
Iris setosa Slow-Cooling Heuristic 100 3 6880
(linear) Grid Search: Best 100 12 7373

Grid Search: Suggested 100 12 7373
Iris database: Fast-Cooling Heuristic 95.3 13 660
Iris versicolour Slow-Cooling Heuristic 94.7 9 6880
(non-linear) Grid Search: Best 98.0 28 7373

Grid Search: Suggested 96.7 35 7373
Iris database: Fast-Cooling Heuristic 96.7 8 660
Iris virginica Slow-Cooling Heuristic 98.0 6 6880
(non-linear) Grid Search: Best 98.0 33 7373

Grid Search: Suggested 97.3 35 7373

a reasonably–sized grid search based only on cross-validation classification accuracy.

4.1.1 Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database (WBCD) is a binary classification problem with

non-separable data. It was donated to the UCI Machine Learning repository (Newman

et al., 1998) in 1992 by Dr. William H. Wolberg, University of Wisconsin Hospitals (Man-

gasarian and Wolberg, 1990) based on anonymous clinical data. There are two classes,

malignantor benign. The database contains 699 instances and nine discretized,numeric

attributes on a scale from one to ten describing aspects of each tumor, summarized in Ta-

ble 4.2. 16 of the instances contain missing data in one or more columns; in our tests these

instances were not included, leaving a total of 683 observations.
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Table 4.2: Numeric inputs in the Wisconsin Breast Cancer Database and Iris Plant Data-
base.Source:Newmanet al. (1998).

Database Attribute Range
WBCD Clump Thickness { 1, . . . , 10 }

Uniformity of Cell Size { 1, . . . , 10 }
Uniformity of Cell Shape { 1, . . . , 10 }
Marginal Adhesion { 1, . . . , 10 }
Single Epithelial Cell Size { 1, . . . , 10 }
Bare Nuclei { 1, . . . , 10 }
Bland Chromatin { 1, . . . , 10 }
Normal Nucleoli { 1, . . . , 10 }
Mitoses { 1, . . . , 10 }

Iris Sepal Length (cm) R

Sepal Width (cm) R

Petal Length (cm) R

Petal Width (cm) R

4.1.2 Iris Plant Database

The Iris Plant Database was donated to the UCI Machine Learning repository in 1988 by

Michael Marshall (Newmanet al., 1998). It was originally created by Ronald A. Fisher in

1936 (Fisher, 1936), and includes 50 instances for each of three classes —Iris setosa, Iris

versicolourandIris virginica — for a total of 150 observations. There are four continuous-

valued numeric attributes, summarized in Table 4.2. There are therefore three binary classi-

fication problems, as each class is to be separated from the remaining two. TheIris setosa

class is known to be linearly separable from the remaining two classes (Newmanet al.,

1998).

4.1.3 Generalization Performance

In both of these classic classification problems, we left theclasses unbalanced, with the

natural class distribution, but centered and scaled all numeric attributes based on the mean

and maximum magnitude of each attribute to approximate independently and identically

distributed (i.i.d.) data. We also adjusted the class labels, such that

xi ∈ [−1,+1], yi ∈ {−1,+1}, i = 1, . . . , ` (4.1)
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Sample results from these tests are summarized in Table 4.1 and compared to a reason-

ably-sized grid search, as shown in Figures 2.7 (upper right), 3.1 and 4.1. We find that the

heuristic results in a model with comparable accuracy, often obtained with fewer calcula-

tions. Due to our inclusion of the number of support vectorsnsv when evaluating the cost

functional at each point, the resulting models all have lower complexity than that obtained

through a grid search using cross-validation accuracy as the only measure. For example,

the slow-cooling heuristic for theIris virginica classifier achieved 98.0% 10-fold cross-

validation accuracy with six support vectors, whereas the best point from a grid search

yields the same accuracy with 33 support vectors.

Some sacrifice of accuracy may be necessary as a tradeoff to favour low complexity:

for example, the WBCD classifier with the slow-cooling heuristic obtained 96.0% 10-fold

cross-validation accuracy, whereas the grid search obtained 97.4%. On closer examination,

however, we see that this slightly higher accuracy was obtained at the expense of high

complexity: the grid search results required 129 support vectors, whereas the slow-cooling

heuristic required only 34, representing a significant reduction in model complexity.

4.1.4 Consistency of Results

Since the heuristic takes a random path through parameter space, we may wish to deter-

mine how consistent the results are when run several times onthe same data set. For this

purpose, we use theIris setosaandIris virginica classes from the Iris data set, which are

linearly separable and non-separable respectively. The results from these tests are shown

in Figure 4.1, and summarized in Tables 4.3 and 4.4.

The grid search evaluated 7373 points in parameter space, whereas the fast-cooling heu-

ristic evaluated 660 and the slow-cooling heuristic evaluated 6880. The grid search consid-

ered only cross-validation accuracy, whereas the heuristic considers both cross-validation

accuracy and model complexity. Both the slow- and fast-cooling heuristics obtain nearly

the same accuracy as the grid search, but with far fewer support vectors, indicating that the

resulting model is much less complex. The results are reasonably consistent with the slower

cooling rate, but have higher variability with the faster cooling rate. In the highly separable

case (left), both the fast- and slow-cooling heuristics find the same optimum points, to the

lower right of the grid search which does not consider model complexity. However, in the

non-separable case, the heuristics have less consistency,as can be seen by the higher spread
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Figure 4.1: Consistency of results from ten sample runs for the Iris database, comparing the
results from the slow- and fast-cooling heuristic with a grid search: the linearly-separable
Iris setosaclass (left) and the non-separableIris virginica class (right). Solid triangles (N)
indicate the suggested optimum point resulting from the grid search including an intensity-
weighted centre of mass. Squares (�) indicate suggested positions from the slow-cooling
heuristic, while crosses (×) indicate suggested positions from the fast-cooling heuristic.

in the distribution of suggested points. A slower cooling schedule might correct for this, as

the points found by the slow-cooling schedule are much more closer together than those of

the fast-cooling schedule.

Although the linear separability of theIris setosaclass allows a wide range of values

that will achieve 100% accuracy with a very low number of support vectors, the suggested

parameters for both the fast- and slow-cooling heuristics overlap. For the non-separable

problem, however, the variability is relatively high for the fast-cooling heuristic. The range

of suggested parameter values for the slow-cooling heuristic is much more narrow, indicat-

ing that for non-separable data, a slower cooling schedule should be used.

4.2 Protein Sequence Alignment Quality Data Set

The Protein Sequence Alignment Quality data set (Shanet al., 2003) includes three mea-

sures (gap ratiog, normalized site log likelihood ratioh and consistency indexCI) used to

determine the quality of alignment of17 821 gene and protein sequences in preparation for

phylogenetic analysis (12 625 of these were available to us for this experiment). A fourth

measure, the site rate, was available in our test set but was not used in our experiments, so

that we could compare our results with Shanet al.(2003); it seems likely that including the

site rate will improve classification performance. The alignment quality of each sequence
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Table 4.3: Consistency of results for Iris database,Iris setosaclass (linearly separable).
The results shown for the fast- and slow-cooling heuristicsare the mean over ten runs.
Parentheses denote standard deviation.

Search Method loge(γ) loge(C) Accuracy nsv

Fast-Cooling Heuristic −1.82 2.92 100 3
Fast-Cooling Heuristic −1.76 2.58 100 3
Fast-Cooling Heuristic −1.79 2.72 100 3
Fast-Cooling Heuristic −1.88 2.87 100 3
Fast-Cooling Heuristic −1.80 2.72 100 3
Fast-Cooling Heuristic −1.91 3.04 100 3
Fast-Cooling Heuristic −1.79 2.69 100 3
Fast-Cooling Heuristic −1.82 2.75 100 3
Fast-Cooling Heuristic −1.87 2.93 100 3
Fast-Cooling Heuristic −1.84 2.78 100 3
Fast-Cooling Heuristic −1.83 2.80 100 3
(Standard Deviation) (0.05) (0.14) (0) (0)
Slow-Cooling Heuristic −1.82 2.75 100 3
Slow-Cooling Heuristic −1.82 2.76 100 3
Slow-Cooling Heuristic −1.80 2.77 100 3
Slow-Cooling Heuristic −1.80 2.75 100 3
Slow-Cooling Heuristic −1.83 2.79 100 3
Slow-Cooling Heuristic −1.84 2.79 100 3
Slow-Cooling Heuristic −1.81 2.75 100 3
Slow-Cooling Heuristic −1.78 2.71 100 3
Slow-Cooling Heuristic −1.80 2.78 100 3
Slow-Cooling Heuristic −1.81 2.78 100 3
Slow-Cooling Heuristic −1.81 2.76 100 3
(Standard Deviation) (0.02) (0.02) (0) (0)
Grid Search: Best 0.00 0.00 100 12
Grid Search: Suggested−0.15 0.06 100 12
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Table 4.4: Consistency of results for Iris database,Iris virginica class (non-separable).
The results shown for the fast- and slow-cooling heuristicsare the mean over ten runs.
Parentheses denote standard deviation.

Search Method loge(γ) loge(C) Accuracy nsv

Fast-Cooling Heuristic −7.0 15.7 96.7 8
Fast-Cooling Heuristic −8.9 17.2 94.0 9
Fast-Cooling Heuristic −4.1 10.7 96.0 8
Fast-Cooling Heuristic −7.2 18.3 96.0 8
Fast-Cooling Heuristic −7.9 19.0 96.0 9
Fast-Cooling Heuristic −9.0 18.9 95.3 8
Fast-Cooling Heuristic −3.7 10.1 96.7 9
Fast-Cooling Heuristic −7.7 16.6 96.7 8
Fast-Cooling Heuristic −7.9 18.4 94.7 8
Fast-Cooling Heuristic −4.2 10.8 96.0 8
Fast-Cooling Heuristic −6.8 15.6 95.8 8.3
(Standard Deviation) (2.02) (3.62) (0.89) (0.5)
Slow-Cooling Heuristic −8.7 18.2 95.3 8
Slow-Cooling Heuristic −7.9 19.5 98.0 6
Slow-Cooling Heuristic −8.2 17.4 98.0 8
Slow-Cooling Heuristic −7.7 18.4 96.0 7
Slow-Cooling Heuristic −8.6 19.0 94.7 7
Slow-Cooling Heuristic −7.8 18.4 96.0 7
Slow-Cooling Heuristic −8.5 18.2 96.0 10
Slow-Cooling Heuristic −8.7 18.4 96.7 8
Slow-Cooling Heuristic −9.2 18.4 96.7 7
Slow-Cooling Heuristic −9.8 18.0 96.7 9
Slow-Cooling Heuristic −8.5 18.4 96.4 7.7
(Standard Deviation) (0.66) (0.56) (1.05) (1.2)
Grid Search: Best −1.0 0.8 98.0 33
Grid Search: Suggested −1.9 1.3 97.3 35
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was manually categorized by experts into three classes:Valid, InadequateandAmbiguous.

The authors of Shanet al.(2003) compared the classification performance of a linear SVM

(SVM-Lin), to a C4.5 decision tree algorithm (C4.5) and a Naı̈ve Bayesian classifier (NB).

In this work, the performance of the linear SVM classifier wasfound to be inadequate.

However, they mentioned that their SVM implementation did not attempt to identify opti-

mal parameters: in the Weka software (Witten and Frank, 2005) employed in this article,

the default cost value isC = 1.

In our experiments with this data set, we used(1 − 1

CI
) rather thanCI in order to

more closely compare the distribution to those of the other dimensions, which are heavily

zero-weighted. Since all values in the set are positive, allthree dimensions were then

scaled such thatxi ∈ [0, 1], but were not centred on their means. Three binary SVM

classifiers were trained independently on randomly-selected, class-balanced subsets of 100

sequences — 50 of the class to be selected, and 50 of any other class with the natural

class distribution — using the above heuristic to determineoptimalγ andC parameters for

each classifier. A coarse grid search was also performed to compare classification results,

and a high-resolution grid search is shown in Figure 2.7 to visualize the geography of the

generalization error surface.

The results of these tests are illustrated in Figure 4.2 and summarized in Table 4.5. Our

results did not match those of Shanet al.(2003), although the same software Weka (Witten

and Frank, 2005) was used for the C4.5, NB and SVM-Lin classifiers: we used Weka

version 3.4.3 (released September 29, 2004) for these threeclassifiers. For example, in

Shanet al. (2003) the NB classifier was found to achieve84.4% cross-validation accuracy

on the highly non-separable Ambiguous vs. other classification, for 100 class-balanced

samples. There were some differences in testing: we used 10-fold cross validation rather

than 5-fold, to match the methodology in the other experiments in this thesis, and only

12 625 of the 17 821 known data points were available to us for these experiments. In

addition, we have scaled our inputs to approximate i.i.d. data; in Shanet al. (2003) these

inputs may have been scaled differently. We did not find any cases where the SVM-Lin

classifier could not be properly trained (shown asNaN in Table 4.5).

We therefore reach a somewhat different conclusion: for allthree binary classification

problems, the SVM, with parameters optimized using a grid search, achieves the highest

cross-validation accuracy on the 100 randomly-selected, class-balanced samples. The heu-

ristic achieves a slightly lower cross-validation accuracy on the training set, but higher than
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Table 4.5: Classifier performance comparison for the Protein Sequence Alignment Quality
data set, with the results (†) obtained in Shanet al. (2003). Results shown for the heuris-
tic in each case are the mean and standard deviation over ten runs, each with a different,
randomly-selected set of 100 class-balanced training samples. Results for the Valid vs.
Inadequate classification (1000 samples) are a single run only. Optimization Accuracyis
the cross-validated classification accuracy obtained during parameter optimization, with
100 training samples, whereasAll Data Accuracyis the total classification accuracy ob-
tained by the classifier trained on the same 100 points, but tested on all known data points.
Parentheses denote standard deviation.NaN indicates all values were classified as other.

Class Search Method Optimization All Data
Accuracy Accuracy

Valid vs. other Heuristic 84.7 (3.9) 84.0 (0.5)
Grid Search 87.8 (4.1) 83.5 (1.4)
SVM († = NaN) 80.5 (3.4) 83.4 (0.1)
C4.5(† = 87.2) 81.2 (3.5) 84.2 (0.3)
NB († = 55.4) 81.7 (3.5) 84.0 (0.4)

Ambiguous vs. other Heuristic 68.7 (5.4) 59.5 (9.5)
Grid Search 71.5 (4.8) 58.5 (6.4)
SVM († = NaN) 62.5 (7.0) 48.4 (8.5)
C4.5(† = 64.7) 60.3 (4.7) 48.2 (14.7)
NB († = 84.4) 62.0 (5.8) 47.2 (7.6)

Inadequate vs. other Heuristic 94.6 (1.3) 94.4 (0.6)
Grid Search 96.4 (1.8) 94.6 (0.9)
SVM († = 97.0) 94.1 (2.2) 95.1 (0.3)
C4.5(† = 93.8) 93.8 (3.7) 93.8 (1.6)
NB († = 96.6) 94.2 (2.4) 94.7 (0.3)

Valid vs. Inadequate: Heuristic 99.1 (0.9)
100 samples
Valid vs. Inadequate: Heuristic 99.5
1000 samples
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Figure 4.2: Visualizing classifier performance for the Protein Sequence Alignment Quality
data set. For each of the three classification problems in this set, we compare the perfor-
mance of an SVM using the proposed heuristic, an SVM using a grid search, a linear SVM
and default parameters as Shanet al. (2003), a C4.5 tree algorithm as Shanet al. (2003)
and a Näıve Bayesian classifier as Shanet al. (2003). For each classifier, the horizontal
line shows the mean cross-validation performance, plus andminus the standard deviation,
from training the classifier on 100 randomly-selected, class-balanced samples; and the box
shows the overall classification accuracy, plus and minus the standard deviation, from train-
ing the classifier on the same 100 points then testing on the entire data set. The detailed
data for this visualization is shown in Table 4.5.

the remaining three classifiers, in each of the three problems.

