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ABSTRACT
Motivation: Noise levels and cross-study variation present in gene-
expression data from DNA microarray experiments create obstacles
for genomic researchers. A reliable method for modeling such data
is required in order to impute missing observations, to fuse mul-
tiple, similar experiments and to improve the signal to noise ratio
in time-variant or cross-study experimental results. In this paper,
we combine multivariate support vector regression and non-linear,
periodic curve-fitting methods to model differential gene-expression
in periodic microarray data. Support vector regression makes no
assumptions about the distribution of the underlying data model and
seeks a general, regularized solution for data sets with a low number
of samples but with high dimensionality. The cleaned microarray data
from this model may then be analysed further through other methods.
In this paper we apply an additive, periodic model to detect regular
periodicity, such as the transcription of mitotic genes during a cell’s
reproductive cycle.
Results: We apply these methods to a recent study of cell-cycle syn-
chronization methods in fission yeast, Schizosaccharomyces pombe,
and evaluate the models in comparison to univariate polynomial and
linear regression approaches common for microarray data imputa-
tion. In this study, our goals are to impute missing data points in
a periodically meaningful context, to determine which genes exhibit
high periodicity that is strongly synchronized with the cell-cycle and
to determine the statistically most-likely activation point of each gene
within the cycle.
Availability: The methods implemented by the author in MATLAB
(Mathworks) are freely available upon request. Supplementary mate-
rial is available from the author’s website at http://www.cs.dal.ca/
∼boardman.
Contact: Matt.Boardman@dal.ca

1 INTRODUCTION
In this paper, we examine the modeling of differentially-expressed
microarray data without regard to the underlying cause of errors.
Our approach is based on two data models: first a multivariate,
kernel-based, non-linear regression using Support Vector Machines
(SVM); and second a univariate, maximum-likelihood model using
non-linear curve-fitting, with both a linear and non-linear, periodic
component. Our goal is to create models which can be used to
impute missing observations, for data correction and normalization,
or which can in themselves be used for further analysis.

Noise and errors arise in DNA microarray hybridization expe-
riments from a variety of factors, including gene-specific dye
bias (Martin-Magniette et al., 2005), probe and experiment design
(Smyth et al., 2003), culture heterogeneity (Gilks et al., 2005),
variations in slide quality and manufacturing processes which can

create surface abnormalities or allow slide-movement within the
microarray scanner (Agilent Technologies, 2005) and the normal
deterioration of mRNA post transcription (Orengo et al., 2003). A
comprehensive overview of many of these sources of experimen-
tal and analytical errors, and common statistical techniques used to
overcome them, can be found in Smyth et al. (2003).

Many other statistical approaches have been applied to microar-
ray data analysis, such as univariate or multivariate Analysis of
Variances models (ANOVA or MANOVA) (Gilks et al., 2005; Kerr
et al., 2000) commonly used for normalization prior to further
analysis (Smyth et al., 2003). Independent Components Analysis
(ICA) (Martoglio et al., 2002) appears to have significant poten-
tial for automatic artefact isolation and removal, by maximizing the
statistical independence of the resulting signals.

Univariate or multivariate regression approaches are common in
microarray analysis (Tsai et al., 2004; Wu, 2005). The majority of
these are univariate, in which a single output variable is targeted
(although there may be one or many input dimensions). In addition
to reducing input noise and sources of error, univariate regression
models have been used for classification and prediction (see e.g.
Choi et al., 2003; Wu, 2005). More recently, multivariate regres-
sion approaches, in which the output is a vector rather than a single
value, have also been suggested. Gilks et al. (2005) proposed a mul-
tivariate, linear regression technique based on a controlled design
matrix to fuse data from multiple, similar experiments, in which
the output is a fused, cleaned, time-variant microarray experiment
for periodic data. Choi et al. (2003) also fuse multiple, time-variant
data sets using a covariance measure for Bayesian meta-analysis and
apply their algorithm to the problem of cancer profiling. Johansson
et al. (2003) also used a multivariate approach, applying an algo-
rithm based on Partial Least Squares (PLS) to fuse time-variant data
sets for budding yeast, Saccharomyces cerevisiae: the authors of this
study note that an advantage of PLS is to obtain models with high
generalization performance for data sets with few observations but
high dimensionality, which as we note below, is also a significant
advantage for SVM as used in this paper. Tai and Speed (2004) have
proposed a Bayesian approach of similar form, but which uses a
Bayesian statistic to approximate this design matrix automatically
and from which the goal is to create a vector of expression values
for each individual gene probe, similar to the approach taken here.

