
Efficient Data Structures for Risk Modelling in

Portfolios of Catastrophic Risk Using

MapReduce

Andrew Rau-Chaplin, Zhimin Yao and Norbert Zeh

Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
arc@cs.dal.ca, zhimin.yao@dal.ca, nzeh@cs.dal.ca

Abstract

The QuPARA Risk Analysis Framework [18] is an analytical framework implemented using
MapReduce and designed to answer a wide variety of complex risk analysis queries on
massive portfolios of catastrophic risk contracts. In this paper, we present data structure
improvements that greatly accelerate QuPARA’s computation of Exceedance Probability
(EP) curves with secondary uncertainty.

1 Introduction

The financial management of the risk associated with catastrophic events such as earthquakes,
hurricanes, and large-scale floods falls largely to insurance and reinsurance companies [6]. Their
risk portfolios may consist of thousands of reinsurance contracts covering millions of individually
insured locations. To quantify risk and to help ensure capital adequacy, each portfolio must be
evaluated with respect to a range of risk metrics that take the uncertainty associated with both
event order and magnitude into account [1]. The QuPARA Risk Analysis Framework, which was
introduced in [18], is an analytical environment implemented using MapReduce [8,13] and
designed to answer a wide variety of complex risk analysis queries on portfolios of catastrophic
risk. Given a reinsurance company’s portfolio, QuPARA’s core analytical function is to compute
Exceedance Probability (EP) curves [23,24], which represent, for each of a set of user-specified loss
values, the probability that the total claims a reinsurer will have to pay out exceeds this value.
Not surprisingly, there is no computationally feasible closed-form expression for computing such an
EP curve over hundreds of thousands of events and millions of insured properties. Consequently, a
computationally very intensive simulation approach must be taken that evaluates each portfolio in
up to a million simulation trials and then aggregates the expected losses calculated for each trial
to obtain a loss distribution. If QuPARA is to be useful in practice, it must be able to quantify
portfolio-level risk on large portfolios efficiently.

In this paper, we present data structure enhancements that greatly accelerate QuPARA’s
computation of EP curves with secondary uncertainty over large risk portfolios [19]. Our approach
is to combine data structure design with systematic in-depth experimental evaluation and
tuning. We have succeeded in reducing the memorty useage of the core lookup data structure
(CELT) by over 50%, which allows us to double the batch size per QuPARA run within a
Hadoop/MapReduce environment. The construction time of the data structure has been improved
by 40%, and the total lookup time was decresed by 42%. Since there are certian Hadoop system
overheads and mathmatical calculations involved in the analysis process, we achieve an overall
performance improvement of 31.7%.

1

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

2 Portfolio-Level Catastrophic Risk Modelling

Portfolio-level catastrophic risk modelling [2,10,12,15,24] is the central analytical concern of
modern reinsurance companies. A reinsurance company typically holds a portfolio of catastrophic
risk programs that insure primary insurance companies against large-scale losses, like those
associated with earthquakes, hurricanes, and large-scale floods [6]. Each program contains data
that describes (1) the buildings to be insured (the exposure), (2) the modelled risk to that
exposure (the event loss tables), and (3) a set of risk transfer contracts (the layers) [3, 18].

The exposure is represented by a table, one row per covered building, that lists the building’s
location, construction details, primary insurance coverage, and replacement value. The modelled
risk is represented by an event loss table (ELT) [2]. This table lists, for each of a large set of
possible catastrophic events, the expected loss that would occur to the exposure should the event
occur. Finally, each layer (risk transfer contract) is described by a set of financial terms that
includes aggregate deductibles and limits (i.e., deductibles and maximal payouts to be applied to
the sum of losses over the year) and per-occurrence deductibles and limits (i.e., deductibles and
maximal payouts to be applied to each loss in a year), plus other financial terms. See [2, 4, 10, 12]
for details.