When the resulting models trained on these 100 data points are tested on the full data

set, the overall classification accuracy drops somewhat forthe grid search. However, impor-

tantly, this effect is much reduced for the heuristic: for the Inadequate vs. other classifier,

for example, the overall classification accuracy for the SVMusing a grid search drops from

96.4% to 94.6%, a drop of nearly2%, but the SVM using the heuristic only drops from

94.6% to 94.4%, a drop of0.2%. This effect is more drastic in the highly non-separable

Ambiguous vs. other classification, in which that SVM using agrid search drops from

71.5% to 58.5%, but the SVM using the heuristic drops from68.7% to 59.5%, becoming

the best classifier in this category.

The remaining classifiers achieve comparable performance for the separable Inadequate

vs. other and Valid vs. other classifications, but do significantly worse in the non-separable

Ambiguous vs. other classification. The unoptimized SVM-Lin algorithm works well, with

comparable performance to the NB and C4.5 classifiers in all three cases. However, for the

non-separable classification problems, the optimized SVM using the RBF kernel are clearly
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superior.

The overall results for the remaining two classification problems are very consistent

between the five classifiers: there appears to be no clear winner in either case. To con-

firm this, a single-factor Analysis of Variances (ANOVA) wasperformed using the Excel

(Microsoft) Data Analysis Toolpack. The results were somewhat inconclusive for the Inad-

equate vs. other and Valid vs. other classifiers, withP -values of0.03 and0.05 respectively,

indicating that there is a high likelihood that these means are roughly equivalent in light of

the variance: aP -value less than0.05 may be considered significant (Norman and Streiner,

2003), but these values are both very close to0.05. However, for the Ambiguous vs. other

classifier, theP -value drops to0.008, nearly an order of magnitude lower. This indicates

that despite the higher variance for all classifiers in this binary classification problem, there

is a high likelihood that the higher means for the Heuristic and Grid Search classifiers are

not attributable to chance alone. We may therefore consider thedifferences between these

means to be statistically significant.

We can conclude from these experiments that taking the modelcomplexity into account

in the heuristic allows the solution to be more general, preventing any overfitting as we

expected, and that optimizing parameters, through any method, is greatly advantageous

when the binary class distributions are highly non-separable.

4.2.1 Visualizing Classifier Performance

To gain a better understanding of these models, Receiver Operating Characteristic (ROC)

curves (see for example Hastieet al., 2001) are shown in Figures 4.3 and 4.4 (left). The

ROC curve plots thesensitivityof the classifier, or the fraction of correctly classified pos-

itive samples in the complete data set, against thespecificity, or the fraction of correctly

classified negative samples. Ten example curves are shown for each classifier, in order to

show the variation between results. The Inadequate vs. other classifier (e) shows a large

area under the ROC curves, with small variance between each of the ten curves: this in-

dicates excellent classification performance. In contrast, much less area is shown in the

Ambiguous vs. other classifier.

Another classifier performance visualization, which is perhaps more intuitive, is the

Coverage-Performance (C-P) curve (Trappenberg, 2005) shown in Figures 4.3 and 4.4
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Figure 4.3: ROC curves (left) and C-P curves (right, see Equation 4.2) for the Protein
Sequence Alignment Quality data set, with SVM parameters optimized using the heuristic.
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Figure 4.4: ROC curves (left) and C-P curves (right, see Equation 4.2) for the Protein
Sequence Alignment Quality data set, with SVM parameters optimized using a grid search.
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(right). These curves are advantageous in the case where much of thedata is ambigu-

ous, in the sense that there is a higher probability of overlap between the classes. Here, the

coveragec is defined as (Trappenberg, 2005)

c = 1− Nn

N
(4.2)

whereNn is the number of ambiguous samples, for which the decision surface returned by

the classifier is below some thresholdPt, andN is the total number of samples. The lower

curve is defined by (Trappenberg, 2005)

Plow =
Nc

N
(4.3)

whereNc is the number of correctly classified samples. For this curve, unclassified (am-

biguous) data are penalized as misclassifications. The upper curve is defined by (Trappen-

berg, 2005)

Phigh =
Nc

N −Nn

(4.4)

which does not penalize ambiguous data. These curves meet atthe far left of each diagram,

wherec = 1: that is, no samples are classified as ambiguous. Notice thatas the coverage

decreases, the fraction of samples considered to be ambiguous increases, and the variation

between each of these ten example curves also increases. As with the ROC curves, the C-P

curves clearly show high variance between the ten examples for the Ambiguous vs. other

classifier, whereas the other two classifiers exhibit much lower variance between example

runs.

These results make intuitive sense, since the training datahave been classified manu-

ally: it seems likely that an Ambiguous class will naturallyhave significant overlap with

the Adequate or Inadequate classes. Therefore, due to the high accuracy of the Inadequate

vs. other and Valid vs. other classifiers, we decided to traina fourth classifier to distinguish

Inadequate vs. Valid, excluding the samples classified as Ambiguous during training. The

results from these tests are also shown in Table 4.5 in the last two rows. The classifier was

trained with 100 randomly-selected (but class-balanced) points, as with the other classi-

fiers. This resulted in very high accuracy and consistency over ten runs of the fast-cooling

heuristic with a different, randomly-selected set of training samples for each run. The stan-

dard deviation across these ten runs was also significantly lower than those of the first three

classifiers. The fast-cooling heuristic was then trained on1000 similarly-selected points,

and achieved a 10-fold cross-validation accuracy of 99.5% with only 10 support vectors.
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Figure 4.5: Mean pattern ERG waveforms for six axotomy and eight control subjects. The
mean waveforms appear to be visually separable, but even to an expert, the actual observed
waveforms may be somewhat ambiguous upon visual examination. See also Figure 7.6, in
which we explore the relevance of each segment of these waveforms to binary classifica-
tion.

This high accuracy, with low model complexity, indicates that with the samples classi-

fied as ambiguous removed from the training set, the classification problem becomes much

more separable. This suggests an automatic method for including or excluding protein

sequence alignments, in which those alignments with ambiguous quality are detected and

removed from the training set — either manually or through some novelty-detection mech-

anism — so that a classifier is trained to perform this Inadequate vs. Valid classification,

with statistical ambiguity decided from a chosen thresholdas with the C-P curves in Fig-

ures 4.3 and 4.4. Such a classifier would free bioinformaticsresearchers to concentrate on

the actual phylogenetic analyses, and may have the potential to increase the accuracy of

those analyses.

4.3 Retinal Electrophysiology Data Set

Artificial neural networks (ANN) have long been used in medical research, due in part to

their excellent cross-validation accuracy for the analysis of continuous variables (see for

example De Roach, 1989). SVM are also primarily designed forthe analysis of continu-

ous variables, but are less frequently used in medical research despite the many advantages
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such as a sparse model representation, excellent generalizability and the efficiency of cal-

culations with comparable accuracy to ANN. An example of theuse of SVM as a novelty

detection mechanism, in a hybrid technique employing wavelet feature extraction for the

analysis of biomedical waveforms, may be found in Strausset al. (2003).

The retinal electrophysiology data set used in this thesis comes from pattern elec-

troretinography (PERG). Axotomy procedures were performed on female domestic pigs

(Sus domesticus), each approximately six months of age, as part of an ongoingmedical

research project examining the electrophysiological contributions of bipolar and ganglion

cells in the retina.

A control PERG measurement under ketamine anaesthesia was first taken from each

subject for comparison (isoflorane was found to adversely affect the ganglion contribution

of normal subjects). The axotomy procedure then severed theoptic nerve, removing the

axons of all ganglion cells in a minimally-invasive procedure. After approximately six

weeks, to allow phagocytosis processes to completely consume any remaining ganglion

cells in the retina, another PERG measurement was taken.

Gain settings were held constant across all measurements for all subjects. Data from

103 high-contrast chequer locations displayed on a 75 Hz source were averaged using an m-

sequence over approximately 2.5 minutes. This procedure results in a103× 145 = 14 935

point vector for each observation. A mean of all chequer locations was generated to form

a 145 point waveform, corresponding to 145 ms at a 1000 Hz sampling rate. In-depth

discussions of similar methods may be found in Marmoret al. (2003); Sutter and Tran

(1992).

The preliminary data used in this thesis has 14 observationsin two classes: sixaxo-

tomyand eightcontrol. The mean waveforms for each class are shown in Figure 4.5. To

perform the classification, the raw waveform was input as a 145-dimensional vector. Each

dimension was centred and scaled independently by the mean and magnitude, such that the

resulting inputs had values as Equation 4.1. To more closelyapproximate a balanced data

set, the classifications were performed on each of the possible
(

8

6

)

= 28 combinations of

12 balanced subsets, and the resulting accuracy was taken asthe mean across all 28 runs,

giving equal weight to all experiments. Due to the low numberof samples, leave-one-out

cross-validation was used to assess the generalization error at each evaluated point: this is

equivalent toN -fold cross-validation whereN = `, and results in lower noise in the error

surface as the random-partitioning is replaced by a complete, combinatorial search.
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Table 4.6: Sample results from retinal electrophysiology classification, comparing a grid
search to the slow-cooling heuristic. The mean over28 combinations of12 balanced sub-
sets, from six axotomy and eight control subjects, are shown.

Search Method Accuracynsv Evals.
Fast-Cooling Heuristic 98.5 6.2 660
Slow-Cooling Heuristic 98.5 6.2 6880
Grid Search 99.4 8.5 6603

The results of the classification are shown in Table 4.6. We have found excellent gener-

alization performance using the heuristic with this data set: the fast-cooling heuristic found

the same accuracy and complexity as the slow-cooling heuristic but with far fewer evalu-

ations. Both found only a small reduction in cross-validation accuracy in comparison to a

grid search, with approximately 25% reduction in complexity as measured by the average

number of support vectors in the 28 models.

4.4 Discussion

Empirically, we have found that the noisy nature ofN -fold cross-validation has made little

appreciable difference in the results when using the stochastic approach, since points near

the end of the search will likely be quite nearby as the temperatureT decreases. However,

one often-overlooked step which can have a significant effect when using SVM is to ensure

the i.i.d. inputs necessary for optimal classification (Burges, 1998; Vapnik, 1995). For

example, one can centre and scale the inputs such that all dimensions have zero mean and

valuesxi ∈ [−1,+1], as we do for most problems in this thesis. However, when faced with

noisy, volatile input data such as the sensor waveforms examined in Section 4.3, there may

be peaks in future observations that were not seen in the training data, thereby breaking

these arbitrary bounds on the input vector. A common alternative is to centre and scale to

zero mean and unit variance, but in our tests we found this reduced the accuracy somewhat,

since this assumes a Gaussian distribution for all dimensions: in waveform classification,

we may often see very different distributions, such as a bimodal or Poisson distribution.

Variable selection methods may be used to limit the number ofattributes available to the

classifier, in order to improve computational efficiency. For example, indicative sections of

the waveform may be selected by expert users, or separability measures such as the Fisher
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Ratio, Pearson Correlation Coefficients or Kolomogorov-Smirnoff statistics may be used

to select particular variables in the waveform. We will examine some of these methods

in Chapter 7, but for the classification and regression problems addressed elsewhere in

this thesis, we include all known dimensions in each data set. Modification of the input

variables through normalization might be useful for the retinal electrophysiology data set,

since multiple ERG machines might be used with varying gain settings. For example,

we might normalize each waveform by the mean of the trailing samples. However, these

particular tests were all performed on the same machine withgain settings held constant,

so no normalization was needed for the experiments in this thesis.



Chapter 5

Regression Results

Introduced in Section 2.1.6,ε-SVR allows reduced sensitivity to noise by providing a small

noise thresholdε, an estimate of the constant, additive noise present in the target values.

Target observations that are within±ε of the predicted target values will not be penalized,

but those outside thisε-tube will be penalized according to the cost valueC.

In this chapter, we extend the heuristic to univariate regression usingε-insensitive Sup-

port Vector Regression (ε-SVR). We adapt the heuristic to simultaneously optimize three

parameters: the cost parameterC, the RBF width parameterγ and the noise-insensitive

tube widthε. We find that when optimizing in such a three-dimensional parameter space,

it is advantageous to extend the cooling schedule somewhat to evaluate a larger number of

points.

5.1 Introduction

At the 2005 IEEE International Joint Conference on Neural Networks (IJCNN 2005), a spe-

cial session was held on applying machine learning techniques to environmental modelling

(Cherkasskyet al., 2005). That same year, at the first Pattern Analysis, Statistical Mod-

elling and Computational Learning (PASCAL) Challenges Workshop, a machine learning

competition was held on techniques for evaluating losses inprobabilistic prediction (Can-

delaet al., 2005). These events inspired a new machine learning challenge, to be discussed

at a special session in IJCNN 2006. ThePredictive Uncertainty in Environmental Mod-

elling Competition(Cawley, 2006) was conceived and operated by Gavin Cawley atthe

University of East Anglia.

The objective of the competition was to perform a regressionanalysis on three real-

world environmental data sets, detailed below, then use this analysis to predict the target

value for a number of test observations. However, rather than simply providing the best

possible prediction, competitors were also to provide an estimate of the expected distribu-

tion of that prediction: in other words, competitors were topredict the uncertainty of their

prediction for each target.

In the competition, thisheteroscedasticitymay be represented in three forms (Cawley,

56
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2006):

1. The competitors may assume a Gaussian distribution, and give the mean and variance

of that distribution along with each prediction.

2. The distribution may be modelled by a Gaussian Mixture Model (GMM), with any

number of Gaussian distributions summing to provide an estimate of the target distri-

bution, by providing the mean, variance and weight of each Gaussian in the mixture.

3. The distribution may be modelled by a number of quantiles (Candelaet al., 2005),

by giving the width and cumulative probability of each quantile. Exponential tails

on either side of the distribution assure that the probability distribution integrates to

unity.

The set of predictions for each data set from each competitors were to be evaluated on

two measures. The first was the mean squared error (MSE) of theset ofn target predictions

yi ∈ R, i = 1, . . . , n in the test data set, as (Candelaet al., 2005)

MSE =
1

n

n
∑

i=1

(yi − µi)
2

σ2(y)
(5.1)

whereµi is the mean of the predicted conditional probabilityp(yi|xi). The metric is nor-

malized by the varianceσ2(y) of the target values.