Additive data models have also been proposed, such as Tsai
et al. (2004) in which a linear and non-linear model are combi-
ned, an approach similar to the periodic model we apply in this
paper, but using a sequential normalization algorithm rather than
a non-linear maximum likelihood model. A non-linear maximum
likelihood model was proposed in Huber et al. (2002), in order
to normalize data prior to more complex analysis, however such
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non-linear transformations will negate the assumption of an additive
error or residual component (Gilks et al., 2005).

Data imputation methods attempt to find the most likely value of
missing observations and minimize noise levels in the gene expres-
sion data to identify the most-likely underlying signals. However,
in some cases it may not be necessary or warranted to identify
each individual gene-expression signal in the data: we may simply
wish to measure the goodness-of-fit to a simple, additive, periodic
model in order to isolate a particular component of the underlying
signal relevant for a particular biological analysis, or to impute mis-
sing pieces of source data in a periodically meaningful way rather
than employing a statistical averaging technique such as K-Nearest
Neighbors (KNN) (Gilks et al., 2005) which is known to perform
badly in data imputation in terms of RMSE (Troyanskaya et al.,
2001; Wang et al., 2006). A comparison of several methods for
data imputation is provided in Jörnsten et al. (2005), who provide a
new method based on convex linear combination of several current
methods, and in Troyanskaya et al. (2001), who compare SVD and
KNN with a simple row-oriented mean for several real data sets.

Further analysis of the cleaned data set to identify periodically
expressed genes during cell processes to identify mitotic genes has
been performed via clustering (Rustici et al., 2004) and Singular
Value Decomposition (SVD) (Gilks et al., 2005) or Principal Com-
ponents Analysis (PCA) (Johansson et al., 2003) which find signals
with maximum variance, although a more common approach is
to use a statistical ranking techniques such as the commonly used
t-statistic (Smyth et al., 2003). Here we will use the mean squa-
red error (MSE), normalized by the variance, as a goodness-of-fit
statistic.

1.1 Support Vector Regression
Although supervised machine-learning techniques, such as Arti-
ficial Neural Networks (ANN) and SVM, have been used for
classification in microarray research (see e.g. Brown et al., 2000),
regression models based on ANN and SVM are less common for
microarray regression models; in particular SVM, as the technology
is comparatively recent (Burges, 1998; Smola and Schölkopf, 2004;
Vapnik, 1999).

In binary classification, SVM are a supervised machine-learning
technique using a statistical approach to maximize the margin bet-
ween samples of opposite class, often using a non-linear kernel to
provide a dot product between vectors in high-dimensional mapped
space (Vapnik, 1999) in order to maximize the separation between
non-separable sample data (Burges, 1998). In this paper we use the
non-linear Radial Basis Function (RBF) kernel function throughout,
as this has repeatedly been shown to work well with non-separable
data sets for a wide variety of applications (see e.g. Boardman and
Trappenberg, 2006; Chang and Lin, 2001). ε-tube Support Vector
Regression (ε-SVR) extends the SVM statistical-learning philoso-
phy to regression or function estimation problems, by assuming a
constant noise threshold ε and penalizing samples outside this thres-
hold using a cost parameter C (Smola and Schölkopf, 2004; Vapnik,
1999). A quick and painless introduction to SVM may be found in
Bennet et al. (2000). More detailed and mathematically rigorous
tutorials on practical application of SVM may be found in Bur-
ges (1998) for classification, or in Smola and Schölkopf (2004) for
regression.

In Wang et al. (2006), Support Vector Regression was shown
to be superior to K-Nearest Neighbors (KNN), Bayesian Principal

Components Analysis (BPCA) and Local Least Squares (LLS) for
data imputation on microarray data sets, in terms of mean squared
error normalized by individual gene variance. The free parame-
ters ε, γ, C for the ε-SVR implementation in this study were
determined through a grid search, whereas here we use the simula-
ted annealing method of Boardman and Trappenberg (2006) which
enhances generalization performance by using a model complexity
penalty. These optimum parameters were determined individually
for each column (time point) in Wang et al. (2006), whereas here
we use a representative sample of genes in order to further enhance
generalization and reduce the computational burden. Finally, the
column-wise orthogonal input coding scheme to flag missing values
in Wang et al. (2006) was used to alleviate a restriction that only
a single missing value could be estimated for each row (gene) of
the data in their implementation, whereas the multivariate ε-SVR
approach used in this paper allows any number of missing values so
long as at least one observation is present. Some extreme examples
of this are presented in Fig. 5(c-d).

In terms of a true representation of the data rather than purely
mean squared error, we would expect a model based on ε-SVR
to create the best possible representation of noisy, inconsistent
microarray data, even in comparison to neural network approaches,
since the advanced regularization capability of these kernel-based
methods allows for a highly-accurate model with a relatively small
number of observations. The efficiency of the ε-SVR algorithm and
a small model representation allows for much higher dimensiona-
lity in the input observations and output targets than neural network
approaches. The importance of generalization performance, as a
tradeoff to mean squared error, is illustrated in Fig. 1.

