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Abstract— In this paper, a simplified model of the interactions
between the inferior temporal cortex and the amygdala is
recreated, based primarily on the work of E.T. Rolls and S.M.
Stringer in [18]. The heteroassociative model couples two au-
toassociative, recurrent, point-attractor neural networks, trained
using Hebbian learning with paired-associate input patterns.
Several experimental results from the authors are verified, and
dynamical properties of the network are investigated. The model
is then extended to include an additional module to associate
olfactory stimuli with mood states, using 4000 neurons arranged
in asymmetrical module sizes. The model retains 100% corre-
lation between input and output signals when up to 440 visual
and 110 olfactory patterns have been associated with two mood
patterns, but pattern cross-correlation indicates high attraction to
a single overall pattern even with over 6000 learned patterns. This
network is then modified to a quasicontinuous representation
with multistate input signals and binary outputs.

This paper is also available at[ http://www.cs.dal.ca/∼boardman ].

I. I NTRODUCTION

The amygdala, whose name is derived from the Greek word
αµúγδαλo meaning almond [14], is a small, almond-shaped
mass near the base of the brain, forward of the hippocampus
[2]. Composed primarily of pyramidal neurons, the amygdala
has strong neural connections from several areas of the brain
involved in sensory perception through the brain stem via
the ventral amygdalofugal pathway, and the hypothalamus
communicates indications of emotional state directly to the
amygdala through the stria terminalis [2]. The amygdala has
been shown to play a significant role in human emotional
response [8] and in crossmodal and intramodal associative
learning in rhesus monkeys [11].

Clinical studies have also shown significant correlations
between negative emotions and visual memory in human
patients [8], indicating a link between emotional memory in
the amygdala and the visual pathways through the brain. For
example, in [1], patients with a damaged amygdala had dif-
ficulty distinguishing “fearful or angry facial expressions”[8]
from neutral expressions. Similarly in [4], a patient diagnosed
with Urbach-Weithe syndrome, in which the amygdala is
significantly damaged through mineralization but anatomically
nearby structures such as the hippocampus are left intact
[8], showed no additional recall for photographic slides with
emotionally disturbing content, whereas control subjects with
normally developed amygdalas were found to have increased
recall for such slides.

The inferior temporal cortex (IT) is one of the final stages
of the ventral visual pathway through the brain [20]. Involved
in the recognition of shapes, colours and textures of objects
[20], [7] and in facial recognition in primates [18], the IT has
been shown to present a space-invariant, unambiguous repre-
sentation of visual stimuli to the amygdala in rhesus monkeys
[16], in order to quickly provide afight or flight reactionary
response to visual stimuli as part of fear conditioning, without
first having to process the information through higher-level
cognitive structures such as the frontal cortex [10].

Although many psychological studies have shown the link
between long-term memory and the sense of smell in humans
[5], it is only recently that such studies have shown a strong
link with short-term memory [21]. Indeed, in 1913 the famous
French novelist Marcel Proust created his masterworkÀ la
recherche du temps perdu, at the start of which the smell of a
madeleine cake dipped in a cup of tea sparks vivid childhood
memories in the narrator. Psychologists now term this the
Proustian Phenomenon in his honour. Since the amygdala also
has direct connections from olfactory neurons through the
olfactory tract [2], sensory inputs from the olfactory bulb were
chosen as a third coupled neural network in the latter section
of this paper.

In this paper, autoassociative neural networks are coupled
with weak intermodular connections to produce a single het-
eroassociative memory [15], [18]. The network is trained on
two sets of binary patterns with values of±1, using one-shot
Hebbian learning as in [19], in which the weight matrixwij is
generated as the dot product of the matrix ofP concatenated
patterns (ξ), with N neurons:

wij =
gij

N

∑
P

ξiξj (1)

(as [19]) but is modulated by a second matrixgij , defined to be
1.0 if the neuronsi andj are in the same module (intramodular
strength), andg otherwise (intermodular strength) [19]. As
in [15], [18], in this paper the intermodular strength is split
into forward and backward projections between the modules,
with gfwd representing the forward connections from the IT to
the amygdala, andgbck representing the backward connections
from the amygdala to the IT. In the second section of this
paper, where there are three coupled networks, the convention
used is to have the first subscript as the source module and



the second as the target: for example,gV A represents the
intermodular connection strength from the (V)isual module
(the IT) to the (A)mygdala.

II. EXPERIMENTAL RESULTS

A. Two Coupled Networks

In this section, a selection of the experimental results in
[18] are reproduced to verify the authors’ results.