As an example, the exposure of a Florida hurricane program might list 2 million buildings
including their locations, construction details, primary insurance terms, and replacement values.
The ELT might, for each of 100,000 possible hurricane events in Florida, give the sum of the losses
expected to the associated exposure should the event occur. ELTs are the output of stochastic
region peril models [12] and typically also include some additional financial terms. Finally, the risk
transfer contract might consist of multiple layers (or subcontracts). The first layer might be a
per-occurrence layer that pays out a 60% share of losses between 160 million and 210 million
associated with a single catastrophic event. The second layer might be an aggregate layer covering
30% of losses between 40 million and 90 million that accumulate due to hurricane activity over the
course of a year.

Given a reinsurance company’s portfolio described in terms of exposure, event loss tables, and
layers, the most fundamental type of analysis query computes an Exceedance Probability (EP)
curve, which represents, for each of a set of user-specified loss values, the probability that the total
claims a reinsurer will have to pay out exceeds this value [5]. Not surprisingly, there is no
computationally feasible closed-form expression for computing such an EP curve over hundreds of
thousands of events and millions of individual exposures. Consequently, a simulation approach
must be taken. The idea is to perform a stochastic simulation based on a year event table
(YET). This table describes a large number of trials, each representing one possible sequence of
catastrophic events that might occur in a given year. This YET is generated by an event simulator
that uses the expected occurrence rate of each event plus other hazard information like seasonality.

In this paper, we focus on the computationally intensive task of computing the expected loss
distribution (i.e., EP curve) for a given portfolio, given a particular YET [14]. The loss distribution
is computed from the portfolio and the YET in two phases. The first phase computes a year loss
table (YLT). For each trial in the YET, each event in this trial, and each ELT that includes this
event, the YLT contains a tuple 〈trial, event, ELT, loss〉 recording the loss incurred by this event,
given the layer’s financial terms and the sequence of events in the trial up to the current event.
The second phase then aggregates the entries in the YLT to compute the final loss distribution.

Note that the loss value for each event is not a simple mean value because there are a
multitude of possible loss outcomes for any given event, modelled as a probability distribution of
loss values associated with the event rather than a single value. This probability distribution
captures that we are unsure about certain exposure and hazard parameters and their interactions.
We refer to this as secondary uncertainty [14], in contrast to the primary uncertainty whether an

2

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

Figure 1: The Query-Driven Portfolio Aggregate Risk Analysis (QuPARA) Framework

event occurs, which is modelled by the YET.

3 The QuPARA Risk Analysis Framework

The QuPARA Risk Analysis Framework, which was introduced in [18], is an analytical environment
designed to answer a wide variety of complex risk analysis queries on portfolios of catastrophic
risk. In this section, we provide a brief overview of its basic architecture (see Figure 1) so we can
explore efficient data structures to enhance its performance in Section 4.

In order to answer ad hoc portfolio risk queries in a timely manner, the QuPARA framework
supports a parallel implementation of such queries using the MapReduce programming model.
The computation of the YLT is the responsibility of the mapper, while the computation of the
final loss distribution(s) is done by the reducer [18,19].

QuPARA employs the MapReduce framework [8,13,21,22] to evaluate each query using a
single round consisting of a map/combine step and a reduce step. During the map step, the
engine uses one mapper per trial in the YET, in order to construct a YLT from the YET. The
combiner and reducer collaborate to aggregate the loss information in the YLT into the final loss
distribution. There is one combiner per mapper. The combiner pre-aggregates the loss information
produced by this mapper, in order to reduce the amount of data to be sent across the network to
the reducer(s) during the shuffle step. The reducer(s) then carry out the final aggregation.

Each mapper retrieves the set of ELTs required for the query from the distributed file system
using a layer filter and an ELT filter. Specifically, the query may specify a subset of the layers in
the portfolio to be the subject of the analysis. The layer filter retrieves the identifiers of the ELTs
contained in these layers from the layer table. If the query specifies, for example, that the analysis
should be restricted to a particular type of peril, the ELT filter then extracts from this set of
ELTs the subset of ELTs corresponding to the specified type of peril. Given this set of ELT
identifiers, the mapper retrieves the actual ELTs and, in memory, constructs a combined ELT or
CELT associating a loss with each 〈event, ELT〉 pair. It then iterates over the sequence of
events in its trial, looks up the ELTs recording non-zero losses for each event, and generates the
corresponding 〈trial, event, ELT, loss〉 tuple in the YLT, taking each ELT’s financial terms into
account. The aggregation to be done by the combiner depends on the risk query. A reducer,
finally, receives one loss value per trial. It sorts these loss values in increasing order and uses this
sorted list to generate a final loss distribution.