The second measure to evaluate performance was the mean negative log estimated pre-

dictive density (NLPD) of the predictions, as (Candelaet al., 2005)

NLPD = −1

n

n
∑

i=1

log p (yi|xi) (5.2)

This measure penalizes predictions which are accurate in terms of MSE, but which are

“under-confident” or “over-confident” (Cawley, 2006) in their estimate of the predictive

uncertaintyp(yi|xi).

5.2 Data

Three “real-world” data sets were provided for analysis, with a fourth synthetic data set

provided for experimentation. Each data set was split into Training, Validation and Testing
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Table 5.1: Dimensions of the provided data sets in the Predictive Uncertainty in Environ-
mental Modelling Competition.Source:Cawley (2006).

Data Set Features Training Validation Testing
Observations Observations Observations

Precipitation 106 7031 3515 3517
Temperature 106 7117 3558 3560
Sulphur Dioxide 27 15 304 7652 7652
Synthetic 1 256 128 1024

partitions. The Testing partition remained unseen until after the competition deadline. The

dimensions of these data sets are summarized in Table 5.1.

ThePrecipitationandTemperaturedata sets (Cawley, 2006) include precipitation and

temperature measurements made by an environmental monitoring station. The input fea-

tures are meteorological information obtained by a large-scale General Circulation Model

(GCM) (see for example Russellet al., 1995). From a machine learning perspective, these

data sets are challenging due to the larger number of input variables. TheSulphur Diox-

ide (SO2) data set (Cawley, 2006) contains less than a third as many input variables, but

has more than twice the number of sample observations. It is based on forecasting the

concentration of atmospheric SO2, based on current SO2 levels and other meteorological

conditions.

Noise processes in such environmental data sets are thoughtto be non-Gaussian (Caw-

ley, 2006), such that a model that assumes a Gaussian probability distribution for the target

uncertainties may be inaccurate. It seems likely that the data sets in this competition were

specifically chosen such that a solution assuming Gaussian distributions would not perform

well when measured by the NLPD metric. However, we will make such an assumption

here as we find this gives adequate regression performance: on the Synthetic benchmark,

for example, our results compare well with the winner of thiscategory and the overall

competition, Markus Harva, who used a GMM representation ofthe distributions.

5.3 Methods

The optimum noise-insensitive tube widthε may be chosena priori if the expected noise

density for the data set is known (Smola and Schölkopf, 2004; Vapnik, 1995), or may



59

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

loge(cost)

lo
g

e
(g

a
m

m
a

)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

loge(cost)

lo
g

e
(g

a
m

m
a

)

Figure 5.1: Two-dimensional projections of the stochasticpath followed by the regression
heuristic used in this chapter, through a three-dimensional parameter space defined by the
cost parameterC, the RBF width parameterγ and theε-insensitive tube width. The dots
correspond to evaluated points in parameter space, and the thin lines represent the path
taken by the heuristic. On theleft, we show the path followed by the first part of the
heuristic applied to the Synthetic data set, evaluated by MSE as detailed in the text. On
the right, we show the path followed by the second part, evaluated by NLPD. Both paths
converge to a single point in parameter space. However, the path is much more erratic than
we would see with a two-dimensional path such as Figure 2.6, since here thez-axis —
containing the path information forε — is not shown.

be estimated empirically (Cherkassky and Ma, 2004). Here, we show that the optimum

value ofε may be numerically estimated through a minor modification ofthe proposed

heuristic that optimizes the cost parameterC and RBF width parameterγ in Chapter 4.

The heuristic is extended to three-dimensional parameter space in order to simultaneously

find the optimum noise-insensitive tube widthε. Examples of a two-dimensional projection

of the resulting stochastic path through this parameter space are shown in Figure 5.1.

The data sets in this chapter have a large number of observations available for training

and validation. Therefore, for each evaluated point in parameter space, rather than using

the number of support vectors to perform the extrinsic regularization as with the classifica-

tion experiments in Chapter 4, we train a model on the training data as before, but evaluate

the model’s performance on the validation partition. This prevents the model from overfit-

ting to the training observations, as shown in Figure 2.5, since none of the training set —

and therefore none of the support vectors — appear in the validation set. Generalization

performance on the training set is ignored, creating a general solution without the need to

calculate a model complexity measure. An example of a general model resulting from this
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approach is shown in Figure 5.2 (right).

Making the assumption of a Gaussian probability distribution for the uncertainty of

each target, the solution to this regression problem can be broken into two parts: first, we

perform a typical regression analysis, optimizing theε-SVR free parametersC, γ andε on

a model trained on the training partition in order to minimize the MSE on the validation

partition. This prediction value gives us the mean of the target probability distribution at

each evaluated point in the test set.

Next, we perform a second regression analysis to predict theabsolutedifferencebe-

tween the predictions and the training set targets, and optimize the same parameters again

on a model trained on these difference in order to minimize the NLPD on the differences

between the model and observation for the validation partition. The square of this predic-

tion of the estimated difference, between the target value and the predicted value, gives

the variance of the target probability distribution at eachevaluated point in the test set: the

predicted uncertainty of the target prediction.

This two-part process is illustrated in Figure 5.2 for the Synthetic data set. A 6th-degree

polynomial regression, using this same two-part process, is shown for comparison. Both

the polynomial regression (left) andε-SVR (right) approaches result in smooth, general

models with no overfitting. The models appear to be quite similar, in fact the means of

these models appear to be identical. However, theε-SVR model appears to have more

precision in the estimated deviation at the extremes of the input value, wherexi ≤ 0.5

or xi ≥ 3.0, whereas the polynomial model appears to have more precision in the centre

of the distribution, where1.5 ≤ xi ≤ 2.5, reacting to the higher spread of the empirical

deviations in this range to a slightly greater extent.

For the Synthetic data set, this process completes quite quickly using the same cooling

schedule as with the classification results in Chapter 4. To perform this search efficiently

for the larger data sets, two steps were taken to reduce computational complexity. First,

the cooling schedule of the simulating annealing heuristicwas evaluated fromT0 = 100 to

TC = 1 (rather thanTC = 0.1 as in Chapter 4) in steps of eitherδ = 0.1 (Precipitation),

δ = 0.05 (SO2) or δ = 0.025 (Temperature), resulting in 440, 900 and 1820 evaluations

respectively. Second, the number of points included duringoptimization was a random

selection of 1000, 1000 and 1500 points respectively for each data set, although in all cases,

the full set of training observations was used to train the final models before predictions

were performed. These choices are summarized in Table 5.3.
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Figure 5.2: Comparing polynomial regression using a 6th degree polynomial (left) with
ε-SVR regression (right) for the Synthetic data set. In theupper diagrams, circles (◦)
represent the training set, whereas triangles (4) represent the validation set. The solid
line indicates the prediction values, and the dotted lines represent the predicted standard
deviation from the prediction. In thelowerdiagrams, the circles (◦) represent the difference
between the prediction and target values for the training set. The solid line is the resulting
estimate of the standard deviation from the predicted values.
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Table 5.2: Final results of the NLPD metric on unseen Test partitions for Temperature,
Precipitation and Sulphur Dioxide data sets, sorted by bestmean NLPD across all three
data sets. The overall winner of the contest was Markus Harva, who placed just after the
contest organizer Gavin Cawley. Considering that we use a Gaussian representation of the
uncertainty distribution, with blind application of the heuristic and no parameter tuning for
any specific data set other than varying the length of the cooling schedule, a fourth place
finish seems quite reasonable: M. Harva used a GMM representation of the distributions,
whereas T. Bagnall, G. Cawley and VladN all appear to have used quantile representations.
Source:Cawley (2006).

Name Precipitation Sulphur Dioxide Temperature Mean
(G. Cawley) -0.510 4.255 0.053 1.266
M. Harva -0.279 4.370 0.202 1.431
VladN 1.272 4.616 0.108 1.999
T. Bagnall 1.114 4.758 0.136 2.003
M. Boardman 1.606 5.090 0.076 2.257
S. Kurogi et al. 3.098 11.01 0.059 4.721
I. Takeuchi 0.747 6.043 24.79 10.53
I. Whittley − − 0.625 −
E. Snelson − − 0.035 −

5.4 Results

The final results of the competition are summarized in Table 5.2.

We would not expect these methods to be very effective in thiscontest in comparison to

more sophisticated models, for two main reasons. First, we are representing the model by

Gaussian mean and variance which assumes a Gaussian distribution, whereas other mod-

els may represent the model with the far more flexible quantile or GMM representations.

Second, we are usingε-SVR which assumes a constant noise-insensitivity threshold ε.

However, even from the synthetic data set shown in Figure 5.2, it is clear that this is not

an appropriate assumption for this data: it seems likely that these data sets were specif-

ically chosen such that a Gaussian representation of the distribution would not perform

well. These compromises were made to favour blind application of the existing heuristic,

without radical modification.

In addition to these factors, for the three real-world data sets, we have also somewhat
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compromised the parameter optimization by limiting the number of observations used dur-

ing the search heuristic. We have also limited the stochastic search to a fast- or moderate-

cooling schedule, rather than the slow-cooling schedule used in the Synthetic benchmark,

in order to reduce computational complexity.

Despite these allowances, we find that the method returns quite favourable results. In

the Synthetic data set, for example, due to the small number of observations with only a

single input dimension, using the slow-cooling heuristic with 100% of the training samples

was quite feasible. In this case, the model gave a mean squareerror only slightly higher

than the “ground truth” reference by the contest authors, which was generated from the

original model used to create the actual Synthetic data set.

For the real data sets, however, it was necessary to use a faster cooling rate and a

smaller portion of the training data, randomly selected at each evaluate point in parameter

space, in order for the calculations to be complete in a reasonable amount of time. For the

real data sets, these calculations finished within one or twohours, with the exception of

the Temperature data set, for which a somewhat slower cooling rate and somewhat larger

portion of training data was used to extend the training timeto about eight hours on our test

machine, a 3.4 GHz Intel Pentium IV. Performing similarly slowed searches on the other

two data sets should improve results somewhat.

In terms of MSE on the test data partition of these real data sets, the optimizedε-SVR

model appears to be roughly comparable to a Bayesian-regularized multilayer perceptron

(MLP) entered by Gavin Cawley: by this measure, comparable results were found for all

four regression problems. However, in terms of NLPD, the results seem more comparable

with VladN’s submissions, which used a gradient-based optimization with details to be

announced at the competition (Cawley, 2006). Both VladN andGavin Cawley appear to

have used a more complex quantile representation for the uncertainty distributions, which

may partially account for the higher precision of these models.

With slower cooling and a higher percentage of the training data used, increasing com-

putational complexity, these numbers may improve somewhat. For example, for the Sul-

phur Dioxide (SO2) data set, two entries were submitted: the first used the fastcooling

schedule (440 evaluations) as with the Precipitation data set, but this yielded poor results

for the NLPD metric on the Validation partition. A second entry was therefore submitted

with a somewhat slower cooling rate (900 evaluations), resulting in a somewhat improved
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Table 5.3: Detailed results of the MSE and NLPD for each of thefour data sets, for the
submitted entry using the proposed two-part method in this Chapter. The winner in each
category, by minimum MSE and by minimum NLPD on the Testing partition, are shown
for comparison.Source:Cawley (2006). This table also shows the number of evaluated
points in parameter space performed by the heuristic, and the number of training samples
considered during parameter optimization.

Validation Testing Optimization
Data Set Name MSE NLPD MSE NLPD Evals. Samples
Synth. Winner by both 0.475 0.313 0.562 0.386

Heuristic 0.473 0.313 0.566 0.475 4590 256/256
Precip. Winner by MSE 0.535 0.463 0.611 0.747

Winner by NLPD 0.609 -0.436 0.631 -0.510
Heuristic 0.611 1.556 0.644 1.606 440 1000/7031

Temp. Winner by both 0.061 -0.042 0.066 0.035
Heuristic 0.069 0.055 0.071 0.076 1820 1500/7117

SO2 Winner by MSE 0.479 2.519 0.688 6.043
Winner by NLPD 0.776 4.292 0.799 4.255
Heuristic 0.836 5.167 0.840 5.090 900 1000/15304

MSE (from 0.87 to 0.84) but a greatly improved NLPD (from 12.1to 5.1). With the fast-

cooling schedule, the Temperature data set appeared to givegood overall results by both

measures, so a moderate-cooling schedule was employed witha higher number of training

observations, in order to improve results further.

5.5 Discussion

In Table 5.3, we compare the results obtained using this two-part heuristic with those of the

winner in each category, by minimum MSE and minimum NLPD. Forthe Synthetic data

set, our results closely match the winner, even outperforming the winner on the Validation

partition in terms of MSE, but fall somewhat behind in terms of NLPD: in this case the

winner, Markus Harva, used a Gaussian Mixture Model to represent the uncertainty prob-

ability distribution, allowing greater precision. For theremaining data sets, the heuristic

performs quite well, with comparable results for each category. On the Testing partition of

the SO2 data set, for example, the heuristic results in a better NLPDthan that of the entry

with the best MSE.
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Further steps could be taken to improve the accuracy of this analysis. The heuristic per-

forms very well on the Synthetic data set, and performs adequately on the real-world data

sets. We have demonstrated that extending the cooling schedule, to evaluate a greater num-

ber of points in parameter space, is advantageous for both metrics. We might also combine

the training and validation sets, then randomly partition this superset of observations into

training and validation partitions at each evaluated pointin parameter space, thereby allow-

ing many more points to be available for assessing cross-validation performance. A more

advanced analysis might represent the uncertainty probability distributions as quantiles or

GMM, rather than assuming a simple Gaussian distribution: this would add a number of

additional free parameters which might be searched by a straightforward modification of

the simulated annealing heuristic. Finally, as mentioned in Section 5.3, here the extrinsic

regularization is performed by evaluating performance on aseparate validation data parti-

tion, rather than a separate complexity measure: taking both factors into account may well

result in a more general solution.



Chapter 6

Multivariate Regression Results

In this chapter, we extend the heuristic to multivariate regression problems — those with a

multidimensional output as well as a multidimensional input — and apply the heuristic to

the detection of periodic gene expression in DNA microarrayexperiments.

Noise levels and cross-study variation present in gene-expression data from DNA mi-

croarray experiments create obstacles for genomic researchers. A reliable method for mod-

elling such data is required in order to impute missing observations, and to improve the

signal to noise ratio in time-variant or cross-study experimental results. In this chapter,

we combine multivariate support vector regression and non-linear, periodic curve-fitting

methods to model differential gene-expression in periodicmicroarray data. Support vec-

tor regression makes no assumptions about the distributionof the underlying data model,

seeking a general, regularized solution for data sets with alow number of samples but with

high dimensionality. The cleaned microarray data from thismodel may then be analyzed

further through other methods: for example, in this chapter, we apply an additive, periodic

model to detect regular periodicity, such as the transcription of mitotic genes during a cell’s

reproductive cycle.

We apply these methods to a recent study of cell-cycle synchronization methods in fis-

sion yeast,Schizosaccharomyces pombe, and evaluate the models in comparison to univari-

ate polynomial and linear regression approaches common formicroarray data imputation.