In this paper, LIBSVM (Chang and Lin, 2001) was used as a
typical ε-SVR implementation, in which high computational effi-
ciency in the quadratic optimization is achieved through Sequential
Minimum Optimization (SMO).

2 DATA AND METHODS
In this paper, we will primarily follow the notation of Gilks et al.
(2005). We define D as an N ×m observed data matrix of m gene
probes taken at N time points. As is generally the case, here m �
N since for the elutriation2 data set, m = 5038 and N = 20. We
refer to the individual elements of D such that for a particular gene
i we have we have observations xi and targets yi as

(xi1, yi1), . . . , (xi`, yi`) (1)

corresponding to row i of D, where N = `.

2.1 Experimental Data
In Rustici et al. (2004), nine different cell-cycle synchronization
techniques were applied to S. pombe in comparison to unsynchroni-
zed cell cultures, including elutriation to isolate fine cells from hea-
vier cells in the culture, or selective blocking and releasing of par-
ticular proteins known to control the cell cycle through temperature
variation. The raw data from these experiments were made available
through ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under
accession numbers E-MEXP-54 through E-MEXP-64.

Each experiment in this data set shows the normalized, unitless
signal ratio of the experimental culture at each timepoint for each
gene, in comparison to that of an unsynchronized, control culture
of the same organism, for > 99.5% (Rustici et al., 2004) of all
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(a) A good general solution.

0 50 100 150 200 250

0.8

0.9

1

1.1

1.2

1.3

G
en

e 
Ex

pr
es

si
on

 L
ev

el

Time (min)

(b) An example of underfitting.
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(c) An example of overfitting.
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(d) Severe overfitting.

Fig. 1. Inappropriate selection of the free model parameters, or hyperparameters, in ε-SVR is likely to lead to improperly modelled data. Here we see four
regression models for the C222.06 gene which, incidentally, was not identified as periodic in previous analyses (Gilks et al., 2005; Rustici et al., 2004);
this may be due to it’s small levels of expression, however our model does find statistically significant periodic activity. (a) An ε-SVR model trained using
the heuristic in Boardman and Trappenberg (2006) adapted here for regression, which includes a model complexity penalty as described in Sec. 2.2. (b) An
example of underfitting: in this case, the ε-tube width, corresponding to the expected noise level, is too high. Such a model overgeneralizes, ignoring all but
the most extreme values in the training data. (c) An example of overfitting: in this case, the C cost parameter is too high, disallowing outliers such that every
observed point must be within the ε-tube bounds. A model such as this contains many support vectors and is not likely to generalize well. (d) An example of
severe overfitting: in this case the mean squared error is near zero, as the model fits all observed points. However, it is quite obvious that every observed point
is a support vector, and so this model will certainly not generalize well to any points between the observed points: such a model would be useless for imputing
missing observations.

identified genes in the S. pombe genome through several succes-
sive hybridizations taken every 15 minutes. A value of one would
indicate that the gene has equal levels of expression in the syn-
chronized and unsynchronized cultures. A value higher than one
indicates that the synchronized culture exhibits a proportionately
higher gene expression level than the unsynchronized control cul-
ture. In this study, through a clustering algorithm, 407 genes were
identified as periodic and 136 of these were identified as strongly
periodic, defined as those whose maximum difference (from peak
to trough) was greater than 2. The data in this study was later ana-
lyzed using a multivariate linear regression and SVD in Gilks et al.
(2005).

There are many missing data points in these data sets. For exam-
ple, in the elutriation2 data set, 286 of the 5038 genes evaluated on
each microarray slide had no data in any of the observed hybridiza-
tions, and a further 819 genes had fewer than 75% of the data points

available. A total of 16.9% of the observations are missing. It is
self-evident that the fewer observations available for any particular
gene probe, the less accurate any attempt to model the underlying
data will be. However, from the analysis performed in Gilks et al.
(2005), the elutriation2 data set appears to exhibit excellent periodi-
city through nearly two cell cycles, so in this preliminary work, we
initially concentrate on this one particular experiment.