3

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

The following is a more detailed description of the mapper, combiner, and reducer used in
QuPARA with a particular focus on the Mapper and the use of the CELT data structure, which is
the critical component in terms of analysis efficiency.

Mapper: The mapper, shown in Algorithm 1, takes as input an entire trial and the list of
its events, represented as a pair 〈T,E := {E1, E2, . . . , Em}〉. Algorithm 1 does not show the
construction of the CELT and layer list (LLT) performed by the mapper before carrying out the
steps in lines 1–9. The loss estimate of an event in a portfolio is computed by scanning through
every layer L in the LLT, retrieving and summing the loss estimates for all ELTs covered by this
layer, and finally applying the layer’s financial terms.

Combiner: The combiner receives as input the list of triples 〈T , Ei, lPF 〉 generated by a single
mapper, that is, the list of loss values for the events in one specific trial. The combiner groups
these loss values according to user-specified grouping criteria and outputs one aggregate loss value
per group.

Reducer: The reducer receives as input the loss values for one specific group and for all trials in
the YET. The reducer then aggregates these loss values into the loss statistic requested by the
user. For example to generate an exceedance probability curve, the reducer sorts the received loss
values in increasing order and, for each loss value v in a user-specified set of loss values, reports
the percentage of trials with a loss value greater than v as the probability of incurring a loss
higher than v.

Algorithm 1: Mapper in parallel aggregate risk analysis

Input: 〈T,E := {E1, E2, · · · , Em}〉 where m is the number of events in a trial, a set of
event loss tables ELT1, ELT2, . . . , ELTn, and layer list (LLT).

Output: A list of entries 〈T,Ei, lPF 〉 of the YLT

1 Construct from event loss tables ELT1, ELT2, . . . , ELTn an in-memory combined event loss
set data structure (CELT) as illustrated in Figure 2.

2 for each event, Ei in E do
3 Look up Ei in the CELT and find corresponding losses, lEi = {l1Ei

, l2Ei
, · · · , lnEi

}, where

ELT1, ELT2, . . . , ELTn are the ELTs in the CELT
4 for each layer, L, in the LLT do
5 for each ELT ELTj covered by L do

6 Lookup ljEi
in lEi

7 lL ← lL + ljEi

8 Apply L’s financial terms to lL
9 lPF ← lPF + lL

10 Emit(〈T , Ei, lPF 〉)

In practice, the construction of the CELT at line 1 of Algorithm 1 and lookups in this massive
random access data structure at line 3 of Algorithm 1 dominate the running time of this algorithm.
Another major bottleneck is the size of the CELT, which exceeds the RAM size on our hardware.
This forces us to split the computation of the YLT into batches. Each batch computes the YLT
for a subset of layers and needs to be implemented as a separate MapReduce job. Once all
batches have been processed, the final job carries out the work of the reduces in the above

4

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

description. Thus, major improvements of the efficiency of QuPARA can be achieved by reducing
the construction and lookup costs of the CELT and, since starting a MapReduce job incurs a
non-trivial overhead, by increasing the number of layers that can be stored by the CELT in the
same amount of memory and thereby reducing the number of batches required for a portfolio-level
analysis. This is the focus of the remainder of this paper.

4 An Efficient CELT Data Structure

In this section, we describe a thorough experimental evaluation of different candidate implementa-
tions of the CELT and choose the one most suitable for the performance evaluation of the whole
QuPARA system, which is presented in Section 5. First we outline our experimental setup.