In this study, our goals are to impute missing data points in aperiodically meaningful con-

text, to determine which genes exhibit high periodicity that is strongly synchronized with

the cell-cycle and to determine the most-likely activationpoint of each gene within the

cycle.

6.1 Introduction

DNA microarrays measure the expression levels of active genes in an organism, by detect-

ing and quantifying particular strands of messenger RNA (mRNA) which are transcribed

from a cell’s DNA during protein synthesis (Orengoet al., 2003). In this chapter, we

examine the modelling of differentially-expressed microarray data without regard to the

66
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underlying cause of errors. Our approach is based on two datamodels: first a multivariate,

kernel-based, non-linear regression using Support VectorMachines (SVM); and second a

univariate, maximum-likelihood model using non-linear curve-fitting, with both a linear

and non-linear, periodic component. Our goal is to create models which can be used to

impute missing observations, for data correction and normalization, or which can in them-

selves be used for further analysis.

Noise and errors arise in DNA microarray hybridization experiments from a variety of

factors, including gene-specific dye bias (Martin-Magniette et al., 2005), probe and exper-

iment design (Smythet al., 2003), culture heterogeneity (Gilkset al., 2005), variations in

slide quality and manufacturing processes which can createsurface abnormalities or allow

slide-movement within the microarray scanner (Agilent, 2005) and the normal deteriora-

tion of mRNA post transcription (Orengoet al., 2003). A comprehensive overview of many

of these sources of experimental and analytical errors, andcommon statistical techniques

used to overcome them, can be found in Smythet al. (2003).

Many other statistical approaches have been applied to microarray data analysis, such

as univariate or multivariate Analysis of Variances models(ANOVA or MANOVA) (Gilks

et al., 2005; Kerret al., 2000) commonly used for normalization prior to further analysis

(Smythet al., 2003). Independent Components Analysis (ICA) (Martoglioet al., 2002)

appears to have significant potential for automatic artefact isolation and removal, by maxi-

mizing the statistical independence of the resulting signals.

Univariate or multivariate regression approaches are common in microarray analysis

(Tsaiet al., 2004; Wu, 2005). The majority of these are univariate, in which a single output

variable is targeted (although there may be one or many inputdimensions). In addition

to reducing input noise and sources of error, univariate regression models have been used

for classification and prediction (Choiet al., 2003; Wu, 2005). More recently, multivariate

regression approaches, in which the output is a vector rather than a single value, have also

been suggested. Gilkset al. (2005) proposed a multivariate, linear regression technique

based on a controlled design matrix to fuse data from multiple, similar experiments, in

which the output is a fused, cleaned, time-variant microarray experiment for periodic data.

Choi et al. (2003) also fuse multiple, time-variant data sets using a covariance measure

for Bayesian meta-analysis and apply their algorithm to theproblem of cancer profiling.

Johanssonet al. (2003) also used a multivariate approach, applying an algorithm based
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on Partial Least Squares (PLS) to fuse time-variant data sets for budding yeast,Saccha-

romyces cerevisiae: the authors of this study note that an advantage of PLS is to obtain

models with high generalization performance for data sets with few observations but high

dimensionality, which as we note in Section 7.1, is also a significant advantage for SVM.

Tai and Speed (2004) have proposed a Bayesian approach of similar form, but which uses

a Bayesian statistic to approximate this design matrix automatically and from which the

goal is to create a vector of expression values for each individual gene probe, similar to the

approach taken here.

Additive data models have also been proposed, such as Tsaiet al. (2004) in which a

linear and non-linear model are combined, an approach similar to the periodic model we

apply in this chapter, but using a sequential normalizationalgorithm rather than a non-

linear maximum likelihood model. A non-linear maximum likelihood model was proposed

in Huberet al. (2002), in order to normalize data prior to more complex analysis, however

such non-linear transformations will negate the assumption of an additive error or residual

component (Gilkset al., 2005).

Data imputation methods attempt to find the most likely valueof missing observations

and minimize noise levels in the gene expression data to identify the most-likely under-

lying signals. However, in some cases it may not be necessaryor warranted to identify

each individual gene-expression signal in the data: we may simply wish to measure the

goodness-of-fit to an additive, periodic model in order to isolate a particular component

of the underlying signal relevant for a particular biological analysis, or to impute missing

pieces of source data in a periodically meaningful way rather than employing a statisti-

cal averaging technique such as K-Nearest Neighbors (KNN) (Gilks et al., 2005) which is

known to perform badly in data imputation in terms of RMSE (Troyanskayaet al., 2001;

Wanget al., 2006). A comparison of several methods for data imputationis provided in

Jörnstenet al. (2005), who provide a new method based on convex linear combination of

several current methods, and in Troyanskayaet al. (2001), who compare SVD and KNN

with a row-oriented mean for several real data sets.

Further analysis of the cleaned data set to identify periodically expressed genes during

cell processes to identify mitotic genes has been performedvia clustering (Rusticiet al.,

2004) and Singular Value Decomposition (SVD) (Gilkset al., 2005) or Principal Compo-

nents Analysis (PCA) (Johanssonet al., 2003) which find signals with maximum variance,

although a more common approach is to use a statistical ranking techniques such as the
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commonly used t-statistic (Smythet al., 2003). Here we will use the mean squared error

(MSE), normalized by the variance as with Equation 5.1, as a goodness-of-fit statistic.

6.1.1 Multivariate Support Vector Regression

Supervised machine-learning techniques such as ArtificialNeural Networks (ANN) have

been used for classification in microarray research (see forexample Brownet al., 2000).

Regression models based on SVM are less common, as the technology is comparatively

recent (Druckeret al., 1997; Smola and Schölkopf, 2004; Vapniket al., 1997).

True multivariate SVM regression has been proposed and implemented (Tsochantaridis

et al., 2004). However, its use is not widespread and the theory behind truly multivari-

ate SVM regression is still being developed. The approach wetake here might be more

properly calledmultipleregression, since we build a series of univariate regression models,

each of which is trained by the same vector of input genes but target a different output gene.

Each model also uses the same cost parameterC, RBF width parameterγ andε-insensitive

tube width. The difference between these philosophies is illustrated in Figure 6.1: inter-

dependencies between the outputs are only available in a truly multivariate approach. We

will refer to this technique as multivariate regression in this work as a convenience, in the

sense that we generate a “black box” model with multivariateinputs and outputs.

In Wang et al. (2006), Support Vector Regression was shown to be superior to K-

Nearest Neighbors (KNN), Bayesian Principal Components Analysis (BPCA) and Local

Least Squares (LLS) for data imputation on microarray data sets, in terms of mean squared

error normalized by individual gene variance. As in our analysis here, in Wanget al.(2006)

multiple univariate regression models are employed. The free parametersε, γ, C for theε-

SVR implementation in this study were determined through a grid search, whereas here we

adapt the simulated annealing heuristic from Chapter 3. Since the number of training ob-

servations for each gene is small, we use a model complexity measure to perform extrinsic

regularization as in Chapter 4, but include optimization oftheε parameter as in Chapter 5.

These optimum parameters were determined individually foreach column (time point) in

Wanget al. (2006), whereas here we use a representative sample of genesin order to fur-

ther enhance generalization and reduce the computational burden. Finally, the column-wise

orthogonal input coding scheme to flag missing values in Wanget al.(2006) was used to al-

leviate a restriction that only a single missing value couldbe estimated for each row (gene)
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Output Layer

Hidden Layer

Input Layer

(a) True multivariate model.

Output Layers

Hidden Layers

Input Layers

(b) Multiple univariate models.

Figure 6.1: A conceptual comparison between true multivariate regression and regression
using multiple univariate models. Both “black box” neural network models have three
inputs and three outputs, which might be considered multivariate. However, the imple-
mentation in (a) uses true multivariate outputs, where the outputs are interdependent. The
network in (b) treats the outputs as three entirely-separate models. This is the approach we
take in this chapter as a convenience, and which is also performed in Wanget al. (2006).
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of the data in their implementation, whereas the multivariate ε-SVR approach used in this

chapter allows any number of missing values so long as at least one observation is present.

Some extreme examples of this are presented in Figure 6.5(c-d). In practice, it would of

course be unwise to rely on data modelled on only two or three observations. Fusing the

results from this experiment with the other experiments with different cell-cycle synchro-

nization techniques, or by repeating the particular experiment to obtain more data, would

allow us to determine if these predictions are accurate.

In terms of a true representation of the data rather than purely mean squared error,

we would expect a model based onε-SVR to create the best possible representation of

noisy, inconsistent microarray data — even in comparison toneural network approaches

— since the advanced regularization capability of these kernel-based methods allows for

a highly-accurate model with a relatively small number of observations. The efficiency of

the ε-SVR training algorithm and a sparse model representation allows for much higher

dimensionality in the input observations and output targets than neural network approaches

(Haykin, 1999; Nabney, 2002), which typically require two weight matrices: the size of

the input weight matrix is determined by the number of inputstimes the number of hidden

nodes, and similarly the output weight matrix is determinedby the number of outputs

times the number of hidden nodes, as illustrated by the thin lines connecting the nodes in

Figure 6.1(a). For an MLP with thousands of inputs, such weight matrices may well exceed

available memory limitations. The importance of generalization performance, as a tradeoff

to mean squared error, is illustrated in Figure 2.5.

6.2 Data and Methods

In this chapter, we will primarily follow the notation of Gilkset al.(2005). We defineD as

anN ×m observed data matrix ofm gene probes taken atN time points. As is generally

the case, herem � N since for theelutriation2 data set,m = 5038 andN = 20. We

refer to the individual elements ofD such that for a particular genei we have we have

observationsxi and targetsyi as in Equation 2.1, corresponding to rowi of D where in this

caseN = `.

In Rustici et al. (2004), nine different cell-cycle synchronization techniques were ap-

plied to S. pombein comparison to unsynchronized cell cultures, including elutriation to

isolate fine cells from heavier cells in the culture, or selective blocking and releasing of
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particular proteins known to control the cell cycle throughtemperature variation. The raw

data from these experiments were made available, under accession numbers E-MEXP-54

to -64, through ArrayExpress (http://www.ebi.ac.uk/arrayexpress ).

Each experiment in this data set shows the normalized, unitless signal ratio of the ex-

perimental culture at each time point for each gene, in comparison to that of an unsyn-

chronized, control culture of the same organism, for> 99.5% (Rusticiet al., 2004) of all

identified genes in theS. pombegenome through several successive hybridizations taken

every 15 minutes. A value of one would indicate that the gene has equal levels of expres-

sion in the synchronized and unsynchronized cultures, whereas a value higher than one

indicates that the synchronized culture exhibits a proportionately higher gene expression

level than the unsynchronized control culture. In this study, through a clustering algorithm,

407 genes were identified as periodic and 136 of these were identified as strongly periodic,

defined as those whose maximum difference (from peak to trough) was greater than 2. The

data in this study was later analyzed using a multivariate linear regression and SVD in Gilks

et al. (2005).

There are many missing data points in these data sets. For example, in theelutriation2

data set, 286 of the 5038 genes evaluated on each microarray slide had no data in any

of the observed hybridizations, and a further 819 genes had fewer than 75% of the data

points available. A total of 16.9% of the observations are missing. It is self-evident that the

fewer observations available for any particular gene probe, the less accurate any attempt to

model the underlying data will be. However, from the analysis performed in Gilkset al.

(2005), theelutriation2 data set appears to exhibit excellent periodicity through nearly

two cell cycles, so in this preliminary work, we initially concentrate on this one particular

experiment.

6.2.1 Non-linear Multivariate Regression

We first aim to impute these missing observations, and reducenoise levels throughout the

data set, using SVM. Since both the input and output for the SVM is the full, time-course

experiment, in this case 5038 genes over 20 time points, our SVM model naturally falls into

the category of multivariate regression. However, as discussed in Section 6.1.1, here we use

a series of univariate regressions: anε-SVR model for each gene with multidimensional

input (the values of the all remaining genes at a specific timepoint) and unidimensional
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output (the value of the target gene for a specific time point). 3515 of the 5038 genes were

identified as each having 100% of the available data points available. These were used as

the training input for the model, and were normalized such that

xij ∈ [−1,+1], i = 1, . . . ,m, j = 1, . . . , N (6.1)

Importantly, the time vector itselft ∈ {0, 15, 30, . . . , 285} was not provided as an

input vector for this model; only the gene expression data was used. This allows the SVM

model to seek a generalized solution in 3515-dimensional input space purely on the basis

of exploring the relationships between individual genes. This removes any assumption

of the time-variant nature of the gene expression data, and allows us to impute missing

observations even if a significant number of observations ismissing: for example, see

Figure 6.5 (b), in which data for the second cycle is imputed based on observations made

during the first cycle. Naturally, the target gene itself is also excluded from the training

data for each model.

An important consideration in the practical application ofSVM is the determination of

appropriate values for the free parameters, or hyperparameters, of the SVM during train-

ing: we wish to determine optimum values for theε-tube width, RBFγ-radius andC cost

free parameters. Here we use the heuristic proposed in Chapter 3, adapted toε-SVR by

adjusting the scoring function as follows.

As in Chapter 5, the goal of this heuristic is to balance generalization performance

with model complexity. Through the course of the three-dimensional, stochastic parame-

ter search, we minimize the cost functionalE (ε, γ, C) defined as Equation 3.1. Here,

Es(ε, γ, C) is the 10-fold cross-validation mean squared error (MSE) resulting from a

model trained using parameters defined by this point in three-dimensional parameter space,

normalized by the inverse of the standard deviation of the target observationsσ(yi), as

Es =
1

Nσ(yi)

N
∑

j=1

|yij − f(xij)| 2 (6.2)

wheref(xij) is the predicted value ofyij from the regression model, as Equation 2.36.

Normalizing in this manner allows those genes with small expression to more signifi-

cantly affect the mean squared error in comparison to those with relatively high expression.

Ec(ε, γ, C) is a model-complexity penalty defined by

Ec =
(nsv

`

)Γ

(6.3)
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wherensv(ε, γ, C) is the number of support vectors in the resulting model representation

and` is the total number of training observations. The importance of including a model

complexity measure in regression problems is illustrated in Figure 2.5.

The regularization parameterλ balances the tradeoff betweenEs andEc, and the square

Γ = 2 introduces a non-linearity to more sharply penalize those models which obtain a

low mean squared error at the expense of high model complexity. We found that a value

of λ = 10 brought the two terms to the same orders of magnitude, givingroughly equal

weight to each.

To balance computational complexity with model accuracy, rather than calculating the

optimum free parameters for each of the 5038 models, we minimize the sum ofE taken

over ten representative genes at each evaluated point in three-dimensional free parameter

space. Each of these genes were identified as periodic by the clustering methodology in

Rustici et al. (2004). Some had small expression throughout the time course of the data,

others had large expression, indicating the need for normalization in the MSE term as

shown above. The selected genes wereslp1, cdc20, h4.2:hhf2, sly1, h3.1:hht1, h3.3:hht3,

h4.3:hhf3, h3.2:hht2, h4.1:hhf1andbgs4. The optimum parameters found from the analy-

sis of these ten genes were then used to train theε-SVR for all genes.