2.2 Non-linear Multivariate Regression
We first aim to impute these missing observations, and reduce noise
levels throughout the data set, using SVM. Since both the input and
output for the SVM is the full, time-course experiment, in this case
5038 genes over 20 time points, our SVM model naturally falls into
the category of multivariate regression. However, in the implemen-
tation of this model, we use a series of univariate regressions: an
ε-SVR model for each gene with multidimensional input (the values
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of the all remaining genes at a specific time point) and unidimen-
sional output (the value of the target gene for a specific time point).
3515 of the 5038 genes were identified as each having 100% of the
available data points available. These were used as the training input
for the model, and were normalized such that

xij ∈ [−1, 1] ∀ i ∈ {1, . . . , m}, j ∈ {1, . . . , N} (2)

Note that the time vector itself was not provided as an input
vector for this model; only the gene expression data is used as
input. This allows the SVM model to seek a generalized solution in
3515-dimensional input space purely on the basis of exploring the
relationships between individual genes. This removes any assump-
tion of the time-variant nature of the gene expression data, and
allows us to impute missing observations even if a significant num-
ber of observations is missing: for example, see Fig. 5. Of course,
the target gene is also excluded from the training data for each
model.

An important consideration in the practical application of SVM
is the determination of appropriate values for the free parameters,
or hyperparameters, of the SVM during training: we wish to deter-
mine optimum values for the ε-tube width, RBF γ-radius and C cost
free parameters. Here we use the heuristic suggested in Boardman
and Trappenberg (2006), adapted to ε-SVR by adjusting the scoring
function as follows.

The goal of this heuristic is to obtain a low mean squared error
while still providing adequate generalization performance. Through
the course of the three-dimensional, stochastic parameter search
in this heuristic, we minimize the cost functional E (ε, γ, C,D)
defined as

E = Es + λ Ec (3)

following the notation of Boardman and Trappenberg (2006), where
Es(ε, γ, C,D) is the 10-fold cross-validation mean squared error
(MSE) resulting from a model trained using parameters defined by
this point in three-dimensional parameter space, normalized by the
inverse of the standard deviation of the target observations, as

Es =
1

Nσyi

N∑
j=1

|yij −F (xij)| 2 (4)

where F (xij) is the predicted value of yij from the regression
model. Normalizing in this manner allows those genes with small
expression to more significantly affect the mean squared error in
comparison to those with relatively high expression. Ec(ε, γ, C,D)
is a model-complexity penalty defined by

Ec =
(nsv

`

)2
(5)

where nsv(ε, γ, C,D) is the number of support vectors in the
resulting model representation and ` is the total number of trai-
ning observations. The importance of including a model complexity
measure in regression problems is illustrated in Fig. 1.

The regularization parameter λ balances the tradeoff between Es

and Ec, and the square introduces a non-linearity to more sharply
penalize those models which obtain a low mean squared error at
the expense of high model complexity. We found that a value of
λ = 10 brought the two terms to the same orders of magnitude,
giving roughly equal weight to each.

To balance computational complexity with model accuracy, rather
than calculating the optimum free parameters for each of the 5038
models, we minimize the sum of E taken over ten representative
genes at each evaluated point in three-dimensional free parame-
ter space. Each of these genes were identified as periodic by the
clustering methodology in Rustici et al. (2004). Some had small
expression throughout the time course of the data, others had large
expression, indicating the need for normalization in the MSE term as
shown above. The selected genes were slp1, cdc20, h4.2:hhf2, sly1,
h3.1:hht1, h3.3:hht3, h4.3:hhf3, h3.2:hht2, h4.1:hhf1 and bgs4. The
optimum parameters found from the analysis of these ten genes were
then used to train the ε-SVR for all genes.

The simulated annealing heuristic was employed with a moderate
cooling schedule, such that the objective function was evaluated at
a total of 4590 points in parameter space. This is contrast to the
classification approach in Boardman and Trappenberg (2006) which
searched a two-dimensional parameter space for the RBF γ and C
regularization parameters for the purpose of binary classification,
using either a fast-cooling schedule with 440 evaluations, or a slow-
cooling schedule with 6880 evaluations.

We define the matrix of observations cleaned by this multivariate
regression as S, of the same dimensions as D.

2.3 Periodic Additive Model
The output from this multivariate analysis is then used as an input
to a periodic, additive model. For each gene i, we define the true
underlying signal to be the time-variant function Ci(t). The esti-
mate of this signal obtained through the periodic model is defined to
be Ĉi(t). The difference between these signals is then the residual
ξi(t):

Ci(t) = Ĉi(t) + ξi(t) (6)

We propose that the model of each gene contain both a periodic
component and a linear component:

Ĉi(t) = ρi sin

(
2πt

Λ
+ φi

)
+ (tαi + βi) (7)

where the parameters αi and βi define the linear component of the
model for each gene i, the magnitude and phase of the periodic
component is defined by ρi and φi for each gene i, and the cell-
cycle length is expressed by Λ as a constant for all genes within the
particular experiment (not to be confused with the λ regularization
parameter in Eqn. 3).