4.1 Experimental Setup

The experiments in the remainder of this paper were performed on a 2.66GHz Quad Core Intel
Xeon X3350 processor with 4GB DDR2 RAM and three 1TB 7,200rpm SATA disk drives. The
operating system was CentOS 6.3 with Java version 1.7.0 03. The Java heap size was limited to
2GB in these experiments. The system evaluation in Section 5 was performed on a cluster of 19 of
these machines configured into a Rocks cluster [9] connected using Gigabit Ethernet. For the
performance evaluation of QuPARA, the Java heap size per node in the cluster was limited to
1GB, in order to set aside memory needed for the Hadoop runtime system [20,22]. Hadoop and
HDFS was provided as part of the Cloudera BigData platform version 4.7.3 [7], which provides
Hadoop version 2.0.0-cdh4.5.0, HIVE version 0.10.0, and Pentaho version 4.8-CE. One of the 19
nodes in the cluster was configured as a master node running the job tracker and job queue and
serving as the major name node for HDFS, while the remaining nodes were worker nodes (and
data nodes for HDFS) with a total of 72 cores available to run MapReduce jobs. The maximum
capacity of HDFS on our system was 20TB.

The data sets used in our experiments were sampled uniformly at random from a real-world
portfolio consisting of 1,600 layers with 5 ELTs per layer and 10,000 loss entries per ELT. Each
loss entry consisted of one integer and four doubles representing the event id and various loss
perspectives, respectively. The YET used for the experiments consisted of 1,000,000 trials, each
containing 1,000 events.

4.2 High-Level Data Structure

An ELT stores the loss information associated with each event it covers. Each ELT has a unique
identifier. The CELT combines a number of ELTs into one table. The basic lookup operation to
be performed on the CELT is to access the loss information for a given (ELT, event) pair. Thus,
the CELT is a matrix that stores loss information indexed by ELT ID and event ID.

In theory, the fastest access time is achieved by storing the CELT as a 2d array, as it allows
trivial constant-time lookup of the loss information associated with a given (ELT, event) pair
using simple index arithmetic. However, since the valid range of event and ELT IDs is the range of
32-bit integers, the size of such a representation would be astronomical. Even if we perform index
mapping on the row and column IDs of the array so we store only columns corresponding to ELTs
included in the CELT and only rows corresponding to events included in at least one of these
ELTs, the table is extremely sparse, as the loss value associated with most (ELT, event) pairs is
zero. Thus, even this representation is wasteful.

A simple space-efficient representation of a sparse matrix with expected constant lookup time
is a two-level structure consisting of a primary hash table indexed by row indices; the value

5

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

. . .

. . .

5 88

loss 5 1 loss 88 1

ELT ID

Loss data

. . .

. . .

8 11

loss 8 35 loss 11 35

ELT ID

Loss data

. . .

. . .

Event ID Secondary table

1

35

156

3600

.

Secondary tablesPrimary table

Figure 2: Two-level structure of the CELT

associated with each row index is a reference to a secondary hash table storing the non-zero
entries in this row indexed by their column indices. Since the mapper in QuPARA iterates over
event IDs and in each such iteration, iterates over the ELTs that record non-zero values for the
current event ID, cache locality is improved by choosing event IDs as the row indices used to index
into the primary hash table and ELT IDs as the column indices used to index into the hash
tables representing the individual rows (see Figure 2). We refer to this two-level data structure
implemented using Java STL HashMaps [16] as our baseline implementation, which we aim to
improve on in terms of space usage, construction time, and lookup time.

An insertion of a value v with key (e, t) into this CELT data structure first looks up the event
ID e in the primary table. If this event ID is found, its associated value is a secondary table, into
which v is inserted with key (ELT ID) t. If e is not found in the primary table, we first create a
new secondary table and insert it into the primary table with key e. Then we insert v with key t
into the secondary table just created.

Similarly, a lookup operation with key (e, t) first looks up the event ID e in the primary table.
If the event ID is not found, the operation returns immediately and reports that there is no value
associated with key (e, t) in the CELT. If the event ID is found, its associated value is a secondary
table and we return the result of the lookup with key t in this table (which may be that no value
is associated with key t in this table).

