
Graphics Support for a World-Wide-Web
Based Architectural Design Service†

Andrew Rau-Chaplin‡ Brian MacKay-Lyons§ Timmy Doucette‡

Jedrzej Gajewski‡ Xiangqun Hu‡ Peter Spierenburg‡

Abstract

This paper describes the design and implementation of a Web-based graphical editor and visualization
tool for 3D architectural forms. This Design Development Tool enables end-users to Select, Customize
and Visualize house designs drawn from a large library. Having used this tool to select a base house
design, the user can customize their selected design using a constraint-based graphical editor, and then
view and walk through a 3D model of the resulting house.

The work described is part of the larger LaHave House Project which explores the creation of an
automated architectural design service based on an industrial design approach to architecture in which
Architects design families of similarly structured objects, rather than individual ones. The houses in the
library have been generated in terms of a modular kit of over 1400 3D parts.

Keywords: Automated Architectural Design Service, Knowledge-based Computer Aided
Architectural Design, VRML, Java.

1. Introduction

The LaHave House project is an ongoing research project of the Faculties of Architecture and
Computer Science at the Technical University of Nova Scotia, Canada. The goal of the project is to
explore the creation an automated architectural design service based on an industrial design
approach to architecture in which Architects design families of similarly structured objects, rather than
individual ones. To support our vision of an automated architectural design service, we have developed
a Design Development Tool (DDT) that enables an end-user to Select, Customize and Visualize designs
drawn from our design library. The design library contains symbolic descriptions of houses that have
been created by a generative grammar [5,9,10] and one of the main tasks of the DDT is to transform
these symbolic descriptions into 2D and 3D representation (i.e. floor plans and models) that can be
visualized and manipulated. Our latest prototype is an Internet-based tool written in Java, HTML and
VRML [7]. This paper focuses on the many interesting issues posed in the construction of such an on-
line graphical visualization and editing tool. A complete overview of the LaHave house project, with a
focus on how the house designs are generated, is given in [8].

† Research Partially supported by the Natural Sciences and Research Council of Canada, IRAP, BML Architectuure + Urban Design, and the

Technical University of Nova Scotia
‡ Technical University of Nova Scotia, School of Computer Science, Box 1000, Halifax NS, B3J 2X4, Canada. Email: arc@tuns.ca
§ BML Architecture + Urban Design, 2042 Maynard St, Halifax NS, Canada

2. Overview of the Design Development Tool

In order to support our goal of an automated architectural design service we needed to build a user
interface that was appropriate for end-users with little or no design experience. On the one hand, the tool
needed to be powerful enough to give end-users the ability to create highly idiosyncratic designs, while
on the other hand restrictive enough to ensure that neither the architectural nor structural integrity of the
house design was compromised. Clearly the usability of the DDT hinges on striking the right balance
between these two opposing goals. Our approach to date has been to combine “design by selection” [5]
with a powerful, but restricted, form of user customization and to provide tools to help the user visualize
the consequences of their design decisions.

3D Parts
L ib r ar ie s

Customized
House

Schema

V
isualizatio

n

C
ustom

ization

Selection

User
Int erface

User

2D Parts
L i b r ar y

Design Library

House Descript ions
Wall Tiles

Room Tiles

Wall Part s

Room Part s

Roof Part s

Figure 1: Components of the LaHave house Design Development Tool

The structure of our current Design Development Tool (DDT) is shown in Figure 1. It consists of a
shared user interface and three software components supporting Selection, Customization and
Visualization, respectively. These software components depend in turn on 3 major libraries - a house
design library, a library of 2D tiles (walls and rooms in plan view) and a 3D parts library (walls, rooms,
roofs etc. as 3D geometric descriptions). Before we can discuss the function of the major software
components we must describe the libraries they depend on.

2. 1 The Libraries

The design library is a library of “base house designs” which are used as a starting point for an end-
user driven design development process. One can think of this library as the digital analog to the pattern
books of the 19th century in that both contain house organizations, as much as they contain individual

house designs. The design library contains houses that differ radically from each other in form,
organization, size, amenity level, and “style”, but despite this diversity share an underlying deep
structure. This shared deep structure results from them all being productions of the same Shape
Grammar [5,9,10] and is intrinsic to the system as a whole, because it is precisely this shared deep
structure that allows us to create an effective design development tool. Each base house design or house
schema consists of a symbolic description of the house’s form and interior organization. The design of
individual spaces in the house, for example the layout of the kitchen or bathrooms, is in terms of pre-
designed room arrangements, called tiles, which are allocated from 2D or 3D libraries, depending on the
type of representation required. Our current 2D tile library consists of over 600 room tiles and 300 wall
tiles, while our 3D libraries consist of over 600 room tiles, 400 wall tiles, and 300 other tiles
representing roof parts etc.