In order to determine the model parameters for each gene, we use
a non-linear, least-squares curve-fitting procedure provided by the
MATLAB Curve Fitting Toolbox (Mathworks). Specifically, we use
the robust implementation of the trust-region reflective Newtonian
algorithm, which allows us to impose logical bounds on each model
parameter. To shake the optimization procedure from local minima,
two starting points were used for opposite phase φ = {0, π}.
A purely linear model was also applied. Of these three resulting
models, we take that with the lowest mean squared error. For addi-
tional detail on the specific implementation of similar curve-fitting
procedures, see e.g. Press et al. (1992) §15.5–15.7.

We first apply the proposed periodic model (above) to each gene
for a particular set of hybridizations, using non-linear, least-squares
curve fitting, to find the most likely model parameters for each gene
allowing Λ to vary independently for each gene. For this step, we
consider only the 407 genes identified as periodic by Rustici et al.
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Table 1. Comparing mean squared error (MSE) ×1000 resulting from
periodic expression models for several genes, from elutriation2 data set.

Method slp1 hhf2 bgs4 cdc20

Polynomial Regression (Degree 6) 35.0 42.4 11.0 17.3
Univariate Support Vector Regression† 3.3 13.6 4.3 20.9
Linear Regression 385.1 658.1 37.1 66.5
Periodic Model 24.9 53.6 14.3 35.4

†Note that the data from gene C222.06 was used to find optimum ε-SVR model
parameters for this univariate analysis.

(2004). Some of these genes were identified as linear by our model,
and these were naturally excluded. The median Λ of the remaining
genes was taken to be the “true” cell-cycle length.

We then reapply the curve-fitting procedure for all genes, taking
this Λ value as fixed.

2.4 Goodness-of-Fit Statistics
As a goodness-of-fit statistic, here we normalize the commonly-
used mean squared error by the variance (see e.g. Wang et al., 2006),
to define the normalized root mean squared error (NRMSE) of the
observations compared to the SVM model as

GFSV M (Di,Si) =

√√√√ 1

Nσ2(Di)

N∑
j=1

|dij − sij | 2 (8)

where dij is the j-th observation of the i-th gene, sij is the j-th
prediction of the i-th gene by the ε-SVR model, and σ2(Di) is the
variance of the observations for gene i.

Similarly, to determine how well the periodic, additive model
fits the SVM model, we define the NRMSE of the SVM model
compared to the periodic model as

GFModel(Si, Ĉi) =

√√√√ 1

Nσ2(Si)

N∑
j=1

|sij − ĉij | 2 (9)

where ĉij is the periodic model’s expected value for the j-th obser-
vation of the i-th gene. and σ2(Si) is the variance of the ε-SVR
model’s predictions for gene i.

3 RESULTS
We first obtained some preliminary results based on applying a uni-
variate ε-SVR (considering only the time vector as input) and the
periodic model to each gene independently in the elutriation2 data
set. Fig. 2 shows a comparison of the observed data for four spe-
cific genes, identified as typical examples in Gilks et al. (2005), to
four different signal estimation techniques: linear regression, least-
squares polynomial regression with six degrees of freedom, ε-SVR
and the proposed additive, periodic model. We find that although the
ε-SVR curves precisely approximate all four genes with the least
mean squared error, the proposed periodic model also aligns well
these four genes and appears to be a good fit in all four cases. Table 1
shows the mean squared error for each of the four genes obtained
from each estimation technique.

Table 2. Comparing model parameters found from proposed periodic maxi-
mum likelihood model for several genes, from the elutriation2 data set cleaned
through multivariate ε-SVR, with fixed cell-cycle length Λ = 153.9 minutes.

Model Parameter slp1 hhf2 bgs4 cdc20

φi : Phase (radians) 0.068 -1.269 -0.198 -0.080
ρi : Periodic Amplitude 0.865 1.055 0.197 0.249
αi : Linear Decay (×1000) 0.064 -0.144 0.039 0.246
βi : Linear Offset 1.170 1.297 1.098 1.016

GF SV M : NRMSE of SVM Model 0.100 0.089 0.277 0.335
GF Model: NRMSE of Periodic Model 0.202 0.269 0.464 0.469

We then extend the technique to multivariate ε-SVR and estimate
the cell-cycle length for the elutriation2 data set. Only the 407 genes
found to be periodic using a clustering algorithm in Rustici et al.
(2004) were included. We find that the most likely cell-cycle length
for this data set is 153.9 minutes, indicating that the 285 minutes in
this experiment cover ∼1.85 cell-cycles. This appears to match well
with the result found in Gilks et al. (2005) obtained through SVD.
Fig. 4(a) shows a histogram of the most likely cell-cycle length
obtained from the model for each gene in this data set: the estima-
ted cell-cycle length is taken as the median value. Fig. 4(c–d) show
histograms of the NRMSE of the models. A museum of interesting
genes, showing examples of what is possible with this multivariate
approach, is presented in Fig. 5.