In QuPARA, all CELT lookups with the same event ID e (but different ELT IDs) are
consecutive. Thus, we can optimize lookups further by performing only a single lookup with key e
in the primary table for all these lookup operations. If this lookup fails, we can report failure for
the entire batch of lookup operations. If it succeeds, we use the returned secondary table for
lookups using the ELT IDs in this query batch. This optimization reduces the total lookup cost in
the primary table during a QuPARA run to a minimum, so the lookup cost in the secondary
tables dominates the total time spent on CELT lookups. Given that the space usage of the CELT
representation is also dominated by the space occupied by secondary tables, our focus is mostly on
optimizing the insertion and lookup times and the space usage of the secondary tables.

4.3 Choice of HashMap Implementation

There exist a number of open-source alternatives to the Java standard library (STL) whose data
structures have been optimized for performance. The HashMaps in the two-level structure we have
just described can be implemented using the HashMap implementations provided by any of these
libraries. In our experiments, we considered the Java STL HashMap [?], the TIntObjectHashMap
class provided by the GNU Trove library [11], and the IntObjectOpenHashMap class provided by
the high-performance primitive collections (HPPC) library [17].

In order to ensure that each implementation achieves its maximum performance in terms of

6

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

construction and lookup time, we tuned various JVM parameters that impact the garbage
collection overhead involved in these operations. These parameters include the initial heap size
and the ratio between the amounts of space allocated to the young and old generations in Java’s
generational garbage collector.

A higher initial heap size makes the program use more memory initially but reduces the
number of times the heap needs to be resized as the heap space currently allocated becomes
insufficient to hold newly created objects. Since QuPARA processes layers in batches chosen to
fully utilize the available memory, the heap will always eventually fill up the entire memory, so
there is no space penalty to allocating the maximum available heap space also as the initial heap
size, but the performance benefit of avoiding heap resize operations altogether is significant. We
verified experimentally that setting the initial heap size to the maximum heap size (2GB on our
system) results in the best performance for all three HashMap implementations.

A higher ratio between the young and old generation’s space allocations reduces the frequency
of minor garbage collection runs (which sweep only the young generation) but may lead to old
objects remaining in the young generation’s space if there is no room left in the old generation’s
space. When this happens, old objects are swept repeatedly during minor GC runs, which hurts
performance. In QuPARA, a very large number of permanent objects (that all eventually become
old) are created as part of the CELT. Thus, allocating more space to the old generation should
be beneficial. We verified experimentally that the STL HashMap achieves the best overall
performance (lookup and insertion performance) with a young-old ratio of 1:3. For the Trove and
HPPC HashMaps, the optimal ratios were 1:2 and 1:3, respectively.

In our performance comparisons, we ran each implementation using its optimal JVM
parameters as determined above. We compared the space used by each implementation needed to
store the same number of elements, and the times taken to process batches of insertions and
lookups. Since we first construct the CELT by inserting loss values into it one by one and then
perform lookups on the constructed CELT without changing it further, these experiments are
representative of the performance characteristics of these HashMap implementations as part of a
QuPARA run.

Figures 3, 4, and 5 respectively compare the total insertion time as a function of the number of
insertions performed, the total time taken to process 10m lookups as a function of the number of
elements inserted into the HashMap, and the memory footprint of the HashMap as a function of
the number of inserted elements. The insertion cost of all three implementations differed little up
to 9m elements. However, the higher memory footprint of the STL and Trove HashMaps compared
to the HPPC HashMap made the garbage collector thrash as these two implementations ran out of
memory at 10m and 11m insertions, respectively. The HPPC HashMap also runs out of space
eventually, but this happens only after 15 million insertions. The Trove HashMap implementation
achieves the lowest lookup cost, which is 4% lower than the lookup cost of the HPPC HashMap,
and 24% lower than the lookup cost of the STL HashMap. Given that a smaller memory footprint
enables us to process fewer, larger batches of layers in QuPARA, the substantially higher number
of elements that can be handled by the HPPC HashMap implementation in the 2GB of memory
we had available compared to the Trove HashMap implementation outweighs the 4% increase in
lookup performance, and we conclude that the HPPC implementation is the best choice of
HashMap implementation to be used in our CELT implementation.

