
Fundamentals of Computational Neuroscience

Project 2: Numerical Integration Methods

Matthew D. Boardman, #B00068260

Faculty of Computer Science, Dalhousie University

October 5, 2004

Among all the mathematical disciplines the theory of differential equations is the most important. It

furnishes the explanation of all those elementary manifestations of nature which involve time.

—Marius Sophus Lie, 1842–1899 [1], [2].

1 Introduction

In this paper, given the differential equation

dx

dt
= −x + e−t (1)

we are to solve forx(t) numerically, using the Euler method and a higher order method, and compare the accuracy of

these numerical approximations to the true results obtained through analytical means.

2 Analytical Solution

This equation is not separable[3] as with the examples given in class and in Appendix C of [4], but rather is a first

order linear differential equation[2], of the form

dx

dt
+ p(t)x = q(t) (2)

where, in this case:

p(t) = 1 (3)

q(t) = e−t (4)

A generalized solution to such a first order linear differential equation, restated from [5] to use our variables

x andt, is given by

x(t) =

∫
µ(t)q(t) dt + C1

µ(t)
(5)



Neuroscience Project 2: Numerical Integration Methods

whereC1 . . . Cn are arbitrary constants, and

µ(t) = e
∫

p(t) dt (6)

= e
∫

dt

= et+C2

= C3 et (7)

Substitutingp(t), q(t) andµ(t) into equation (5), we have

x(t) =

∫ (
C3 et

) (
e−t

)
dt + C1

C3 et (8)

Solving forx(t), we have

x(t) =
C3

∫
dt + C1

C3 et

=

∫
dt +

C1

C3

et

= e−t

(
t + C4 +

C1

C3

)
x(t) = e−t (t + C5) (9)

These results were then verified using Maple, which gave the output in Listing 1. This matches with the

analytical result in equation 9. Note that the constantC1 is the notation used by Maple when adding an arbitrary

constant.

> DE1 := diff(x(t),t) = -x(t)+exp(-t);
d

DE1 := -- x(t) = -x(t) + exp(-t)
dt

> dsolve(DE1,x(t));
x(t) = (t + _C1) exp(-t)

Listing 1: Output from Maple to check the results of the analytical solution.

We then need to solve for the constant. Since this is an initial value problem which is meant to emulate part

of the behaviour of a spiking neuron, let us assume the initial valuext=0 = 0. The function then becomes simply

x(t) = t e−t (10)

The graph of this function is shown in Figure 1(a). Alternatively, if we chose the initial valuext=0 = 1,

the curve shifts to the left by one time unitt into the negative time scale, and thex values are slightly amplified (see

Figure 1(b)). However, sincet is only valid fort > 0 in our case, the curve withxt=0 = 0 looks much more interesting

Matthew D. Boardman 2



Neuroscience Project 2: Numerical Integration Methods

since it both rises and falls in our time scalet > 0, whereas the curve withxt=0 = 1 only decreases from it’s initial

value over the same time scale.

0 1 2 3 4 5
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

t

x(t)

(a) x(t) = t e−t

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

x(t)

(b) x(t) = (t + 1) e−t

Figure 1: Comparison of the curves for the analytical resultx(t) = (t + C) e−t where the initial value is a)xt=0 = 0 and b)xt=0 = 1,
making the constantC = 0 andC = 1 respectively. In this paper, we shall assumext=0 = 0.

3 Euler Method

The Euler method for numerical approximation of a differential equation uses an iterative technique starting from an

initial value[4]. At each time stept = t′ + ∆t, the successive values ofx(t′ + ∆t) are calculated using the previous

values oft′ andx(t′). In our case, we use the following formula:

x(t′ + ∆t) = −x(t′) + e−(t′+∆t) (11)

In the Euler method, as the time step between each successive iteration decreases, the accuracy of the approx-

imation generally increases, which is the behaviour we see in Figure 2(b) and Figure 2(c); as we decrease the time step

∆t from 0.3 to 0.01, we see closer and closer approximations of the actual curve. When∆t = 0.01, we have a very

close approximation of the true curve.