2. 2 The Selection Component

The task of the Selection component is to help a user select one of the “base house designs” in the
library from which to start developing their own design. First, the user completes a “questionnaire”
concerning their housing needs and dream (Figure B). Suitable bases house designs are then selected
from the design library for users to browse (Figure C). Associated with each base house design is a
“digital brochure” consisting of 2D floor plans, 3D still images and summary information (i.e. square
footage, # of bathrooms etc.) in the form of a typical “real estate cut sheet” (Figure D). By a process of
examination and elimination the user is expected to decide on a single base house design which best
satisfies their needs/dreams. This design then becomes the starting point for customization.

2. 3 The Customization Component

The task of the Customization component is to allow the user to modify/evolve their base house
design into one that more fully meets their needs. The current Customization component is a graphical
2D constraint-based editor. This editor allows users to replace components of a house design with new
components under a set of functional and spatial constraints (See Figures G and H). We briefly explored
the idea of creating a 3D customization tool, but it quickly became apparent that neither our target users
nor our target implementation platform (VRML) were up to the task of interactive 3D editing. A detailed
description of our approach to 2D architectural presentation and constraint based editing in a WWW
environment is given in Section 4.

2. 4 The Visualization Component

At any point while browsing or during customization the user may need to visualize their current
house design in 3D in order to really understand it. The task of the Visualization component is to
transform a house schema into a complete 3D model. The Visualization component consists of two
programs. The first is a compiler that parses a house schema and, using a 3D kit of pre-manufactured
parts/models (analogous to the 2D tile library), constructs on-the-fly a complete 3D model of the house.
The second program is a 3D browser that allows an end-user to view and “walk-through” the completed
3D model. In our current prototype, the user requires locally only a Java/VRML enabled browser
(Figure E) as the rest of the system resides on a UNIX server that is reached by the users browser over
the Internet (Figure 3). Figures I and J illustrate the level of 3D presentation we currently achieve. The
two photographs are of houses commissioned by clients of the project’s principal Architect [3,4], while
the six computer generated images show houses drawn from the design library (i.e. generated by shape
grammars) and assembled and displayed by the Visualization component. Note, our focus to date has
been on assembling a correct 3D model, rather than on beautiful rendering. A much more detailed
description of the Visualization component is given in Section 3.

Figure page 1

Figure page 2

Figure page 3

HTML Pages

The Libraries
(rooms, walls, roofs)

User Databases
(custo mer project s)

house2VRML Compiler

Customization Applet

UNIX Server

Jav a/ VRML
Enabled
Browser

Java/ VRML
Enabled
Browser

Internet

Figure 3: Software model for the Design Development Tool

3. 3D Visualization of Houses in VRML

Our initial implementation of the Visualization component was prototyped in a programmable CAD
package with basic rendering features. This allowed us to explore the challenges of on-the-fly 3D model
construction in an environment rich in primitive geometric operations, but was much too slow and
required each user have a copy of an expensive CAD package. In deciding to develop a network based
design development tool we felt we had to address a number of technical and design challenges.

1) Ease of use: Understanding and working with 3D models can be very difficult. We needed to find
ways to help our target users, who have no architectural or design experience, to understand the real
3D space being modeled and to navigate easily inside and around their house design.

2) Speed: In our context, the 3D models of houses can’t be precomputed since the user may frequently
need to visualize their current design as they are customizing it. Therefore, the Visualization
component must be able to construct on-the-fly a 3D model, download the model to the users
machine, render it, and provide fluid walk-through with an elapsed time of only a few minutes.

3) Scalability: Our house schema currently describe houses in terms of a set of over 1400 3D parts
called tiles. Clearly, the more parts in the library the richer the space of possible house designs, but as
the number of parts grows so does the burden of maintaining, processing and downloading them.
Everything possible must be done to ensure that, 1) the parts library scales gracefully (i.e. new parts
can be added without restructuring the libraries) and 2) as far as possible, only truly different/new
parts are added to the library, not just parts that are simple modification of existing parts.

4) Level of Abstraction: The Visualization component must strike the right balance between abstract
and realistic presentation. If the model is too abstract the user may not be able to mentally visualize the
finished product, while if it is too realistic the user may be fooled into making fundamental design
decisions based on features, like paint colour, which are only surface deep.

3. 1 Why VRML?

VRML is a platform-independent 3D modeling format [7,1], based on the SGI’s Open Inventor
format, which is evolving into the standard for on-line Web-based modeling. We choose to implement

the 3D Visualization component of our Design Development Tool in VRML 1 .0 for a variety of reasons
including cost (free), easy integration with other Web-based systems, reasonably wide availability of
viewers, and platform independence. Choosing to work with Version 1.0 of any software is always a
risk, especially when that software is evolving as quickly as VRML is. The VRML viewers we have had
to work with produce reasonably crude images, lack many important features and are far from bug free.
Despite these problems we are satisfied with our choice of VRML and believe it is rapidly becoming a
good platform for supporting on-line user-driven walk-throughs.