The simulated annealing heuristic was employed with a moderate cooling schedule,

such that the objective function was evaluated at a total of 4590 points in parameter space.

This is contrast to the classification approach in Chapter 4,which searched a two-dimensional

parameter space for the RBFγ andC regularization parameters for the purpose of binary

classification, using either a fast-cooling schedule with 440 evaluations or a slow-cooling

schedule with 6880 evaluations.

We define the matrix of observations cleaned by this multivariate regression asS, of the

same dimensions asD.

6.2.2 Periodic Additive Model

The output from this multivariate analysis is then used as aninput to a periodic, additive

model. For each genei, we define the true underlying signal to be the time-variant function

Ci(t). The estimate of this signal obtained through the periodic model is defined to be

Ĉi(t). The difference between these signals is then the residualξi(t):

Ci(t) = Ĉi(t) + ξi(t) (6.4)
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We propose that the model of each gene contain both a periodiccomponent and a linear

component:

Ĉi(t) = ρi sin

(

2πt

Λ
+ φi

)

+ (tαi + βi) (6.5)

where the parametersαi andβi define the linear component of the model for each genei,

the magnitude and phase of the periodic component is defined by ρi andφi for each genei,

and the cell-cycle length is expressed byΛ as a constant for all genes within the particular

experiment (not to be confused with theλ regularization parameter in Equation 3.1).

In order to determine the model parameters for each gene, we use a non-linear, least-

squares curve-fitting procedure provided by the MATLAB Curve Fitting Toolbox (Math-

works). Specifically, we use the robust implementation of the trust-region reflective New-

tonian algorithm, which allows us to impose logical bounds on each model parameter. To

shake the optimization procedure from local minima, two starting points were used with

opposite phaseφ = {0, π}. A purely linear model was also applied. Of these three re-

sulting models, we take that with the lowest mean squared error. For additional detail on

the specific implementation of similar curve-fitting procedures, see for example Presset al.

(1992,§ 15.5–15.7).

We first apply the proposed periodic model (above) to each gene for a particular set of

hybridizations, using non-linear, least-squares curve fitting, to find the most likely model

parameters for each gene allowingΛ to vary independently for each gene. For this step,

we consider only the 407 genes identified as periodic by Rustici et al. (2004). Some of

these genes were identified as linear by our model, and these were naturally excluded. The

medianΛ of the remaining genes was taken to be the “true” cell-cycle length.

We then reapply the curve-fitting procedure for all genes, taking thisΛ value as fixed,

to generate the final periodic model for each gene.

6.2.3 Goodness-of-Fit Statistics

As a goodness-of-fit statistic, here we normalize the commonly-used mean squared error

by the variance (Wanget al., 2006), to define the normalized root mean squared error

(NRMSE) of the observations compared to the SVM model as

GF SV M(Di,Si) =

√

√

√

√

1

Nσ2(Di)

N
∑

j=1

|dij − sij| 2 (6.6)
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Table 6.1: Comparing mean squared error (MSE)×1000 resulting from periodic expression
models for several genes, fromelutriation2data set. The data from geneC222.06was used
to find optimumε-SVR model parameters for this univariate analysis.

Method slp1 hhf2 bgs4 cdc20
Polynomial Regression (Degree 6) 35.0 42.4 11.0 17.3
Univariate Support Vector Regression† 3.3 13.6 4.3 20.9
Linear Regression 385.1 658.1 37.1 66.5
Periodic Model 24.9 53.6 14.3 35.4

wheredij is thej-th observation of thei-th gene,sij is thej-th prediction of thei-th gene

by theε-SVR model, andσ2(Di) is the variance of the observations for genei.

Similarly, to determine how well the periodic, additive model fits the SVM model, we

define the NRMSE of the SVM model compared to the periodic model as

GFModel(Si, Ĉi) =

√

√

√

√

1

Nσ2(Si)

N
∑

j=1

|sij − ĉij| 2 (6.7)

whereĉij is the periodic model’s expected value for thej-th observation of thei-th gene.

andσ2(Si) is the variance of theε-SVR model’s predictions for genei.

6.3 Results

We first obtained some preliminary results based on applyinga univariateε-SVR (consider-

ing only the time vector as input) and the periodic model to each gene independently in the

elutriation2data set. Figure 6.2 shows a comparison of the observed data for four specific

genes, identified as typical examples in Gilkset al. (2005), to four different signal estima-

tion techniques: linear regression, least-squares polynomial regression with six degrees of

freedom,ε-SVR and the proposed additive, periodic model. We found that although the

ε-SVR curves precisely approximate all four genes with the least mean squared error, the

proposed periodic model also aligns well these four genes and appears to be a good fit in

all four cases. Table 6.1 shows the mean squared error for each of the four genes obtained

from each estimation technique.

We then extend this technique to multivariateε-SVR, and estimate the cell-cycle length

for the elutriation2 data set. Only the 407 genes found to be periodic using a clustering

algorithm in Rusticiet al. (2004) were included. We find that the most likely cell-cycle
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(b) Histone geneh4.2:hhf2.
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(c) Genebgs4.
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(d) Genecdc20.

Figure 6.2: Modelling periodic gene expression levels for several genes as Gilkset al.
(2005), comparing sixth-degree polynomial regression,ε-SVR and linear regression to the
periodic model proposed in this chapter, from theelutriation2data set. The legend for all
four figures is as (d) (not shown in other figures for clarity).These results agree with the
findings in Gilkset al. (2005), withslp1andhhf2exhibiting highly periodic behaviour but
finding much less periodicity withbgs4andcdc20. However, although theε-SVR model
finds some evidence of a second peak inbgs4, found to be slightly biperiodic in Gilkset al.
(2005), the other models ignore this secondary peak as experimental noise. Also,cdc20
was thought to be non-periodic in Gilkset al. (2005), however these results do find some
evidence of weak cell-cycle periodicity.
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(b) Histone geneh4.2:hhf2.
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Figure 6.3: Modelling periodic gene expression levels for several genes as Gilkset al.
(2005), comparing multivariateε-SVR (thin line) within ε noise-insensitivity tube (thin
dashed lines) and the periodic model with cell-cycle lengthfixed atΛ = 153.9 minutes
(thick line) with the original observed data (×). The ε-SVR appears more jagged than
in the univariate comparison (Figure 6.2) since with the multivariate model only those
points defined by the remaining genes may be used, whereas in the univariate model (which
considers only the time vector as input) the curve may be evaluated at much finer resolution.
It is important to note that in the multivariate case, the time vector itself isnot used as an
input: only those 3515 genes which have 100% of the data points (and which are not the
target gene!) are used.
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Table 6.2: Comparing model parameters found from proposed periodic maximum likeli-
hood model for several genes, from theelutriation2data set cleaned through multivariate
ε-SVR, with a fixed cell-cycle length ofΛ = 153.9 minutes.

Model Parameter slp1 hhf2 bgs4 cdc20
φi : Phase (radians) 0.068 -1.269 -0.198 -0.080
ρi : Periodic Amplitude 0.865 1.055 0.197 0.249
αi : Linear Decay (×1000) 0.064 -0.144 0.039 0.246
βi : Linear Offset 1.170 1.297 1.098 1.016
GF SV M : NRMSE of SVM Model 0.100 0.089 0.277 0.335
GFModel: NRMSE of Periodic Model 0.202 0.269 0.464 0.469

length for this data set is 153.9 minutes, indicating that the 285 minutes in this experiment

cover∼1.85 cell-cycles. This appears to match well with the resultfound in Gilkset al.

(2005) obtained through SVD. Figure 6.4(a) shows a histogram of the most likely cell-

cycle length obtained from the model for each gene in this data set: the estimated cell-cycle

length is taken as the median value. Figure 6.4(c–d) show histograms of the NRMSE of the

models. A museum of interesting genes, showing examples of what is possible with this

multivariate approach, is presented in Figure 6.5.

Finally, we run the curve-fitting procedure again, holding the cell-cycle lengthΛ =

153.9 minutes. The results for the same four genes are compared in Figure 6.3. Table 6.2

shows the periodic model parameters obtained for each of these four genes. Models for the

full set of 407 genes identified as periodic by Rusticiet al. (2004) are available online at

the author’s web site, for both fixed and unfixedΛ.

In contrast to the conclusion in Rusticiet al. (2004), in which a clustering algorithm

determined that there were 407 periodic genes and 136 were strongly expressed, our analy-

sis shows that 1252 of the 5038 genes show some statistically-significant levels of periodic

activity, higher than the empirical noise levelε within theelutriation2experiment. 332 of

these show periodic activity with a magnitude twice as high or greater than the estimated

noise level. The noise level, which the multivariateε-SVR model determines through theε-

tube width free parameter, was used as a significance measurein comparison to the periodic

amplitudeρi determined by the periodic model’s curve-fitting algorithm, in order to remove

any potentially biased or arbitrary assumption. The complete list of 332 strongly-periodic

genes may also be found on the author’s web site.
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Figure 6.4: (a) Distribution of cell-cycle length from theelutriation2 data set for each
gene, found by the periodic model using the cleaned multivariateε-SVR data set as input.
The 407 genes identified as periodic by Rusticiet al. (2004) were used to find the me-
dian cell-cycle length of 153.9 minutes. The sharp distribution, with few outliers, allows
high confidence in the resulting cell-cycle estimate. (b) Distribution of the amplitude of
the periodic component of the additive model, for those genes with a statistically signifi-
cant periodic amplitude, that is, greater than the empirical noise estimateε determined by
the heuristic. The majority of the genes exhibit low periodicity, but a significant number
are strongly expressed with amplitudeρ > 2 ε = 0.152. (c) Distribution of theGF SV M

NRMSE statistic for all genes, between the original data andthe data cleaned by multi-
variateε-SVR. The median NRMSE is 0.5725. (d) Distribution of theGFModel NRMSE
statistic for all genes, between the data cleaned by multivariateε-SVR and the predictions
of the periodic model. The median NRMSE is 0.5322. Note the difference in the overall
shape of the distributions in (c) and (d), although both havesimilar median values.
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(d) GeneC8E4.06.

Figure 6.5: A museum of interesting genes found through the course of this analysis, show-
ing the potential power of the multivariateε-SVR algorithm. Since one of the strengths of
SVM is to generalize the solution to a problem from a low number of observed samples,
we would expect superior imputation performance for a data set such as this. It is important
to note that the time vector is not used as an input for theε-SVR: when imputing obser-
vations for a target gene, only that gene’s relations to the remaining genes are considered.
(a) Imputation of a single observation (att = 30 min) with a high level of noise and small
expression levels. (b) Data for the first cycle is present, but the second cycle is entirely
imputed. KNN, for example, would simply assume a flat curve for the second cycle, but
the relationships between genes in this multivariate approach allows the true expression of
this gene to be seen. (c) Imputing periodicity from only three observations, and (d) from
only two observations: these are possible since the observations are not closely spaced, so
that the differences in other genes allow for prediction even in these seemingly impossible
scenarios.
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As a visualization of the result, we then compare the magnitude and phase model pa-

rameters of the periodic component of the model obtained foreach gene to determine the

relative periodicity in relation to cell-cycle length for each active gene. This results in a plot

similar to the “peppered fried egg plot” in Gilkset al.(2005, Figure 4) which was obtained

from the first two eigenvectors of an SVD for each gene. Ratherthan reproduce the ac-

tual “egg yolk” (loess curve of radius of gene expressions through the cell cycle) and “egg

white” (loess curve of the density of genes through the cell cycle) individually, we combine

these into a single curve as an indication of the average total gene expression through the

cell cycle, and fit the curve using univariateε-SVR rather than a loess curve: since the

free parameters forε-SVR are obtained through the same simulated annealing heuristic in

Chapter 3, no smoothing assumption is necessary — a “span,” or square window, is needed

for the loess curve method to determine a breadth of values tobe used for smoothing. This

visualization is presented in Figure 6.6 for the 407 genes identified as periodic by Rustici

et al.(2004). In this plot, all genes in this subset that are identified as periodic by the model

are shown, regardless of the NRMSE statistic.

However, can we obtain the same result by applying logical thresholds to the results

from the full set of all 5038 genes? In Figure 6.7, we show the rotational plot of the cell-

cycle for all genes identified as significantly periodic by the additive model, — those with

a periodic amplitudeρi > 2 ε — and for which the NRMSE statistics are belowGF SV M <

0.4 andGFModel < 0.6. Those genes with a large decay constantαi × 1000 > 3 are also

removed from the plot, as a large decay constant indicates that the curve-fitting procedure

considers the linear component of the additive model to be too highly significant and was

not able to properly converge. It seems likely in these casesthat the slowly changing gene

expression levels described by the linear component are dueto some unobserved, external

factor — such as changing ambient light levels, for example —rather than sensor drift

in the microarray reader, which typically require daily recalibration (Agilent, 2005). This

resulted in the selection of a total of 274 genes, shown in Figure 6.7.

6.4 Discussion

Comparing the visualization of the 407 periodic genes in Figure 6.6 to those of Gilkset al.