To further investigate the sensitivity of the resulting curve to the time step∆t, we choose a point where the

error in all curves is at its maximum value, whent = 1, and plot the value the error reaches for various values of∆t.

The resulting plot is shown in Figure 2(c). We can see that the maximum error increases steadily from small values of

∆t, then remains constant when∆t > 1, at which∆t equals the maximum value achieved byx(t) = t e−t.

The SciLab codeeuler.sci used to generate these curves is attached.

4 Runge-Kutta Method

The fourth order Runge-Kutta method is a higher order method for numerical integration that can be more accurate

than the Euler method by several orders of magnitude for equivalent step sizes[4]. The Runge-Kutta method uses the

first order approximation in a similar fashion to the Euler method, but also takes into account the slope of the curve at

each iteration step, ie. the derivative of the curve. The fourth-order Runge-Kutta method takes the second and third

Matthew D. Boardman 3



Neuroscience Project 2: Numerical Integration Methods

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

t

xE(t)

(a) Curves resulting from Euler method.

0 1 2 3 4 5
0.000

0.022

0.044

0.066

0.088

0.110

t

error

(b) Error curve for several step values∆t.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dt

max err

(c) Maximum error att = 1 for various step values∆t.

Figure 2: Approximation of dx
dt

= −x + e−t using the Euler method. In a), the curve resulting from several values of the time step∆t are
shown in green (from the upper curve,∆t = 0.3, 0.2, 0.1, 0.01 respectively), compared to the actual curve in blue. In b), we show the change in
absolute error over timet for these same four values of the step value∆t (from the upper curve,∆t = 0.3, 0.2, 0.1, 0.01 respectively). In c), we
show the effect on the maximum absolute error of varying the time step∆t.

Matthew D. Boardman 4



Neuroscience Project 2: Numerical Integration Methods

derivatives of the curve into account as well, using the following equations to approximatex(t), restated from [4]:

Let f(x, t) =
dx

dt
(12)

k1 = ∆t f(x(t), t) (13)

k2 = ∆t f(x(t) +
k1

2
, t +

∆t

2
) (14)

k3 = ∆t f(x(t) +
k2

2
, t +

∆t

2
) (15)

k4 = ∆t f(x(t) + k3, t + ∆t) (16)

x(t + ∆t) = x(t) +
k1

6
+

k2

3
+

k3

3
+

k4

6
(17)

(Note: there is a small misprint in the equation fork2 in [4]).

In the last function ofeuler.sci attached, there is a SciLab algorithm for calculating the numerical ap-

proximation of our function given in equation 1. SciLab also has this method built-in using theode("rk",...)

function, which is equivalent to the MatLab functionode45(...) , along with several other approximation methods.

In a similar fashion to the previous section, the curve forx(t) and the error curves are plotted in Figure 3.

Since in Figure 3(b) we can see that the maximum error values occur whent = 0.8, this value is used for determining

the sensitivity to the step value∆t in Figure 3(c). We can see in this figure that the maximum error remains an order of

magnitude smaller in comparison to Euler, even when the step values are quite high such as at∆t = 0.6. The repeating

saw-like oscillations in this curve, as with those using the Euler method in the previous section, from approximately

0.01 < ∆t < 0.8 are symptomatic of such numerical approximations and are not related to the curvex(t) itself:

indeed, performing this same analysis with trigonometric functions such asdx
dt = sin(t), which yeilds a translated

sine curve forx(t), or simply dx
dt = 3, which yeilds an increasing straight line forx(t), shows similar behaviour, as

the error spikes and then is slowly brought down with slowly increasing step size. As with the Euler approximation of

x(t), the errors do not accumulate but rather reach a maximum value of approximately 0.37 when∆t > 1.