1) Model Parameters:As in [18], in this section the number
of neurons in each network is 1000, the maximum time for
retrieval is 20 cycles (where∆t = τ = 1.0), the intramodular
connection strengthsgAm (amygdala) andgIT (IT) are 1.0,
and the intermodular connection strengthsgbck (amygdala to
IT) and gfwd (IT to amygdala) vary from 0.0 to 1.0. The
percentage of the pattern shown to the network as a cue
varies from 0.0 (none) to 1.0 (100%). Unlike [18], the binary
set is{±1} rather than{0,1} in order to slightly reduce the
number of calculations needed during training and in cross-
correlation by maintaining the signal average at zero, and a
constant additive noise of 1% of the input signal, with uniform
distribution, is added to all inputs to break any local minima
and maxima.

2) Heteroassociative Input Patterns:In this model, 100
binary visual patterns are associated with two binary mood
patterns representing positive (happy) and negative (sad) in-
puts from the hypothalamus. The first 50 visual stimuli are
associated with the positive mood pattern, and the last 50 are
associated with the negative mood pattern. During retrieval,
we can see this heteroassociation between the patterns through
two groupings of the correlations centered at a convergence
value of 0.0 and 0.5; the other patterns associated with the
same mood pattern correlate strongly with the actual input
pattern (at 0.5), whereas the remaining patterns show little to
no correlation (at 0.0).

3) Correlation Measure:In [18], a correlation measure of
pattern convergence based on linear distance was used as a
quantified measure of the correctness of the match of the
input patterns to the final output pattern, with a value of 1.0
indicating a perfect match. This correlation rejects spurious
states such as retrieving the negative image of a pattern
[19]. Another standard method for measuring the correlation
between two patterns is pattern cross-correlation, commonly
used in signal analysis [3]. Where the delay between the one-
dimensional patterns is zero and the average signal is zero, the
discrete form of this cross-correlation between two signalsx
and y can be expressed by

∑
xy /

√∑
x2

√∑
y2. As with

linear distance, the average correlation between two random,
uncorrelated binary input signals is non-zero (typical value of
the cross-correlation for 50 binary patterns∈ {±1} was found
to be 0.1125).

The use of both the cross-correlation and the linear distance
measure are therefore appropriate when measuring an indica-
tion of partial correlation. In this paper, however, a threshold
value was used with the linear distance measure in order to
sharpen the definition between what is considered anexact
match. The comparison threshold for an exact match was set

to 0.9; i.e. only those retrieved patterns with a pattern conver-
gence higher than 0.9 are considered a match. A comparison
of this more restrictive exact match method and the pattern
cross-correlation method, using typical network parameters, is
shown in Fig. 1. In this figure, the intermodular connection

Fig. 1

Two methods used to calculate pattern correlation: cross-correlation [3],

and exact match based on pattern convergence (similar to linear distance)

with a threshold of 0.9, as used throughout this paper. Lines show average

correlation using each method, with error bars showing minimum and

maximum correlation, found over ten iterations at several values of the

percentage of the original pattern used as a cue.

strengths of the coupled network aregfwd=gbck=0.0, ahappy
mood pattern is clamped to the amygdala, and only patterns
associated withhappy mood patterns are tested. Note that
the exact match method results in a sharper curve at the
expense of having marginally higher variation at each interval,
as shown by the error bars. In both cases, however, effectively
perfect correlation is achieved at approximately the same cue
percentage. Patterns with no correlation are shown by an
exactly zero value rather than the low values obtained with
cross-correlation.

4) Gain Function of Neuron:A hyperbolic tangent was
used as the gain function for all neurons [19]. Sigmoid and
sign functions were also investigated, but neither appeared to
have a significant advantage.

5) Firing Rate Sparseness:To simplify calculations in this
model, firing rate sparseness was not considered. This affects
only the capacity of the system, which is investigated later in
this paper for both network architectures.

6) Number of Neurons:The number of neurons in the
network affects not only the capacity of the network (the
number of patterns that can be stored) and the complexity of
the input patterns, but also affects the network’s sensitivity
to gbck as shown in Fig. 2. Although each curve in the
figure holds theαc = P/C ratio constant, whereP is the
number of learned patterns andC is the number of neuronal
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connections (equal to the number of neurons in this fully
connected network),gbck has a more dramatic effect with large
neuron values as shown by the sharp slope of the curve where
N=1000.