(2005)(Figure 4), it is clear that the combined multivariate ε-SVR and non-linear curve-

fitting approach has been successfully applied to this data set. There are many similarities



83

-1
.4

-1
.2

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

-1

-0
.8

-0
.6

-0
.4

-0
.20

0
.2

 e
n

g
1

 b
e

t1

 C
5

6
F

8
.0

1

 !
n

1

 C
2

3
H

4
.0

1
c

 r
d

s1

 P
1

4
E

8
.0

2

 C
6

3
1

.0
2

 p
lo

1

 c
ig

2
: c

yc
1

7

 P
B

1
E

7
.1

0

 p
o

l1
: s

w
i7

: p
o

la

 C
1

5
A

1
0

.1
0

 c
d

c2
2

 k
lp

8

 h
3

.1
: h

h
t1

 e
td

1

 C
1

4
C

4
.0

9
.B

 s
p

d
1

 C
1

3
4

8
.0

2

 s
lp

1

 s
m

c3

 c
d

c1
5  C

2
3

H
4

.1
9

 C
1

7
H

9
.1

8
c

 c
d

t2

 C
1

3
G

7
.0

4
c

 m
yo

3
: m

yp
2

 C
6

4
4

.0
5

c

 m
fm

2

 C
6

G
1

0
.1

2
c

 C
1

0
7

1
.0

9
c

 h
ta

2

 C
1

9
G

1
2

.1
7

c

 C
6

9
4

.0
6

c

 s
rw

1
: s

te
9  h

4
.1

: h
h

f1

 P
Y

U
G

7
.0

3
c

 C
2

0
G

4
.0

3
c

 C
1

9
B

1
2

.0
2

c

 P
J7

6
0

.0
3

c

 C
1

1
E

3
.1

3
c

 c
h

s2

 C
1

7
0

9
.1

2

 C
6

5
1

.0
4

 h
3

.2
: h

h
t2

 m
ik

1

 C
8

3
.0

4

 C
2

7
.0

4
 C

2
7

.0
5

 C
2

1
B

1
0

.1
3

c

 C
8

0
0

.1
1

 C
1

9
G

7
.0

4
 C

4
F

6
.1

2

 im
p

2

 e
xg

1

 h
4

.3
: h

h
f3

 c
d

t1

 C
1

6
A

3
.0

7
c

 P
B

2
B

2
.1

3

 P
J4

6
6

4
.0

2

 C
1

1
9

8
.0

7
c

 h
4

.2
: h

h
f2

 s
sb

1
: r

p
a

1
: r

a
d

1
1

 C
8

3
.1

8
c

 k
lp

5

 C
1

7
G

9
.0

6
c

 c
d

c1
8

 c
d

m
1

 C
3

E
7

.1
2

c

 C
1

2
7

1
.0

9

 C
1

9
C

7
.0

4
c

 C
2

A
9

.0
7

c

 C
2

1
.0

8
c  h

3
.3

: h
h

t3

 r
p

h
1

: p
if

1

 C
3

1
F

1
0

.1
7

c

 C
1

6
G

5
.1

5
c

 P
B

2
B

2
.1

9
c

 k
lp

6

 C
1

3
2

2
.0

4

 C
1

3
2

2
.1

0

 r
a

d
2

1

 h
tb

1

 C
1

8
.0

2

 C
2

9
0

.0
4

 C
5

5
3

.0
7

c

 C
7

5
7

.1
2

 C
6

3
.1

3
 C

6
4

5
.0

6
c

 C
3

3
8

.0
8

 h
ta

1

 m
sh

6

 C
1

8
.0

1
c

 m
e

u
1

6
R

C

 m
e

u
1

9

-ρ
  c

o
s(
φ

  
)

ρ  sin (φ  )

i 
  
  
  
  
 i

i          i

Figure 6.6: A rotational plot of the periodic magnitude and phase, as captured by the peri-
odic additive model created by the data set cleaned by multivariateε-SVR, of each of the
407 genes identified as periodic by Rusticiet al. (2004). The dots indicate the magnitude
and phase of the periodic expression of individual genes, with some extrema labelled. The
curve represents the average total gene expression throughout the cycle, smoothed by a
univariateε-SVR based on a histogram with 100 bins.
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Figure 6.7: A rotational plot as Figure 6.6, but including only the 274 genes determined to
be strongly periodic by our analysis. Although this plot contains fewer genes, the average
total gene expression curve strongly resembles that of Figure 6.6, indicating that differences
between the plots will most likely be found in genes with small expression.
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between these plots, for example we see nine of the histone genes (those starting withh)

occurring at the same point in the cycle in both plots, with corresponding bumps in the

gene expression curve. Theslp1, plo1andspd1genes appear to match as well.

There are also some differences, most likely since we only consider theelutriation2ex-

perimental data in this analysis, rather than the fusion of all nine experiments. For example,

therds1gene appears to be active earlier in the cycle. Several geneshave stronger expres-

sion in this plot, for example themeu19, exg1andetd1genes appear in Figure 6.6 but are

not labelled as outliers in Gilkset al. (2005)(Figure 4). There also appears to be a greater

deviation between those genes with small expression and those with large expression. This

may be partly due to the loss of information in plotting only the first two dimensions of the

SVD, which in Gilkset al. (2005) contained 83% of the SVD information.

In the visualization plot in Figure 6.7, of all genes found tobe strongly periodic by

our model, we see more examples of genes with strong enough expression to be labelled as

outliers. For example, theC191.09c, C15D4.08candC359.04cgenes appear to be strongly

periodic. Fusion of this data with the remaining synchronization experiments could deter-

mine if these are truly additional periodic that were not originally discovered in the analyses

of Gilks et al.(2005); Rusticiet al.(2004). It is clear that overall, however, the genes iden-

tified in these two plots match fairly closely: the curve describing the average total gene

expression throughout the cell-cycle is nearly identical in both plots. The thresholds for

selecting strongly periodic genes were selected arbitrarily, based on the empirical distribu-

tions of each parameter, however it would be better to set these thresholds based on sound

biological reasoning: for the moment, we leave this as future work. The average total

gene expression curve in Figure 6.7 strongly resembles thatof Figure 6.6, indicating that

differences between the plots will most likely be found in genes with small expression.

This data fusion would be the next logical step in this analysis, and could be imple-

mented as follows. We would first perform the same cleaning and data imputation pro-

cedure for each of the nine cell-cycle synchronization experiments performed by Rustici

et al. (2004). From the analysis in Gilkset al. (2005), we know that the cell-cycle length

and phase both will significantly vary between experiments due to the differences in syn-

chronization procedures: the use of a periodic model allowsus to estimate the cell-cycle

length for each experiment individually. The phase for eachexperiment could then be es-

timated using a representative set of genes, such as the ninehistone genes, using a best-fit

optimization. The resulting cell-cycle length and phase for each experiment could then be
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used to create a time vector for each observation, for each gene, for each experiment, using

an idealized cell-cycle stretching from 0 to2 π. Univariateε-SVR could then be applied to

each gene individually to determine the most likely curve within this idealized cycle, and

our curve fitting procedure could then determine the magnitude and phase of each gene

as performed above. The results of this non-linear fusion might be interesting to compare

with the above data, for example to determine how accuratelythe singleelutriation2data

set shows the periodic expression of each gene compared to the fusion of all sets. How-

ever, unfortunately, this is beyond the scope of the analysis performed in this chapter. We

therefore leave this for future work.

Another avenue for future work may be to determine the sensitivity of each gene to the

values of the remaining genes using a modified Monte Carlo approach. For example, the

formation of the SVM allows us to set all input genes to zero, the average expression level

of the normalized input genes, then vary the values of each independently to determine

which genes affect the outcome of the regression, and to quantify the extent of this effect

and rank the input genes accordingly. This in turn would showus which groups of genes are

closely related, and could perhaps lead to an advanced clustering technique. For example,

one could progressively form a dendrogram based solely on these sensitivity relationships.

The full set of genes identified as strongly periodic in this way can be found athttp:

//www.cs.dal.ca/ ˜ tt , with rotational plots for both the 407 periodic genes identified

by Rusticiet al. (2004) and the 274 identified here, including both the average total gene

expression curve and the separated radius and density curves for comparison as was done

in Gilks et al. (2005). A simple web interface allows users to browse through the original

observations, cleaned data set and generated models for the407 periodic genes used in these

experiments, for both fixed and unfixed cell-cycle length, and to see the genes identified

here as strongly periodic. These comparisons are availablein both PNG and PDF formats,

suitable for on-screen viewing and printing respectively.

From our analysis of the fullelutriation2 data set visualized in Figure 6.7, we con-

clude that our combined technique of data imputation and noise reduction by multivariate

ε-SVR, and non-linear curve-fitting by a periodic, additive model, is well-suited for the

identification of periodic genes from DNA microarray data.



Chapter 7

Input Variable Relevance

We have established that the heuristic proposed in this thesis performs well for several real-

world classification and regression problems. In this section, we will develop a method-

ology to determine which input variables are the most relevant in terms of classification

accuracy, using the retinal electrophysiology data set from Chapter 4 as a test case. We

will show several standard variable-relevance measures, including the Fisher Ratio, Pear-

son Correlation Coefficients, the Kolmogorov-Smirnov Test, and Mutual Information. We

will also introduce two measures using SVM: the first a linearmeasure, based on taking

each variable independently as input to a linear SVM, and thesecond a Monte Carlo-style

approach to the sensitivity of each input variable considering the true non-linear SVM

classification model. We find that the sensitivity approach works well for this data set, and

compare the two variations of this sensitivity, smoothed over a small square window, with

the original waveforms.

7.1 Introduction

Feature selection for a retinal electrophysiological waveform is useful for medical re-

searchers, for example, who may wish to determine which parts of a particular waveform

differ the most between two classes of subjects for a particular experiment. Such analysis

may help with medical diagnosis in patients, or aid in understanding the physical mecha-

nisms and biological processes involved. It is also useful from a computational efficiency

point of view: if we can demonstrate experimentally that certain variables are irrelevant or

even detrimental to cross-validation classification accuracy, those variables may be safely

eliminated from the input vector, thereby increasing computational efficiency and poten-

tially increasing the accuracy of the final classifier.

Modern problem domains may employ many thousands of input variables (Guyon and

Elisseeff, 2003), leading to the so-calledcurse of dimensionality: a term originally coined

by Richard Bellman, the father of modern dynamic programming, to describe the rapid

increase in problem complexity as new dimensions are added (Bellman, 1961). The com-

putational efficiency and sparse representation in SVM encourages such large input spaces

87
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(Vapnik, 1995), allowing the SVM to “defy the curse of dimensionality” (Guyon and Elisse-

eff, 2003). Indeed the feature space itself may have an infinite number of dimensions, such

as with the RBF kernel (Vapnik, 1995). However, it has been demonstrated experimentally

that removing irrelevant features will improve SVM classification accuracy (Westonet al.,

2000).

Variable selection methods are typically divided into two main categories (Guyon and

Elisseeff, 2003; Westonet al., 2000): filter methods, or variable ranking methods, as a

pre-processing step to analyze each variable independently and determine some measure

of its relevance (Westonet al., 2000), andwrappermethods, to evaluate subsets of several

input variables to find a subset that optimizes some functional chosena priori (Guyon and

Elisseeff, 2003), such as cross-validation accuracy or mean squared error.

Some common filter methods for assessing variable relevanceare the Fisher Ratio,

which measures the class-separability of each variable (Chapelleet al., 2002; Westonet al.,

2000); Pearson Correlation Coefficients, which measure thelinear correlation between each

variable and the classification target (Presset al., 1992); and the Kolmogorov-Smirnov

Test, which determines the maximum difference between the cumulative distributions of

each class, estimated empirically from the training observations (Presset al., 1992; We-

stonet al., 2000). Mutual Information (see for example Carlson, 1986)is another filter

method, based on empirical estimation of the joint probability distribution between the in-

puts and outputs. One problem with any filter method when applied to SVM, is that the

SVM kernel’s mapping of the inputs into feature space may create situations where some

input variables are irrelevant to the SVM predictor, but in feature space these variables

combine to create one or many very relevant features (Guyon and Elisseeff, 2003).

Wrapper methods are less commonly used, as they typically increase the computational

burden as each possible subset is evaluated, becoming a combinatorial problem (Weston

et al., 2000). Wrapper methods generally come in two specific categories (Guyon and Elis-

seeff, 2003):forward selection, in which a variables are progressively added to an initially

empty subset, andbackwards elimination, in which variables are progressively eliminated

from the full set of inputs. Genetic algorithms (see for example Mitchell, 1996) have been

applied to the problem of feature selection for automated polyp detection in colonography

using SVM with forward selection (Milleret al., 2003). However, in our own experiments

with such genetic algorithms for the retinal electrophysiology data set, we found that the
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resulting SVM tended to capitalize on a small number of highly-separable input dimen-

sions to quickly achieve high accuracy, rather than improving generalization performance.

In Westonet al. (2000), a wrapper method is proposed which considers many possible

subsets ofn < ` input variables, but uses a gradient descent approach to improve compu-

tational efficiency while minimizing bounds on the leave-one-out generalization error.

In Chapelleet al. (2002), a novel variable selection method was proposed based on

adjusting the RBF kernel parameters for each observation, by modifying the kernel as

(Chapelleet al., 2002)

K(x,x′) = exp

(

−
d
∑

i=1

‖x− x′‖2
2 σ2

i

)

(7.1)

whered is the number of input dimensions andσ2
i is the variance of the Gaussian kernel

for a particular dimensioni, rather than using a single parameterγ = 1/2σ2 to give all

dimensions equal weight, as we do here. Chapelleet al.(2002) found that variable selection

based on the Fisher and Pearson tests did little to improve performance for non-linear data

sets, but had more success with the Kolmogorov-Smirnov Test, which found comparable

accuracy to their modified kernel.

In Ruedaet al. (2004), the idea ofvariable sensitivitywas applied to the economic

problem of currency crises aftermaths. In this article, sensitivity is defined as the maxi-

mum change in the magnitude of an SVM’s prediction when the value of a particular input

variable is varied over its allowable range, while all otherinput variables are held con-

stant at their mean value. SVM models were trained using the pattern search algorithm in

Momma and Bennett (2002) to optimize parameters, and an iterative Monte Carlo approach

was used to measure the sensitivity of the SVM model to each input variable. Here, we will

simplify a similar approach in Section 7.3, so that only a single training session is required,

using the heuristic from Chapter 3 without modification. Some further variations of such

sensitivity analyses are summarized in Guyon and Elisseeff(2003).

For SVM, the issue of variable selection for the sake of reducing computational com-

plexity may well be irrelevant, since the SVM training algorithm is efficient even in cases

with hundreds of thousands of input variables (Guyon and Elisseeff, 2003). One might

argue that since the SVM training algorithm effectively performs its own variable selection

in determining a feature space, which may have billions of features or may indeed have

infinite dimensionality (Vapnik, 1995), the number of original input variables is no longer
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an important issue in terms of computational complexity. Similarly, it might be argued that

the removal of multiple redundant variables (see for example Yu and Liu, 2003) may also

be considered unnecessary: in a finite data set, especially with a low number of observed

samples, measures of redundancy may not be accurate.

However, in Ruedaet al. (2004), a method was proposed for input variable selection

with SVM by using backwards elimination in an iterative approach: a random variable

was inserted at each step in the iteration, and those input variables with a sensitivity less

that the random variable were eliminated. When all the remaining inputs variables have

a sensitivity greater than that of the random input variable, the process is complete. An

iterative approach such as this would be necessary for SVM, since if even a single variable

is removed, the sensitivities of the new model to each of the remaining inputs are likely to

be quite different than those of the first model, as the variables are combined in an unknown,

but different, feature space. This creates amodel dependentmethod for variable selection.

The similar problem of dimensionality reduction may use methods such as Principal

Components Analysis (Wolf and Bileschi, 2005), or Independent Components Analysis

(Trappenberget al., 2006), to combine the inputs into a new set of dimensions which con-

tain the same information. The usefulness of these approaches when applied to SVM may

again be debated, since the SVM kernel function performs a similar function.

7.2 Variable Relevance Measures

First, we will examine several commonly-used filter methodsfor variable selection. We

will consider each input variable, that is each point on the waveform, independently. Each

measure will be examined for the retinal electrophysiologydata set, as an example of a data

set with high dimensionality but a low number of training observations, and to a toy data

set of the same size for comparison.

The first 20 variables in the toy data set are linearly separable, but the rest are entirely

Gaussian noise, such that

xi =

{

5 yi + 0.1 ηi if i ≤ 20

0.1 ηi otherwise.
(7.2)

whereηi are random Gaussian variables, with a mean of zero and a variance of one. To

match the retinal electrophysiology data set, six positiveand eight negative samples were
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(a) Toy data set.
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(b) Electroretinography data set.

Figure 7.1: When the inputs are independently scaled to approximate i.i.d. data according
to Equation 7.3, the first 20 variables of the toy data set are clearly separable with no
overlap, whereas the remaining variables are simply scaledGaussian noise. No obvious
class separability is present in the retinal electrophysiology data set, for which significant
overlap between the classes appears to be present in each dimension. Both data sets contain
six positive observations (solid lines) and eight negativeobservations (dotted lines).

generated from this distribution. The toy data set was generated once, and the same set was

used for each of the following measures.