5 Comparison of Results

We can see from the error curves in Figure 2(b) and Figure 3(b) that the fourth-order Runge-Kutta method yields

significantly better results then the Euler method, by several orders of magnitude, even when fairly large values of the

step value∆t are used.

In Figure 4, we show a magnification of the resulting curves at the points of maximum error for both approx-

imations, in comparison to the actual curve attained through analytical means in the first section, with the step size for

the Euler method set to three orders of magnitude smaller than the Runge-Kutta approximation. As can be seen, the

higher order approximation yields very accurate results, even given this large difference in the step size.

Is there a limit to the accuracy of the fourth-order Runge-Kutta approximation? In Figure 4(a), we show the

error curves for the approximation when∆t is very small. Even though these step values are different by an order of

magnitude, the maximum error in both cases is approximately the same (albeit extremely minute). These fluctuations

may actually be caused by limitations in the precision of the floating point units in SciLab rather than a limitation of

the algorithm; further investigation would be required to confirm this.

Matthew D. Boardman 5



Neuroscience Project 2: Numerical Integration Methods

0 1 2 3 4 5
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

t

xRK(t)

(a) Curves resulting from fourth-order Runge-Kutta method.

0 1 2 3 4 5
0e+000

1e-005

2e-005

3e-005

4e-005

5e-005

t

error

(b) Error curve for several step values∆t.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

dt

 max err

(c) Maximum error att = 0.8 for various step values∆t.

Figure 3:Approximation ofdx
dt

= −x + e−t using the fourth-order Runge-Kutta method. In a), the curve resulting from several values of the
time step∆t = 0.3, 0.2, 0.1, 0.01 are shown: to the eye, the curves are virtually identical. In b), we show the change in absolute error over timet
for the first three values of the step value∆t = 0.3, 0.2, 0.1 (∆t = 0.01 is not plotted, but the maximum error value reached was approximately 4.5
x 10−11). In c), we show the effect on the maximum absolute error of varying the time step∆t, which reaches a maximum value of approximately
0.37 when∆t ≥ 1.

Matthew D. Boardman 6



Neuroscience Project 2: Numerical Integration Methods

0.991 0.993 0.995 0.997 0.999 1.001 1.003 1.005 1.007 1.009

0.367200

0.367413

0.367625

0.367838

0.368050

0.368262

0.368475

0.368688

0.368900

t

x(t)

(a) Curves ofx(t) resulting from both approximation methods.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0e+000

1e-015

2e-015

3e-015

4e-015

5e-015

6e-015

t

error

(b) Error curves from Runge-Kutta with small step values.

Figure 4:In a) we show a magnification of the actual curvex(t) = t e−t (red), Euler approximation with∆t = 0.001 (green) and fourth-order
Runge-Kutta approximation∆t = 0.1 (cyan). In b), a comparison is shown for the Runge-Kutta approximation with∆t = 0.0001 (cyan) and
∆t = 0.001 (green).

References

[1] J. J. O’Connor and E. F. Robertson, “The MacTutor History of Mathematics Archive: Marius Sophus Lie,”
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lie.html, School of Mathematics and Statis-
tics, University of St Andrews, February 2000.

[2] James Stewart, “Multivariable Calculus, Second Edition,” Brooks/Cole Publishing Company, 1987–1991, pp.
926–945.

[3] James Stewart, “Single Variable Calculus,” Brooks/Cole Publishing Company, 1987, pp. 508–15.

[4] Thomas P. Trappenberg, “Fundamentals of Computational Neuroscience,” Oxford University Press, 2002, pp.
327–32.

[5] Eric W. Weisstein, “First-Order Ordinary Differential Equation,” MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html, 1999-2004.

This document was created using the LATEX document preparation system.

Matthew D. Boardman 7


	Introduction
	Analytical Solution
	Euler Method
	Runge-Kutta Method
	Comparison of Results