4.4 Hybrid CELT Implementation

An obvious approach to further reduce the space used by the secondary tables (and, hence, of the
entire CELT), in order to increase the size of the batches QuPARA can process, is to implement
the secondary tables as ArrayLists rather than HashMaps. Since we continue to use an HPPC

7

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 2 4 6 8 10 12 14 16

T
o

ta
l
in

se
rt

io
n

 t
im

e
 (

s)

Million insertions

STL
Trove
HPPC

Figure 3: Insertion times of the different
HashMap implementations

 0

 1

 2

 3

 4

 5

 6

0 2 4 6 8 10 12 14 16

T
o

ta
l
lo

o
k
u

p
 t

im
e

 (
s)

Million elements

STL
Trove
HPPC

Figure 4: Total time for 10m lookups using the
different HashMap implementations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16

M
e

m
o

ry
 u

sa
g

e
 (

G
B

)

Million elements

STL
Trove
HPPC

Figure 5: Memory usage of the different
HashMap implementations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18 20 22

M
e

m
o

ry
 u

sa
g

e
 (

G
B

)

Million elements

HPPC
Hybrid

Figure 6: Memory usage of the HPPC HashMap
CELT and the hybrid CELT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

0 2 4 6 8 10 12 14 16 18 20 22

T
o

ta
l
in

se
rt

io
n

 t
im

e
 (

s)

Million insertions

HPPC
Hybrid

Figure 7: Insertion times of the HPPC
HashMap CELT and the hybrid CELT

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

0 2 4 6 8 10 12 14 16 18 20 22

Million insertions

HPPC
Hybrid / binary search
Hybrid / hybrid search

Figure 8: Total time for 10m lookups on the
HashMap CELT and the hybrid CELT

8

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

5
3
0

5
5

8
0

1
0
5

1
3
0

1
5
5

1
8
0

2
0
5

2
3
0

2
5
5

2
8
0

3
0
5

3
3
0

3
5
5

3
8
0

4
0
5

4
3
0

4
5
5

4
8
0

5
0
5

5
3
0

5
5
5

5
8
0

6
0
5

6
3
0

F
re

q
u

e
n

cy

Number of elements

Figure 9: Distribution of secondary table sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

T
o

ta
l
lo

o
k
u

p
 t

im
e

 (
s)

List size

Binary
Linear

Figure 10: Lookup times using binary and
linear search

HashMap to implement the primary table, we refer to this as a hybrid CELT implementation. As
can be seen in Figure 6, the hybrid CELT implementation uses substantially less space than the
CELT implementation using only HPPC HashMaps, which we refer to as the HPPC CELT
implementation. The construction of the hybrid CELT proceeds in two phases: The first phase
inserts elements one by one as in the HPPC CELT but simply appends each key-value pair
inserted into a secondary table to the end of this table. Once all loss values have been inserted
into the CELT, we sort the entries in each secondary table by their keys to enable lookups using
binary search in these tables. Lookup operations on the hybrid CELT differ from the lookups on
the HPPC CELT only in that they use binary search on the secondary tables.

Figure 9 shows the distribution of secondary table sizes. Since over 80% of the secondary
tables store 5 or fewer elements, searching them using binary search takes constant time. While
the lookup cost of the HPPC CELT is lower than that of the hybrid CELT, as can be seen in
Figure 8, the penalty is outweighed by the increase in the batch size that can be processed by
using the hybrid CELT implementation (22m vs. 15m elements, a 46% increase). As can be
seen in Figure 7, the insertion times of the hybrid CELT and the HPPC CELT differed only
insignificantly until the HPPC CELT started thrashing at its limit of 15m elements.

The performance comparisons in Figures 6, 7, and 8 were again performed using the optimal
JVM parameters for each implementation. For the hybrid CELT implementation, we verified
experimentally that an initial heap size of 2GB once again yielded the best performance, as did a
young-old ratio of 1:2.