Both the toy data set and the retinal electrophysiology dataset were scaled by the mean

and magnitude of each variable taken independently, as in Chapter 4, such that

xi ∈ [−1,+1], i = 1, . . . , ` (7.3)

and all variables have zero mean, to approximate i.i.d. data. This avoids any numerical

effects from the relative scales of each variable in the input data.

Since we have six axotomy observations and eight control observations, it is advan-

tageous for classification accuracy to balance the classes in a combinatorial fashion. We

therefore run each experiment
(

8

6

)

= 28 times, as was done in Section 4.3. In Figures 7.2

– 7.6, we show the mean of these 28 runs for each variable as a thick, solid line. To show

the variability between each run, we also include quartile bars: the top of each quartile bar

represents the 75 percentile, whereas the bottom of the bar represents the 25 percentile. For

clarity, extreme values beyond these quartiles are not shown.

To visualize the class separability within these two data sets, the inputs scaled to ap-

proximate i.i.d. data are shown in Figure 7.1. This diagram serves only to illustrate that the



92

first 20 input variables of the toy data set are clearly separable, with no overlap between

the two classes, and the remaining variables are purely Gaussian noise but are scaled ac-

cording to Equation 7.3. In the retinal electrophysiology data set, no obviously separable

inputs appear, however the data appears to be less random than the Gaussian noise in the

latter variables of the toy data set. Quantifying the class separability of each dimension is

the first of the filter methods we address below.

7.2.1 Fisher Ratio

The Fisher Ratio is a linear measure of the separability between classes for each variable.

It is taken as the ratio of the absolute distance between the means of each class, to the sum

of the standard deviation of each class. That is, for a particular input variablexi (Chapelle

et al., 2002; Westonet al., 2000)

F (xi) =

∣

∣

∣

∣

µ+

i − µ−
i

σ+

i + σ−
i

∣

∣

∣

∣

(7.4)

whereµ±
i are the means of variablexi for the positive and negative classes, andσ±

i are

the standard deviations of variablexi for each class. A high Fisher Ratio for a particu-

lar variable indicates that for that variable, the two classes are easily separable from one

another.

In Figure 7.2(a), the Fisher Ratios for each variable in the toy data set are what we would

expect from Figure 7.1: the first 20 variables, which were chosen to be highly separable,

have high values whereas the remaining variables are relatively low. However, there is

a significant degree of random fluctuations between the different variables; this is most

likely due to the small sample size. When we investigate the Fisher Ratios for each of the

variables in the retinal electrophysiology data set in Figure 7.2(b), we see values in the

same range[0, 1] as many of the random variables in the toy data set. Peaks at about 10 and

60 ms have values approaching one, which could be interpreted as being equivalent to two

Gaussian distributions of unit variance, with means separated by a distance of one: such

distributions would have significant overlap.

7.2.2 Pearson Correlation Coefficients

Pearson Correlation Coefficients quantify the linear correlation between the output vari-

able and each variable in the input: if the two variables are strongly correlated, we would
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(a) Fisher ratio (toy).
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(b) Fisher ratio (retina).
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(c) Pearson coefficients (toy).
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(d) Pearson coefficients (retina).
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(e) Kolmogorov-Smirnov (toy).
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(f) Kolmogorov-Smirnov (retina).

Figure 7.2: Comparing variable relevance measures for the toy and retinal electrophysiol-
ogy data sets. Thick lines correspond with the mean, and quartile bars to the 25 and 75
percentiles, through each of the 28 possible class-balanced combinations of observations.
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see a Pearson Correlation Coefficient approaching one. If the two variables are weakly

correlated, we would see a coefficient approaching zero. If the two variables are inversely

correlated, we would see negative values.

For a particular variablexi, the Pearson Correlation Coefficient is (Guyon and Elisseeff,

2003; Presset al., 1992)

P (xi, y) =

∑̀

j=1

(xij − µi)(yj − µy)

√

√

√

√

∑̀

j=1

(xij − µi)2

√

√

√

√

∑̀

j=1

(yj − µy)2

(7.5)

whereµi is the mean ofxi, andµy is the mean ofy.

The resulting coefficients will bePi(x) ∈ [−1,+1]. Here we will consider only the

absolute value of the Pearson Correlation Coefficients, since we are interested mainly in

determining whether a relationship between the variables exists: to the SVM there would

be no difference, in terms of classification accuracy, between strongly positive or strongly

negative correlation.

In Figure 7.2(c), the coefficients for the first 20 points approximate unity as we would

expect. For the remaining points we would expect the correlation to be much smaller, how-

ever this is not the case: simply by chance, some of the variables do correlate quite strongly

with the output variable. For example, we see a spike at about110 ms with a coefficient

of nearly 0.8. When we examine the coefficients for the retinal electrophysiology data set

in Figure 7.2(d), we see some variables that correlate strongly with the output, with values

approaching unity, and others that do not, with values approaching zero. Interestingly, the

overall shape of the coefficients in Figure 7.2(d) seems to match closely with that of the

Fisher Ratio in Figure 7.2(d): both measures appear to be indicating that the same areas

of the waveform are significant, with approximately the samevariability between the 28

different test runs.

7.2.3 Kolmogorov-Smirnov Test

Both the Fisher Ratio and Pearson Correlation Coefficients are linear, and therefore cannot

model non-linear dependencies between the input and outputvariables (Chapelleet al.,

2002; Westonet al., 2000). However, the Kolmogorov-Smirnov Test (Massey Jr.,1951)

allows for non-linear dependencies, as it is based on the maximum absolute difference
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between the empirical, cumulative distributions of each class. The statisticKS(xi) may be

written (Presset al., 1992; Westonet al., 2000)

KS(xi) = max
−∞≤x≤∞

∣

∣S+

i (x)− S−
i (x)

∣

∣ (7.6)

whereS±
i (x) are the unbiased, cumulative distribution functions for the positive and nega-

tive classes. These may be estimated from the observationsxi by the step functions (Heck-

ert, 2003)

S±
i (x) = n±

i (x)/` (7.7)

wheren±
i (x) are a count of the observations of each class whose value for thei-th variable

is less than or equal tox.

We wish to retain those input variables for which the empirical distributions for the

positive and negative classes are the most different. As a necessary computational consid-

eration, rather than varying−∞ ≤ x ≤ ∞, we allow min(xi) ≤ x ≤max(xi).

For a small number of observations`, the resulting measures will appear to have low

resolution, since the cumulative distributions change by exactly 1/` each time a new ob-

servation is added to the count. In Figure 7.2(e), the difference between the positive and

negative distributions is maximized for the first 20 variables of the toy data set, as we would

expect. However, for the remaining variables, there are significant variations from near zero

(such that the empirical distributions are nearly identical) to more than 0.8. This lack of

discrimination for the small sample size makes the Kolmogorov-Smirnov Test impractical

for our purposes of assessing variable relevance. However,the parts of the waveform that

this test determines to be significant in Figure 7.2(e) matches well with those of the Fisher

Ratio and Pearson Correlation Coefficients, with similar peaks at about 10, 60 and 115 ms.

We also see high variation between the 28 different combinations, for all input variables, at

its worst near the tail of the waveform at about 120 ms.

7.2.4 Linear SVM

As a new proposed significance measure, we train a series of linear SVMs, one for each

of the input variables taken independently, and measure theresulting accuracy that can be

achieved using only that variable as the input. The cost parameter is left at the default

C = 1 to provide a common basis for comparison. The resulting accuracy for each SVM is

scaled such that a value of one indicates the SVM achieves 100% accuracy, while a value
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(a) Linear SVM (toy).
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(b) Linear SVM (retina).
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(c) Mutual information (toy).
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(d) Mutual information (retina).
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(e) Mutual information (toy): 5 ms bins.
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(f) Mutual information (retina): 5 ms bins.

Figure 7.3: Comparing variable relevance measures for the toy and retinal electrophysiol-
ogy data sets. Thick lines correspond with the mean, and quartile bars to the 25 and 75
percentiles, through each of the 28 possible class-balanced combinations of observations.
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of zero indicates the SVM achieves 50% accuracy (no better than pure chance). We then

have

LSVM(xi, y) = 2

(

1

2`

∑̀

j=1

|yj − sign(fi(xij))|
)

− 1 (7.8)

where sign(fi(xij)) is the output forxij of a linear SVM trained on variablexi and targetsy.

This will allow some negative values, when the classifier achieves less than 50% accuracy.

The results from this measure applied to the toy data set are shown in Figure 7.3(a). As

we would expect, each of the first 20 variables, taken as the only input to a linear SVM,

is able to achieve 100% classification accuracy. Since the remaining variables are purely

random, some of these variables are able to achieve fairly high accuracy, simply by chance:

at about 110 ms there is a significant spike to 0.8, as was seen in the Pearson Correlation

Coefficients and Kolmogorov-Smirnov tests. The variability in the results for these random

input variables is too great for our purposes, however when the test is performed for the

retinal electrophysiology data set in Figure 7.3(b), we seethe same general shape as with

the other tests, with a significant spike occurring at about 60 ms.

7.2.5 Mutual Information

The mutual information between each of the input variables and the output variables was

estimated using software from Moddemeijer (1989), which uses a coarse histogram to es-

timate the joint and prior probabilities in (Carlson, 1986;Guyon and Elisseeff, 2003)

I(xi, y) =
∑̀

j=1

∑̀

k=1

P (xij, yk) log
P (xij, yk)

P (xij) P (yk)
(7.9)

whereP (xij, yk) is the joint probability distribution ofxi andy, P (xij) is the prior prob-

ability of the input variablexi andP (yk) is the prior probability of the outputsy. The

resulting measure is returned in bits. Since we have a binarydecision to be based on only

a single input,I(xi, y) ∈ [0, 1].

In Figure 7.3(c), we see that any of the first 20 input variables is enough to fully de-

termine the output variable in the toy data set, with an information value of 1 bit (that is,

any one of the first 20 variables is sufficient to make a single binary decision). Since we

have a small sample size, there is still a substantial amountof information in the remaining

random variables. In Figure 7.3(d), the same procedure for the retinal electrophysiology

data set gives results in approximately the same range of values.
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However, many of the variables that are near one another havesimilar information

content. To determine whether we can use this to improve the result, the input variables

were accumulated into 5 ms bins in Figures 7.3(e) and (f) for each data set. In these box

plots, the minimum and maximum values for each variable are shown as well as the 25%

and 75% quartiles. The thick line in the centre of each box is the mean information content

of that variable across the 28 balanced combinations of observations. For the toy data set,

this has the effect of reducing the significance of the randomvariables, which is desirable.

Although much detail is lost in the peaks for the real data set, we find that the two peaks at

about 75 and 115 ms are more prominent in (f) than in (d).

In comparison to the linear SVM in Figure 7.3(b), the strong peak at about 60 ms has

disappeared completely in both the binned and unbinned mutual information figures. This

strong peak had indicated that the linear SVM was able to completely determine the output

class based solely on this single input value: the fact that this peak is missing from the mu-

tual information measure indicates that mutual information will not give a true indication

of the significance of these variables in the context of SVM classification, although the re-

maining peaks are roughly comparable with the previous measures. A windowed measure

such as those examined for the sensitivity measures later inthis chapter, rather than the

binned measure we evaluate here, may improve these results.For now, however, we wish

only to compare mutual information with the remaining filtermethods.

7.3 Variable Sensitivity

We have examined the separability, output correlation and information content of the in-

put variables. The Kolmogorov-Smirnov Test compares the empirical distributions of the

classes, and the Linear SVM Test shows the classification accuracy that can be achieved

taking each variable independently. Next we shall measure how sensitive the actual SVM

model used to perform the classification is, to each of the input variables taken indepen-

dently and to groups of input variables in a sliding window.

7.3.1 Method

Here we simplify the approach of Ruedaet al. (2004), to find the sensitivity of the SVM

model to each of the input variables. As in Ruedaet al. (2004), we define sensitivity as the

absolute change in the output variables relative to the total change in input variables, that
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is S(i) = |∆f/∆x|. However, in this work the intention of the authors was to combine

sensitivity with backwards elimination, iteratively removing those input dimensions with

a sensitivity less than a random variable inserted as an extra dimension during training,

requiring many training sessions.

Here, we adapt a simpler approach to quantify the sensitivity of the classifier to each of

the input variables, relative to each other, but require only a single training session using the

heuristic proposed in Chapter 3. For each of the
(

8

6

)

= 28 combinations of class-balanced

observations:

1. Scale inputs to approximate i.i.d. data such thatxi ∈ [−1,+1], i = 1, . . . , `.

2. Optimize free SVM parametersC andγ by any method, and train an SVM classifi-

cation model.

3. Determinef∅, the value of the SVM decision surface when all inputs are zero.

4. Vary each input variable independently to{−1,+1}, holding all remaining inputs at

zero, and measure the value of the resulting decision surfacef±
i .

5. The sensitivity of each variablei is then the maximum absolute change in the value

of the decision surface, as

S(i) = max

∣

∣

∣

∣

∆f

∆x

∣

∣

∣

∣

= max
(
∣

∣f+

i − f∅

∣

∣ ,
∣

∣f−
i − f∅

∣

∣

)

(7.10)

since|∆x| = 1 for both trials of all input variables.

Here, LIBSVM (Chang and Lin, 2001) was used to optimize the parameters due to its

computational efficiency, but SVMlight (Joachims, 1999) was used to measure the values of

the decision surface in steps 3 and 4, as it provides open access to the value of the decision

surface rather than just the sign of the decision surface. Both LIBSVM and SVMlight give

the same model for the same training observations and free parameter values, the difference

between the two is primarily in the different quadratic optimization algorithms employed.

Another approach may be to repeatedly vary the inputs in step4 by a random variable

∈ [−1,+1] rather than the discrete values{−1,+1}, however for our purposes here we

wish this process to be deterministic.
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(a) Class sensitivity (toy).
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(b) Class sensitivity (retina).
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(c) Windowed class sensitivity (toy).
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(d) Windowed class sensitivity (retina).

Figure 7.4: Comparing variable class-sensitivity for the toy and retinal electrophysiology
data sets. Thick lines correspond with the mean, and quartile bars to the 25 and 75 per-
centiles, through each of the 28 possible class-balanced combinations of observations. The
class sensitivity is the maximum absolute change in sign(f(x)) that results from changing
a single input variable from the mean of zero to either extreme∈ {−1,+1}. The sliding
window in the lower diagrams has a width of 11 ms, such that thevariables changed for
any variablei arei− 5, . . . , i + 5 within the boundsi = 1, . . . , `.
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7.3.2 Class Sensitivity

Two variations on this procedure were tried. We first measurethe class sensitivity rather

than the surface sensitivity, that is

S(i) = max
(
∣

∣sign(f+

i )− sign(f∅)
∣

∣ ,
∣

∣sign(f−
i )− sign(f∅)

∣

∣

)

(7.11)

This results in Figures 7.4(a) for the toy data set, and (b) for the retinal electrophysi-

ology data set. In (a), we see that changing the value of any one variable is not enough

to change the class determination: the sensitivity value for all variables is zero. In (b), we

see a similar situation for most of the 28 class-balanced combinations, with some variables

being sufficiently sensitive to change the class value for only a few particular combinations

of observations.