Fig. 2

Measuring the sensitivity to connection strength at several values of the

number of neurons (N) in each module of the coupled network. Mean

correlation (exact match method) over 10 runs at each N value is plotted,

holding theαc = P/C ratio constant at 0.1; well within the theoretical

capacity of an isolated autoassociative network ofαc=0.138 [19]. Note the

sharp curve when N=1000, in contrast to the gradual curve when N=100.

7) Network Capacity:The capacity of the networkαc, or
the number of patterns that can be stored, was determined
by slowly increasing the number of patterns learned by the
network during training, then determining the number of those
patterns that could be correctly recalled during the retrieval
stage of the experiment. The recall of patterns associated
with the sad mood state during training was lower than
the recall of those associated with the happy mood pattern,
when a happy mood state was present in the amygdala. This
suggests a relation between the capacity of the network and
the intermodular strength; in Fig. 3, the effect ofgbck on
the capacity of the network is investigated by varying the
intermodule connection strengths but holdinggbck=gfwd, and
measuring the maximum number of patterns that can be stored
while retaining a recall of 90% or higher. Atgbck=gfwd=0.0
the network capacity isαc=0.138 as expected, since with no
intermodular connection strength the two networks are isolated
and there is no association between the stored visual and mood
patterns. The capacity drops sharply, and aftergbck=gfwd=0.2
the network able to effectively learn and recall very few
patterns. The recall for sad patterns is slightly lower than the
recall for happy patterns when 0.05<gbck<0.2.

In reviewing these results, it is important to keep in mind
the definition of correlation we are using in this paper: if we
define a successful match as any returned output with a greater
percentage of the pattern than originally shown to the network,

the storage capacity is significantly higher. For example, if
we show 50% of the pattern to the network as an initial cue
and the network returns 70% of the pattern, this would not
be counted as a match by either the cross-correlation method
or the exact match method. However, the network does show
attraction to a single such pattern, and adds more of the pattern
to its outputs without achieving full recognition. This effect is
further investigated in the last section of this paper.

Fig. 3

Network capacity for two coupled networks, each with 1000 neurons.

MaximumP/N = P/C at eachgbck while maintaining at least 90% recall

is plotted. Solid lines indicate recall for visual stimuli associated with happy

mood pattern. Dotted lines indicate recall for those associated with sad

pattern. A happy mood state is clamped to the amygdala throughout this

experiment.

8) Experimental Results:The first two experiments in [18]
set gfwd (from IT to amygdala) to 1.0, identical to the
intramodular connection strengths. The amygdala is clamped
to a happy mood state. In the first experiment, used as a
reference for subsequent experiments,gbck (amygdala to IT)
strength is set to 0.0 and there is no apparent difference in the
recall of visual patterns associated with happy or sad amygdala
patterns.

In the second experiment,gbck is varied from 0.0 to 1.0.
The recall of visual patterns was shown to be highly dependant
on thegbck intermodular strength. As expected from [18], we
find that retrieval of the sad memory patterns is adversely
affected by the happy mood state clamped to the amygdala.
In Fig. 4, both the initial cue pattern strength and thegbck

strength are varied to form a three-dimensional contour plot
of the difference between recall for patterns associated with
the happy and sad mood states, while a happy mood state
is clamped to the amygdala. The pattern found is consistent
with that found in [18], however due to our more restrictive
threshold approach in finding the exact match method for
correlation, we find zero correlation whengbck is higher than

3



0.1, rather than the marginal correlation values found in [18].

Fig. 4

Reproduction of [18] Experiment 2: Pattern correlation of coupled

associative network using exact match method, found by varying both the

intermodular connection strengthgbck (Amygdala to IT) and the initial cue

percentage. The contour plot shows the difference between the correlation in

patterns associated with happy and sad mood patterns, while a happy mood

is clamped to the amygdala. Each of the two modules has 1000 neurons.

In experiment 3 [18], all inter- and intramodular connection
strengths were set to 1.0, and the amygdala’s inputs were
no longer clamped but rather were initially set to neutral
values and allowed to vary freely. In this paper, the amygdala
values were set to a small random noise pattern with uniform
distribution. As in [18], it was shown that with these strengths,
the IT could no longer recall visual patterns. However, the
mood could be recalled based on visual stimuli; the equivalent
of seeing an object and remembering an associated mood, but
not actually recognizing the object. As expected, due to the
difference in the correlation defined in this paper, the IT recall
was zero across the entire range of cue pattern percentage, as
opposed to the marginal values plotted in Fig. 8 of [18].