Finally, we run the curve-fitting procedure again, holding the cell-
cycle length Λ = 153.9. The results for the same four genes are
compared in Fig. 3. Table 2 shows the periodic model parameters
obtained for each of these four genes. Models for the full set of
407 genes identified as periodic by Rustici et al. (2004) is available
online at the author’s website, for both fixed and unfixed Λ.

In contrast to the conclusion in Rustici et al. (2004), in which a
clustering algorithm determined that there were 407 periodic genes
and 136 were strongly expressed, our analysis shows that 1252 of
the 5038 genes show some statistically significant level of periodic
activity higher than the estimated noise level within the elutria-
tion2 experiment, and 332 of these show periodic activity with a
magnitude twice as high or greater than the estimated noise level.
The noise level, which the multivariate ε-SVR model determines
through the ε-tube width free parameter, was used as a significance
measure in comparison to the periodic amplitude ρi determined by
the periodic model’s curve-fitting algorithm, in order to remove any
potentially biased or arbitrary assumption. The complete list of 332
strongly expressed periodic genes may be found on the author’s
website.

As a visualization of the result, we then compare the magnitude
and phase model parameters of the periodic component of the model
obtained for each gene to determine the relative periodicity in rela-
tion to cell-cycle length for each active gene. This results in a plot
similar to the “peppered fried egg plot” in Gilks et al. (2005)(Fig. 4)
which was obtained from the first two eigenvectors of an SVD for
each gene. Rather than reproduce the actual “egg yolk” (loess curve
of radius of gene expressions through the cell cycle) and “egg white”
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(a) Gene slp1.
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(b) Histone gene h4.2:hhf2.
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(c) Gene bgs4.
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(d) Gene cdc20.

Fig. 2. Modeling periodic gene expression levels for several genes (see Gilks et al., 2005, Fig. 5), comparing sixth-degree polynomial regression, ε-SVR
and linear regression to the periodic model proposed in this paper, from the elutriation2 data set. The legend for all four figures is as (d) (not shown in other
figures for clarity). These results agree with the findings in Gilks et al. (2005), with slp1 and hhf2 exhibiting highly periodic behaviour but finding much less
periodicity with bgs4 and cdc20. However, although the ε-SVR model finds some evidence of a second peak in bgs4, found to be slightly biperiodic in Gilks
et al. (2005), the other models ignore this secondary peak as experimental noise. Also, cdc20 was thought to be non-periodic in Gilks et al. (2005), however
these results do find some evidence of weak cell-cycle periodicity.

(loess curve of the density of genes through the cell cycle) indivi-
dually, we combine these into a single curve as an indication of
the average total gene expression through the cell cycle, and fit the
curve using univariate ε-SVR rather than a loess curve: since the
free parameters for ε-SVR are obtained through the same simula-
ted annealing heuristic in Boardman and Trappenberg (2006), no
smoothing assumption is necessary (a “span” is needed for the loess
curve method, determining a breadth of values for smoothing). This
appears more intuitive and gives a better picture of the activity of
the mitotic genes. This visualization is presented in Fig. 6 for the
407 genes identified as periodic by Rustici et al. (2004). In this plot,
all genes identified as periodic by the model are shown, regardless
of the NRMSE statistic.

However, we may not wish to trust that these 407 genes truly are
periodic: if we apply logical thresholds on the full set of all 5038
genes to determine which are strongly periodic, can we obtain the
same result?

In Fig. 7, we show the rotational plot of the cell-cycle for all genes
identified as significantly periodic by the additive model (i.e. those

with a periodic amplitude ρi > 2 ε) and for which the NRMSE stati-
stics are below GFSV M < 0.4 and GFModel < 0.6. Those genes
with a large decay constant αi × 1000 > 3 are also removed from
the plot, as a large decay constant indicates that the curve-fitting
procedure considers the linear component of the additive model to
be too highly significant and was not able to properly converge. It
seems likely in these cases that the slowly changing gene expression
levels described by the linear component are due to some unob-
served, external factor (such as changing ambient light levels, for
example) rather than simply sensor drift in the microarray reader.
This resulted in the selection of a total of 274 genes, shown in Fig. 7.