The heavy bias towards small secondary tables in the CELT suggests another performance
improvement we can apply. As shown in Figure 10, for tables up to around 35 elements, linear
search is faster than binary search, that is, linear search is faster for most of the secondary tables
in our CELT. Thus, we implemented a hybrid search strategy that employs linear search for
secondary tables of up to 35 elements and binary search for larger secondary tables. Figure 8
compares the lookup times achieved by the two CELT implementations and the two search
strategies (binary or hybrid) for the hybrid CELT implementation. As expected, the hybrid search
strategy improves the competiveness of the hybrid CELT implementation in terms of its lookup
cost. Combined with the substantially larger batch size enabled by the hybrid CELT and its
competitive construction time, this leads us to conclude that the hybrid CELT implementation
with a hybrid search strategy is the best choice of CELT implementation to be used in QuPARA.

9

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

5 QuPARA Performance Evaluation

We evaluated the speed-up, size-up, and scale-up of our QuPARA implementation on the Hadoop
cluster and data sets described in Section 4.1.

Speed-up. The speed-up of a parallel program is the ratio between the running time it achieves
on a single core and the running time it achieves on P cores. Linear speed-up means that the
speed-up for P cores is P , that is, the work is perfectly balanced across the cores. For the
speed-up test, we fixed the input size at 1,600 layers and increased the number of worker nodes
from 1 to 18, that is, the number of cores from 4 to 72. Figures 11 and 12 show the running times
and speed-up values achieved, respectively. Up to 24 cores (6 nodes), the speed-up is almost linear.
Beyond 24 cores (6 nodes), the speed-up starts to decrease. Due to the substantially decreased
overall computation time, the fixed overhead involved in starting Hadoop jobs starts to account for
a greater fraction of the total running time at this point. Even so, our implementation achieved a
speed-up of 64 with 72 nodes, an efficiency of 88%. This can be considered a very good speed-up
result, particularly given that a MapReduce implementation is less fine-tuned than a carefully
handcrafted parallel risk modelling system.

Size-up. The size-up shows how the running time increases with the input size for a fixed
number of cores. Ideally one would aim for this increase to be linear. For the size-up test, we fixed
the number of cores at 72 and increased the input size from 100 to 1,600 layers. Figure 13 shows
the running time as a function of the number of layers and demonstrates that the running time
increases linearly with the input size.

Scale-up. The scale-up measures the running time of the system while keeping the ratio
between input size and cores fixed. If the running time remains constant, this demonstrates that
the system is able to scale to larger input sizes, given a proportionally increased amount of
resources. For the scale-up test, we fixed the number of layers per node (4 cores) at 100 layers and
increased the number of nodes from 1 to 18. Thus, up to 9,000 ELTs were considered. Figure 14
shows a very slow increase in the total running time, despite the constant amount of computation
to be performed by each node. This is due to the increase in the setup time required by the
Hadoop job scheduler and the increase in network traffic. Nevertheless, the increase in running
time was very slight, so if the hardware scales with the input size, QuPARA is able to process
large inputs.

References

[1] E. d. Alba, J. Ziga, and M. A. R. Corzo. Measurement and transfer of catastrophic risks. ASTIN
Bulletin, 40(2):547–568, 2010.

[2] RR Anderson and Wemin Dong. Pricing catastrophe reinsurance with reinstatement provisions using
a catastrophe model. Casualty Actuarial Society Forum, pages 303–322, 1988.

[3] A. K. Bahl, O. Baltzer, A. Rau-Chaplin, and B. Varghese. Parallel Simulations for Analysing
Portfolios of Catastrophic Event Risk. In Proceedings of the International SuperComputing Conference
(SC12), Workshop on High Performance Computational Finance, pages 1176–1184, Salt Lake City,
Utah, USA, 2012.

[4] Regina M. Berens. Reinsurance Contracts with a Multi-Year Agguegate Limit. Casualty Actuarial
Society Forum, pages 289–308, 1997.