Experiments 4 through 7 [18] further investigated several
dynamical properties of the resulting network under a variety
of conditions. In particular, experiment 7 [18] showed that the
state of the amygdala could be influenced by visual patterns
(the opposite of experiment 2) by setting thegfwd to a very
high value (200 in [18]); this effect was instrumental in the
choice of connection strengths for the next section.

B. Three Coupled Networks

In this section, the network architecture is extended to three
coupled modules, representing the inferior temporal cortex, the
amygdala, and the olfactory tract, as shown in Fig. 5. A similar
model was suggested in [17] for auditory and visual stimuli
to the amygdala, however in this paper, olfactory inputs were
used as detailed in the introduction; this allows the model to
use asymmetry in a biologically feasible manner.

1) Asymmetrical Modules:Recent microscopic anatomical
research has shown that the pyramidal neurons in the IT have
larger, more complex dendritic structures than in other areas

of the brain, implying that these neurons have the ability to
integrate a greater number of inputs [7]. The inferior visual
cortex was therefore given 2000 neurons, while the olfactory
bulb and amygdala were each given 1000 neurons, for a total
of 4000.

Fig. 5

Extension to three coupled autoassociative neural networks. Solid lines show

INTRAmodular connections, dotted lines showINTERmodular couplings.

2) Intermodular Connection Strengths:From Experiment
7 [18], we see that the effect of visual patterns on the mood
state in the amygdala can be quite significant. In order to
trigger afight or flight response [10], it seems likely that the
significance of the visual and olfactory inputs should be quite
high. Visual stimuli from the IT to the amygdala was therefore
chosen to begV A=10.0. The portion of the human brain
dedicated to visual perception greatly exceeds that dedicated
to olfactory perception, however, so the olfactory inputs to the
amygdala were given onlygOA=5.0.

In order to maintain some significant backprojections from
the amygdala to the visual and olfactory stimuli, the para-
meters for these areas were chosen to be within the effec-
tive bounds of0.02<g<0.2 found in the first section. The
intermodular strength from the amygdala to the IT and to the
olfactory bulb were therefore chosen to begAV =gAO=0.03
respectively.

Although there is little documentation of the strengths of
neural connections between the visual and olfactory centres
of the brain, it seems likely that these connection strengths
will be non-zero. However, it also seems likely that these
connections will not be given the same significance as the
inputs from the amygdala. The intermodular coupling strengths
between the IT and olfactory bulb were therefore chosen to
be gOV =gV O=0.02.

3) Experimental Results:Experiment 2 [18] was chosen as
the most significant test for this architecture. The system asso-
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ciated 440 visual patterns, 110 olfactory patterns (1/4th) and
2 mood patterns through Hebbian learning. Only two mood
states were shown, although the capacity of the amygdala
module is much higher, in order to have a more significant
effect on the retrieval of the visual and olfactory patterns.
During retrieval, the amygdala was initially shown 50% of
a happy or sad mood state but allowed to wander to attractor
states. 50% of the visual pattern and 50% of the olfactory
pattern were initially shown to the network, with a constant
additive noise of 1% with normal distribution on all inputs. To
quantify the results, the first ten olfactory patterns and their
respective associated visual and mood patterns were retrieved.

Fig. 6

Effect on retrieval of 200 visual (blue, dark) and 50 olfactory (green, light)

patterns associated with happy (solid lines) or sad (dotted lines) mood

patterns, for three coupled associative networks as described in text, where

a happy mood state is initially present in the amygdala but is allowed to

vary freely.

The results of this experiment are plotted in Fig. 6. The
olfactory and visual patterns are both retrieved with a small
cue percentage, but the amygdala’s happy mood state had
an adverse effect on retrieval of patterns associate with the
sad mood state in both modules, as expected based on the
experiments in the first section of this paper. As expected from
our analysis of the two-module network with varying number
of neurons in Fig. 2, the olfactory patterns are successfully
recalled with a lower cue percentage than needed for correct
recall of the visual patterns. The retrieval of the mood state
is not plotted in this diagram for clarity, but in all cases the
mood was successfully retrieved almost immediately.

4) Network Capacity:Using the exact match definition of
correlation we have used thus far in this paper, with threshold
of 0.9 to determine an exact match, the network capacity
αc was determined by trial and error to be 440 patterns.
This is well in excess of the expected capacity for an iso-
lated autoassociative memory with 2000 neurons, which with
αc=0.138 would be 276 patterns. However, by using a looser

definition of correlation as mentioned earlier in this paper,
where a match is defined to be any output pattern with a
greater percentage of the original pattern than the percentage
of the pattern initially used as a cue, the number of patterns
that could be stored is well in excess of 6000 visual patterns
and 1500 olfactory patterns (far greater than the number of
neurons!): although neither the olfactory or visual correlation
would be determined an exact match with a threshold set to
0.9, the network is definitely attracted to a single output pattern
in all three modules.