These thresholds were selected arbitrarily, based on the empiri-
cal distributions of each parameter, however it would be better to
set these thresholds based on sound biological reasoning: for the
moment, we leave this as future work. Note that the average total
gene expression curve strongly resembles that of Fig. 6. The full
set of genes identified as strongly periodic in this way can be found
on the author’s website, with rotational plots for both the 407 peri-
odic genes identified by Rustici et al. (2004) and the 274 identified
here, including both the average total gene expression curve and the

6



Modeling Periodic Microarray Data

0 50 100 150 200 250

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (min)

N
or

m
al

iz
ed

 G
en

e 
E

xp
re

ss
io

n 
R

at
io

(a) Gene slp1.
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(b) Histone gene h4.2:hhf2.
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(c) Gene bgs4.
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(d) Gene cdc20.

Fig. 3. Modeling periodic gene expression levels for several genes (see Gilks et al., 2005, Fig. 5), comparing multivariate ε-SVR (thin line) within ε error
bounds (thin dashed lines) and the periodic model with cell-cycle length fixed at Λ = 153.9 minutes (thick line) with the original observed data (×). The
ε-SVR appears more jagged than in the univariate comparison (Fig. 2) since with the multivariate model only those points defined by the remaining genes may
be used, whereas in the univariate model (which considers only the time vector as input) the curve may be evaluated at much finer resolution. It is important to
note that in the multivariate case, the time vector itself is not used as an input: only those 3515 genes which have 100% of the data points (and which are not
the target gene!) are used.

separated radius and density curves for comparison.

4 DISCUSSION
Comparing the visualization of the 407 periodic genes in Fig. 6 to
those of Gilks et al. (2005)(Fig. 4), it is clear that the combined
multivariate ε-SVR and non-linear curve-fitting approach has been
successfully applied to this data set. There are many similarities
between these plots, for example we see nine of the histone genes
(those starting with h) occurring at the same point in the cycle in
both plots, and the slp1, plo1 and spd1 genes appear to match as
well.

There are also some differences, most likely since we only consi-
der the elutriation2 experimental data in this analysis, rather than the
fusion of all nine experiments. For example, the rds1 gene appears to
be active earlier in the cycle. Several genes have stronger expression
in this plot, for example the meu19, exg1 and etd1 genes appear in
Fig. 6 but are not labelled as outliers in Gilks et al. (2005)(Fig. 4).
There also appears to be a greater deviation between those genes

with small expression and those with large expression, this may be
partly due to the loss of information in plotting only two dimensions
of the SVD, which in Gilks et al. (2005) were estimated to contain
83% of the SVD information.

In the visualization plot in Fig. 7, of all genes found to be stron-
gly periodic by our model, we see more examples of genes with
strong enough expression to be labelled as outliers. For exam-
ple, the C191.09c, C15D4.08c and C359.04c genes appear to be
strongly periodic. Fusion of this data with the remaining synchro-
nization experiments could determine if these are truly additional
periodic that were not originally discovered in the analyses of Gilks
et al. (2005); Rustici et al. (2004). It is clear that overall, howe-
ver, the genes identified in these two plots match fairly closely: the
curve describing the average total gene expression throughout the
cell-cycle is nearly identical in both plots.

This data fusion would be the next logical step in this analy-
sis, and could be implemented as follows. We would first perform
the same cleaning and data imputation procedure for each of the
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Fig. 4. (a) Distribution of cell-cycle length from the elutriation2 data set for each gene, found by the periodic model using the cleaned multivariate ε-SVR
data set as input. The 407 genes identified as periodic by Rustici et al. (2004) were used to find the median cell-cycle length of 153.9 minutes. Note that the
sharp distribution allows high confidence in the resulting cell-cycle estimate. (b) Distribution of the amplitude of the periodic component of the additive model,
for those genes with a statistically significant periodic amplitude, ie. greater than the estimated observed noise ε determined by the multivariate analysis. The
majority of the genes exhibit low periodicity, but a significant number are strongly expressed with amplitude ρ > 2 ε = 0.152. (c) Distribution of the GF SV M

NRMSE statistic for all genes, between the original data and the data cleaned by multivariate ε-SVR. The median NRMSE is 0.5725. (d) Distribution of the
GF Model NRMSE statistic for all genes, between the data cleaned by multivariate ε-SVR and the predictions of the periodic model. The median NRMSE is
0.5322. Note the difference in the overall shape of the distributions in (c) and (d), although both have similar median values.

nine cell-cycle synchronization experiments performed by Rustici
et al. (2004). From the analysis in Gilks et al. (2005), we know that
the cell-cycle length and phase both will significantly vary between
experiments due to the differences in synchronization procedures:
the use of a periodic model allows us to estimate the cell-cycle
length for each experiment individually. The phase for each expe-
riment could then be estimated using a representative set of genes,
such as the nine histone genes, using a best-fit optimization. The
resulting cell-cycle length and phase for each experiment could then
be used to create a time vector for each observation, for each gene,
for each experiment, using an idealized cell-cycle stretching from 0
to 2 π. Univariate ε-SVR could then be applied to each gene indivi-
dually to determine the most likely curve within this idealized cycle,
and our curve fitting procedure could then determine the magnitude
and phase of each gene as performed above. The results of this
non-linear fusion might be interesting to compare with the above
data, for example to determine how accurately the single elutria-
tion2 data set shows the periodic expression of each gene compared

to the fusion of all sets, however, unfortunately, this is beyond the
scope of the analysis performed in this paper. We therefore leave
this for future work.