A windowed approach was therefore used, to aggregate the values through a moving,

square window with a 11 ms width. That is, such that eleven input variables would be

changed at once to the same value∈ {−1,+1}, rather than just a single variable, as

S(i) = max
(
∣

∣sign(f+

i−5,...,i+5)− sign(f∅)
∣

∣ ,
∣

∣sign(f−
i−5,...,i+5)− sign(f∅)

∣

∣

)

(7.12)

This scheme will allow edge effects, where fori ≤ 5 andi > (` − 5) there will be fewer

than eleven variables selected. The scale will be retained,since for each 11 ms window we

take the value of the decision surface rather than an aggregate value. However, now we will

need to adjust the attained sensitivity values by

|∆x| =
√

∑

i−5,...,i+5

(±1)2 =
√

11 ≈ 3.3 (7.13)

This results in Figures 7.4(c) for the toy data set, and (d) for the retinal electrophysi-

ology data set. In (c), we see that windows centred on the first20 variables now do allow

changes in class values. There is also a small peak at about 140 ms, indicating that a

window centred on this location is enough to change the classvalues for a few of the 28

combinations of observations, but not all combinations. In(d), many windows of variables

allow the class value to change. From about 120 ms, there is great variability between

different combinations of observations, and we see a small edge effect after 140 ms as we

would expect. Using a smaller 5 ms window helps to avoid the “clipped” appearance of

this diagram, however there is still great variability between the different combinations of
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observations. The maximum sensitivity value that can be attained within the window is

|∆y/∆x| = |(±1)− (∓1)|/
√

11 ≈ 0.6.

From this figure, we have determined that the variables for which an 11 ms window

centred on that variable achieved a change in class value forall combinations of observa-

tions are 4–14 ms, 21–32 ms, 39–44 ms, 53–59 ms, 75–84 ms and 107–124 ms. However,

this does not tell us anything about the relative contribution of each of these peaks: for ex-

ample, we cannot determine whether the range from 4–14 ms is any more or less significant

than the range from 21–32 ms.

7.3.3 Surface Sensitivity

For a more fine-grained sensitivity analysis, we examine thesensitivity of the decision

surfacef(x) itself, rather than the resulting class sign(f(x)). This results in Figures 7.5(a)

for the toy data set, and (b) for the retinal electrophysiology data set. In (a), there is some

variability between the first 20 input variables, indicating that this method is somewhat

susceptible to input noise. This variability is increased in the remaining variables. However,

when we compare with (b), we see that the magnitude of the change in the decision surface

is actually quite small for any of the first 20 variables: there are many variables in (b) that

can, independent of any other variable, affect the decisionsurface to the same degree. In

fact, we see variables at about 30 ms and 110 ms that have more than twice the impact

(∼ 0.12) of any of the first 20 perfectly-separable variables in the toy data set (∼ 0.06).

This shows that in the SVM model, it truly is the combination of multiple variables that

significantly affects the outcome: even a large change in only a single variable has little

impact, improving the robustness of the classifier.

To reduce this noise sensitivity, we examine a windowed approach to surface sensitivity

in Figures 7.5(c) and (d), as we did with class sensitivity inSection 7.3.2. In (c) for the toy

data set, we now see a much smoother curve with significantly decreased noise between the

different input variables. Changes in the first 20 variableshave more than four times the

impact (∼ 0.24) than with the single-variable surface sensitivity, even though we normalize

these windowed diagrams by|∆x| =
√

11 as mentioned above. There are edge effects at

the beginning and end of the first 20 significant variables, aswe would expect, however

the remaining variables — which have no class relevance in the underlying distribution —

have a dramatically reduced effect.
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(a) Surface sensitivity (toy).
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(b) Surface sensitivity (retina).
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(c) Windowed surface sensitivity (toy).
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(d) Windowed surface sensitivity (retina).

Figure 7.5: Comparing variable surface-sensitivity for the toy and retinal electrophysiol-
ogy data sets. Thick lines correspond with the mean, and quartile bars to the 25 and 75
percentiles, through each of the 28 possible class-balanced combinations of observations.
The surface sensitivity is the maximum absolute change inf(x) that results from changing
a single input variable from the mean of zero to either extreme∈ {−1,+1}. The sliding
window in the lower diagrams has a width of 11 ms, such that thevariables changed for
any variablei arei− 5, . . . , i + 5 within the boundsi = 1, . . . , `.
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In (d), the peaks are now also smoother, and we can clearly seethe differences in

variability between the 28 different combinations of observations. The classifier is at least

as sensitive to the first two peaks as to the first 20 variables in the toy data set, however

we also see that it is more sensitive to the tail of the waveform at about 115 ms. Since

we scale all variables independently to approximate i.i.d.data, such thatxi ∈ [−1,+1], it

seems likely that within this region, small differences between the class distributions are

amplified since the scaling factor is larger.

7.4 Discussion

We desire a measure which will emphasize both the importanceof the first 20 variables

in the toy data set and the insignificance of the remaining variables, with low variability

within these two groups of input variables and low variability between the 28 different

combinations of observations.

The Fisher Ratio differentiates well between the two groupsof input variables, but

is susceptible to large variations between the variables within each group. The Pearson

Correlation Coefficients, Kolmogorov-Smirnov Test, Linear SVM and Mutual Information

do not suffer from this variation, but do not differentiate well between the two groups.

With the latter two measures, no single point on the waveformseems to be more relevant

than the random variables in the toy data set. This effect is reduced by binning the mutual

information results over 5 ms in Figure 7.3(e) and (f), however the results for the retinal

electrophysiology data set are somewhat difficult to visualize. Despite these shortcomings,

the measures agree to a large extent on which parts of the waveform are the most significant.

The variable sensitivity measures do not suffer from this lack of differentiation between

groups. Changing a single variable at a time has little effect on either the class or the

decision surface, but employing an 11 ms window results in much more significant changes.

In particular, the windowed surface sensitivity measure gives us the result we desire from

a variable selection measure: in the toy data set, we now havea method which shows

a smooth curve, with low variability between the two groups of input variables and low

variability between the 28 different runs, and which emphasizes the importance of the first

20 variables and reduces the impact of the remaining variables. We can also intuitively

have more confidence in the results from these sensitivity measures, since they employ the

true SVM models we use to perform the actual classification, with the same free parameters
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chosen by the heuristic from Chapter 3.

In Figure 7.6, we compare the input variables chosen as significant by these meth-

ods to the original waveform. Each section of the waveform islabelled according to

{ N1, P1, N2, P2}, standard designations for the field of retinal electrophysiology (see

for example Marmoret al., 2003), corresponding to negative (N) and positive (P) waves in

order of occurrence. The input variables selected by windowedclasssensitivity are shown

as shaded regions, since all have equal weight. The windowedsurfacesensitivity is shown

by the mean and quartile boxes as in Figure 7.5(d), with each peak indicated by a thin,

dotted line extending between the two diagrams. The two methods agree for the most part,

except for a small shift on the variables centred at about 80 ms.

The classifier appears to be most sensitive to the leading andtrailing edges of each

wave, in particular the leading edges of the N1 and P1 waves centred at about 10 and 25 ms

respectively, and to the trailing part of the waveform centred at about 115 ms. Further

measurements to be made during the course of this ongoing medical research at Dalhousie

University’s Retina and Optic Nerve Research Laboratory (RONRL) will help to determine

if this effect is real, or simply a numerical coincidence dueto variable scaling as mentioned

in the previous section.
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Figure 7.6: Comparison of the sensitivity measures to the mean PERG waveforms from
Figure 4.5. On theleft, the thick solid line is the mean waveform of the Axotomy class,
whereas the dashed line is that of the Control class. On theright, the thick line and quartile
bars correspond with the windowedsurfacesensitivity in Figure 7.5(d), and the thin, dotted
lines mark each peak in the windowed surface sensitivity. The shaded regions are those
identified by the windowedclasssensitivity in Figure 7.4(d).



Chapter 8

Discussion

In this thesis, we have examined the generalization error surface resulting from examining

a loge range of values for theC cost parameter and theγ width parameter of the RBF

kernel. We have proposed a heuristic to traverse this volatile error surface, including three

primary elements: the use of a model complexity penalty to regularize the solution to

prevent overfitting; the use of a guided, stochastic search using simulated annealing rather

than a classical grid search; and the calculation of an intensity-weighted centre of mass to

find the final optimum set of parameters.

Blind application of this annealing scheme was found to givegood results with several

classic and real-world classification problems. We have found that when optimizing free

parameters, including a model complexity penalty enhancesthe generalizability of the final

solution. We have found results with comparable accuracy tothose of a grid-search, but

with lower model complexity and greater search efficiency. In comparison with a grid

search, we find that the guided, stochastic search concentrates the evaluated points to the

area of interest to a much greater extent. In our tests, this has also had the unexpected yet

desirable effect of improving the speed of convergence for the SVM trained at each point:

speaking generally, very small or very large values of the free parameters will prevent the

SVM algorithm from quickly converging to a solution. By concentrating on the area of

interest, in which this convergence generally occurs more quickly, and by including a small

origin bias in our move selection, this is largely prevented.

This technique can easily be extended to take further free parameters into account. For

example, we have shown how the heuristic can be used to discover an optimal solution in a

three-dimensional parameter space defined byC, γ and the width of theε-tube used in the

soft margin loss function for regression or function estimation problems usingε-SVR. We

have successfully applied this to three real-world environmental modelling problems, and

to noise reduction and the imputation of missing data for mitotic gene-expression in DNA

microarray data.

We have kept the simulated annealing scheme quite simple, and have not tuned the an-

nealing scheme for any particular problem other than to increase the length of the annealing

107
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schedule when more evaluations significantly improved results, such as with the regression

problems in Chapter 5. The slow cooling schedule allows a more extensive search of the

parameter space and may be useful for finding global, narrow extrema, whereas the fast

cooling schedule may be used to find a good solution more quickly. Although we have

added several new parameters to control the annealing schedule, in practice the algorithm

appears to be sensitive only to theδ parameter, controlling the length of the annealing

scheme and therefore the number of evaluations performed, and to theλ parameter, con-

trolling the tradeoff between empirical loss and model complexity.

We have investigated several input variable selection and sensitivity techniques to dis-

cover the most significant parts of the retinal electrophysiology waveform, including sev-

eral classical filter techniques and a model-specific sensitivity analysis. We find that for

this data set, an SVM classification model is most sensitive to the leading edges of the N1

and P1 waves, and perhaps to the tail of these waves during cell recovery although this is

likely to simply be numerical coincidence due to input variable scaling.

Feature construction methods create alternative representations of the data (Guyon and

Elisseeff, 2003). Frequency transformations, such as FastFourier Transforms (FFT), or

wavelet transformations, such as the Harr, Daubechies or Symlet mother wavelets (Graps,

1995), might be used as inputs for waveform data such as the retinal electrophysiology

data set we have explored in this thesis. In our early experiments with the retinal electro-

physiology data set, we found some indications that a frequency representation using an

FFT, or Harr, Symlet-1 or Symlet-3 wavelet representationswith a decomposition level of

four or higher, might achieve higher classification performance. However, we have found

that such methods did not help nor hinder resulting accuracyto any statistically-significant

level given the number of samples that were available to us: for example, for there to be a

95% probability that any differences in the results are not due to chance alone, a statistical-

significance level ofp = 0.05, we would typically require 38 observations (Norman and

Streiner, 2003). But since this work is preliminary, we haveonly 14 samples available at

present. Likewise, using second-order (slope) information as the input appeared to make

no statistically-significant difference.

In terms of feature construction, it appears that a better choice is to provide all available

inputs to the SVM, adjusting the distributions of the inputsto achieve i.i.d. data, and allow

the training algorithm to decide which combinations of which inputs conflate to provide

a feature space with the greatest separation between classes, allowing a maximal margin
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width. Other representations of the data will likely eitherremove some information (for

example, a slope representation ofn inputs will reduce the number of inputs by one) or

provide a larger number of dimensions unnecessarily (for example, an FFT representation

may double the number of inputs since the transformation provides negative frequency

intensities as well as positive frequencies).

In comparison to ANN, SVM have many advantages, such as intrinsic regularization,

a sparse model representation, fewer free parameters and anefficient, convex training al-

gorithm. However, SVM also have implicit limitations. SVM have high precision and

high accuracy for continuous variables, but discrete variables, such as a traffic light signal

which can take values “red,” “amber” or “green” or a genomic sequence with values A, T,

G or C, must be encoded to a continuous representation (Hsuet al., 2003), thereby increas-

ing the number of input variables. However, as we discuss in Chapter 7, increasing the

number of input variables has little effect on the efficiencyof the SVM training algorithm.

SVM also do not currently have the capability for structuredor hierarchical outputs, or

truly multivariate outputs as we discuss in Chapter 6. However, such an SVM is currently

being evaluated for specific applications (Tsochantaridiset al., 2004). Multiple two-class

classifiers (with binary outputs or with real-valued outputs) may be combined in a one-

against-all or one-against-one fashion to estimate multi-class posterior probabilities (see

for example Milgramet al., 2005; Wuet al., 2004). True multi-class SVM have also been

proposed (Weston and Watkins, 1998), by changing the natureof an SVM from a quadratic

optimization, as we discuss in Chapter 2, to a multi-class generalization of the underlying

Lagrangian optimization problem.

Another limitation of “black box” classifiers such as SVM is that they have limited

exposure to the decision rules indicated by the underlying model: to form an SVM clas-

sifier, for example, one need only determine the support vectors, the weightingαi of each

support vector and the hyperplane offsetb (see Equation 2.26). The model itself contains

no human-readable rules per se, other than the selection of representative support vectors.

Rule extraction methods have therefore been proposed for SVM. For example, in Ńuñez

et al. (2002), a clustering algorithm is used to determine representativeprototypevectors

for each class, and in Funget al.(2005), linear SVM were used to extract non-overlapping,

human-readable rules. In our sensitivity analysis in Chapter 7, we have addressed a similar

problem by determining the sensitivity of the SVM model to each part of the input wave-

form, to quantify the relevance of each section in terms of classification performance with
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the goal of understanding the biological mechanisms involved.

In conclusion, support vector machines include robust intrinsic regularization, but naı̈ve

choices of the free parameters will often result in unacceptable generalization error. Appro-

priate selection of free parameters is essential to achieving high performance. By including

extrinsic regularization in the optimization of free parameters, we have proposed an ap-

proach that balances model complexity with classification or regression error. By traversing

the generalization error using a simple simulated annealing algorithm, we reduce the num-

ber of function evaluations that must be performed. By including a centre-of-mass opera-

tion, we both reduce solution volatility and improve generalization error, moving suggested

points in parameter space away from regions with sharp dropsin accuracy. This approach

is especially advantageous where there are few observed samples with high dimensionality

(` � d). We have shown experimentally that such an approach will achieve high general-

ization performance with reduced computational complexity, for real-world classification

and regression problems in electroretinography, environmental modelling and bioinformat-

ics.
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