[5] Bermuda Monetary Authority. Catastrophe Risk Return Guidelines. Technical report, Bermuda
Monetary Authority, 2011.

10

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

4 8 16 24 32 40 48 56 64 72

T
im

e
 (

s)

Cores

Figure 11: Running time of QuPARA on 1,600
layers using between 4 and 72 cores

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 8 16 24 32 40 48 56 64 72

S
p

e
e

d
-u

p

Cores

QuPARA speed-up
Linear speed-up

Figure 12: Speed-up of QuPARA on 1,600
layers using between 4 and 72 cores

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

200 400 600 800 1000 1200 1400 1600

T
im

e
 (

s)

Layers

Figure 13: Running time of QuPARA on
100–1,600 layers using 72 cores

 0

 500

 1000

 1500

 2000

8 16 24 32 40 48 56 64 72

T
im

e
 (

s)

Cores

Figure 14: Running time of QuPARA on 25
layers per core using between 4 and 72 cores

[6] Hervé Castella, Gautier de Montmollin, and Erik Rüttener. Catastrophe Portfolio Modeling: A
Complete View. PartnerRe, Pembroke, 2009.

[7] Cloudera. Cloudera, Ask Bigger Questions, 2014.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

[9] Rocks Cluster Distribution. About Rocks Cluster, 2014.

[10] Weimin Dong, Haresh Shah, and Felix Wong. A Rational Approach to Pricing of Catastrophe
Insurance. Journal of Risk and Uncertainty, 12(2-3):201–218, May 1996.

[11] Rob Eden. GNU Trove: High performance collections for Java, 2013.

[12] P Grossi, H Kunreuther, and C C Patel. Catastrophe Modeling: A New Approach to Managing Risk.
Huebner International Series on Risk, Insurance and Economic Security. Springer, 2005.

[13] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki Moon. Parallel data
processing with mapreduce: A survey. SIGMOD Rec., 40(4):11–20, January 2012.

[14] Dag Lohmann and Feng Yue. Correlation, simulation and uncertainty in catastrophe modeling. In
Proceedings of the Winter Simulation Conference, WSC ’11, pages 133–145. Winter Simulation
Conference, 2011.

11

Efficient Data Structures for Risk Modelling in MapReduce Rau-Chaplin, Yao, and Zeh

[15] Glenn G. Meyers, Fredrick L. Klinker, and David A. Lalonde. The Aggregation and Correlation of
Insurance Exposure. Casualty Actuarial Society Forum, pages 60–152, 2003.

[16] Oracle. HashMap (Java Platform SE 7), 2013.

[17] Stanisaw Osiaski and Dawid Weiss. HPPC: High Performance Primitive Collections for Java, 2013.

[18] A. Rau-Chaplin, B. Varghese, D. Wilson, Z. Yao, and N. Zeh. Qupara: Query-driven large-scale
portfolio aggregate risk analysis on mapreduce. In 2013 IEEE International Conference on Big Data,
pages 703–709, 2013.

[19] Andrew Rau-Chaplin, Blesson Varghese, and Zhimin Yao. A MapReduce Framework for Analysing
Portfolios of Catastrophic Risk with Secondary Uncertainty. Procedia Computer Science, 18(0):2317–
2326, 2013.

[20] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In
Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–10, 2010.

[21] The Apache Software Foundation. Apache Hadoop, 2012.

[22] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[23] Margaret E Wilkinson. Estimating probable maximum statistics loss with order statistics. Casualty
Actuarial Society Forum, pages 195–209, 1982.

[24] Gordon Woo. Natural Catastrophe Probable Maximum Loss. British Actuarial Journal, 8(05):943–959,
2002.

12

	Introduction
	Portfolio-Level Catastrophic Risk Modelling
	The QuPARA Risk Analysis Framework
	An Efficient CELT Data Structure
	Experimental Setup
	High-Level Data Structure
	Choice of HashMap Implementation
	Hybrid CELT Implementation

	QuPARA Performance Evaluation