Even with 6000 patterns associated with 1500 olfactory
patterns, there is evidently room for more patterns to be
learned as indicated by the cross-correlation result. Based on
the analysis in [19], the capacity of the three coupled networks
should be theoretically determined as(αcC/m)m patterns,
whereC is the number of neuron connections (equal toN in
our fully connected network). The logical extension of this for
three asymmetric networks can be represented by

∏
m αcCm

whereCm is the number of neuron connections in each module
m. This amounts to over 5 million patterns, although this
high capacity will be greatly modulated by the intermodular
connection strengths as shown in the previous section with
two modules.

The number of random, binary visual patterns available is
determined by2N , in this casePmax = 22000 or 10600. The
chance of a duplicate pattern, even within the set of 6000
visual patterns, is therefore extremely low, and the potential
effect of a duplicate pattern in the learning set can be ignored.

5) Quasicontinuous Retrieval:To further investigate the
dynamical properties of the network during retrieval, the
network was then changed in the following ways. In order
to further investigate the dynamics of the retrieval phase, the
network was changed to be quasicontinuous, where a small
∆t of 0.1 τ was used. The input patterns were changed
to have four quantization levels∈ {±0.5,±1} rather than
simple binary patterns∈ {±1}, to determine whether the
network could output a “best fit” using binary states±1. The
gain function was changed to be the sum of three hyperbolic
tangents, with plateaus at±0.5 and±1, in order to show mild
attraction to these multistate inputs but not allow the outputs to
rest at±0.5. High frequency noise with uniform distribution
at 5% amplitude was also continuously added during retrieval
in order to break any local minima and maxima.

The plot in Fig. 7 shows the convergence to a single pattern
for each of the three coupled networks, when 6000 visual
patterns and 1500 olfactory patterns have been associated with
two mood patterns (happy and sad) through Hebbian learning.
Note that despite the very high number of learned patterns,
the network shows a definite attraction to a single associated
pattern for all three networks. The decay in the visual pattern
after correct initial recall indicates that the network may
be over its learning capacity, however, measuring the cross-
correlation of the input patterns with the output patterns
contradicts this conclusion: for the amygdala, olfactory and
visual outputs, the cross-correlation measure is 94.6%, 91.4%
and 83.7% respectively; much higher correlation than expected
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Fig. 7

Quasicontinuous (small∆t) retrieval of non-binary (four quantization levels

∈ {±0.5,±1}) visual and olfactory stimuli associated with a happy mood

state, with a neutral mood state present in the amygdala. 50% of the pattern

under test is clamped to the network during the first 1 s. Convergence

between non-binary input patterns and binary output patterns through 100 s

is plotted.

for a binary representation of a multistate pattern. Investigation
of the specific values in the output pattern indicates that
the network remains in a dynamic state and has not settled
to a particular binary representation, which is reasonable
since binary output patterns can never exactly represent input
patterns with four quantization levels.

III. C ONCLUSIONS

The experiments in [18] have been reproduced and several
of the authors’ results have been verified. The network archi-
tecture has been extended from two to three modules based
on primate anatomy, using biologically feasible intermodular
connection strengths. The network correctly associates visual
stimuli, olfactory stimuli and mood states, and has been shown
to exhibit similar behaviour to that observed in the primate
amygdala, inferior temporal cortex and olfactory bulb. It has
been shown that the capacity of such coupled networks can
greatly surpass the capacity of similar isolated networks,
through partial propagation of the pattern signals to and from
each section. By defining the measure for correlation more
precisely, it has been shown that the measure of spurious
states and partial correlations can effectively be reduced or
eliminated.

Pattern recognition and association is an obviously rele-
vant application area, but emotional models have also been
shown to be beneficial for robotic control, in which a “mood
congruent effect”[9] modifies behaviour based an emotional
state determined by defined rules; such robots have exhibited
self-preservation [9]. An active area of clinical neuroscience
research involving memory is bipolar depression, in which
neurotransmitters such as serotonin and norepinephrine are
reabsorbed into the transmitting axon rather than properly
traversing the synapse [12]. Bipolar patients, who experience
recurrent depressive episodes, have shown reduced verbal
memory performance [6].
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