Another avenue for future work may be to determine the sensi-
tivity of each gene to the values of the remaining genes using a
modified Monte Carlo approach. For example, the formation of the
SVM allows us to set all input genes to zero, the average expres-
sion level of the normalized input genes, then vary the values of
each independently to determine which genes affect the outcome of
the regression, and to quantify the extent of this effect and rank the
input genes accordingly. This in turn would show us which groups of
genes are closely related, and could perhaps lead to an advanced clu-
stering technique, progressively forming a dendrogram based solely
on these sensitivity relationships.

A simple web interface is available online at the author’s website,
allowing users to browse through the original observations, clea-
ned data set and generated models for the 407 periodic genes used
in these experiments, for both fixed and unfixed cell-cycle length

8



Modeling Periodic Microarray Data

0 50 100 150 200 250
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time (min)

N
or

m
al

iz
ed

 G
en

e 
E

xp
re

ss
io

n 
R

at
io

(a) Gene C328.05.
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(b) Gene C15A10.10.
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(c) Gene C1105.13c.
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(d) Gene C8E4.06.

Fig. 5. A museum of interesting genes found through the course of this analysis, showing the potential power of the multivariate ε-SVR algorithm. Since one
of the strengths of SVM is to generalize the solution to a problem from a low number of observed samples, we would expect superior imputation performance
for a data set such as this. It is important to note that the time vector is not used as an input for the ε-SVR: when imputing observations for a target gene,
only that gene’s relations to the remaining genes are considered. (a) Imputation of a single observation (at t = 30 min) with a higher than normal level of
noise and small expression levels. (b) Data for the first cycle is present, but the second cycle is entirely imputed. KNN or other linear methods would simply
assume a flat curve for the second cycle, but the relationships between genes in this multivariate approach allows the true expression of this gene to be seen.
(c) Imputing periodicity from only three observations, and (d) from only two observations: these are possible since the observations are not closely spaced,
so that the differences in other genes allow for prediction even in these seemingly impossible scenarios. Of course in practice, it would be unwise to rely on
data modelled on only two or three observations; fusing the results from this experiment with the other experiments with different cell-cycle synchronization
techniques, or simply repeating the particular experiment, would allow us to determine if these predictions are true.

and to see the genes identified here as strongly periodic. This com-
parison for each gene is available in both PNG and PDF formats,
suitable for on-screen viewing and printing respectively.

From our analysis of the full elutriation2 data set visualized in
Fig. 7, we conclude that our combined technique of data impu-
tation and noise reduction by multivariate ε-SVR, and non-linear
curve-fitting by a periodic, additive model, is well-suited for the
identification of periodic genes from DNA microarray data.
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Fig. 6. A rotational plot of the periodic magnitude and phase, as captured by the periodic additive model created by the data set cleaned by multivariate
ε-SVR, of each of the 407 genes identified as periodic by Rustici et al. (2004). The black dots indicate the periodic expression of individual genes, with some
outliers labeled. The curve represents the average total gene expression throughout the cycle, smoothed by a univariate ε-SVR based on a histogram with 100
bins. Note the activation of the histone genes (those that start with h), clustered together near the bottom of the cycle, with a corresponding bump in the gene
expression curve. This figure may be compared with Gilks et al. (2005) Fig. 4, which was obtained through singular value decomposition (SVD) rather than a
periodic, additive model.
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Fig. 7. A rotational plot as Fig. 6, but including only the 274 genes determine to be strongly periodic by our analysis. Note that the average total gene
expression curve strongly resembles that of Fig. 6, indicating that differences between the plots will most likely be found in genes with small expression.
Statistical significance was used to limit the genes from the 5038 original genes to the 332 found to have a periodic component of the additive model with an
amplitude ρi > 2 ε, where ε is the estimated experimental noise provided by the free parameter estimation technique. Genes were further reduced by including
only those with a goodness-of-fit values GF SV M < 0.4 and GF Model < 0.6. Those genes with a large decay constant αi × 1000 > 3 were also removed
as the high linear component appeared to prevent convergence of the non-linear curve-fitting.
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