3. 2 Our Approach

In order to address the primary challenges we identified, especially those of Speed and Scalability,
we decided that a high degree of parts reuse was essential in constructing the 3D models of our houses.
In deciding on the granularity of parts it was important to strike the right balance. A fine granularity
would mean fewer parts to maintain (i.e. less scalablity problems) and more compact models (i.e. faster
download times), but would increase the complexity of the model assembly problem and make the
model more complex to render. A coarse granularity would greatly simplify the model assembly
problem, but would increase the file size (thereby increasing download time) and the number of parts
required for a model, thereby making the problem of parts creation and maintenance difficult to solve.

In the end we decided to create two basic types of parts: parts used to form the external shell of the
houses (e.g. walls, floors and roof parts) and part used to populate the interiors of the houses (e.g.
cabinets, stairs, and hearths). The parts used to form the exterior shell were designed in segments which
would then be pieced together to form different houses. For example, with reference to Figure 4, a
simple eight by six foot shed with a door on the Southeast side might consist of 6 wall parts: 3 four foot
sections (a,b,e), 2 six foot sections (c,f), and a four foot section with a door (d). Also a floor and 4 roof
parts: 2 gable roof sections, and 2 gable ends. A window might be added to the same shed by replacing
one of the four foot wall sections (e) with another four foot wall section that includes a window (g).

a b

c

de

f

g

Figure 4: A sample house assembly

Several strategies were implemented to maximize the reuse of parts. These include, keeping the parts
symmetric where possible so that the same part might serve in multiple situations, and designing walls
so that they can be connected to other walls at either 90°, 180° or 270° degrees without change.

3. 3 Part Design

A part whose geometry is symmetric about either the x or y axis can typically serve in more
orientations than an asymmetric part. For example, wall segments which don’t differentiate between the
inside and outside surface treatment can be used on any side of a house by simply translating the part.
In designing the parts library we have attempted to design symmetric parts where possible and to use
differences in materiality (rather than geometry) to distinguish different surfaces.

The parts needed to be designed and created carefully in order to ensure that the composite house
models could be assembled both easily and accurately. In particular, since many of the parts are
interchangeable consistence is critical. An 4-foot wall without a window and an 4-foot wall with a
window have to fit precisely in the same location depending on which has been specified. When we
started there were no good tools specifically designed for creating VRML objects, so all of the parts
were created in a standard CAD program (Autodesk’s Autocad). The resulting files were then
systematically converted into VRML files.

One of the early decision made in designing the wall library was to create distinct parts for East to
West running walls (longitudinal) vs. North to South running walls (transverse). The parts are spatially
oriented in a longitudinal and transverse orientation when they are defined. When it is time to use them,
no rotations are necessary. It may be to our advantage in the future to have all the wall objects oriented
in a single orientation and then rotate them as needed. This will reduce the number of definitions, thus
reducing the file size, but tended to create significantly longer rendering times in the viewers we initially
started working with. Clearly when considering speed Vs complexity tradeoffs the machine that is being
used will typically determine which approach is better. Currently, our VRML house file sizes and
download times are very acceptable and rendering speed is the critical factor, especially on older
machines such as 486’s.

In addition, the wall pieces do not include all the door-swing combinations, as there would be far too
many distinct objects that way. Instead, doors are added to the model separately, at the time of
assembly, based on door swing information given in the house schema files.

3. 4 Part Creation

The parts created in Autocad and saved in DXF format needed to be converted to VRML. At the time
(and perhaps still) there were no direct DXF to VRML translators that could handle DXF files created
using Autocad’s 3D modeling extension, so we had to take an intermediate route. The DXF files are first
converted to 3D Studio files (3DS) using Autodesk’s dxf23ds program and then to VRML (.wrl) using
a program called Interchange (by Sydesis Software Inc.).

The conversion programs add a great deal of extraneous information to the converted files such as
header information, and a somewhat random collection of lights and cameras. As we needed to define
these separately, so a series of programs that strip out all the unwanted information were written. The
final parts files contain only object definition separators, Coordinate3 nodes that define the points of
each object, IndexFaceSets that defines the polygons on the points and MaterialIndex that indexes faces
to a color palette.

Each part file consists of several objects. In the following example, a wall, called clfd1f, is made
from a wall (WALL01), a window sill (SILL01), the window’s glass (GLASS01), and a door frame
(FRAME01).

DEF clfd1f Separator {

Separator { # Object 'WALL01'
 Coordinate3 { point [0 0 6, ….]

 } # Coordinate3
 IndexedFaceSet {

coordIndex [0, 2, 1, -1, …..]
 materialIndex [0, ….]

 } # IndexedFaceSet
} # end of object 'WALL01'

Separator { # Object 'FRAME01'
 Coordinate3 {

point [116 106 5, …..]
 }
 IndexedFaceSet {

coordIndex [0, 2, 1, -1,….]
materialIndex [9, 9, …..]

 } # IndexedFaceSet
} # end of object 'FRAME01'

Separator { # Object 'SILL01'
 Coordinate3 {

point [42 14 5,…]
 } # Coordinate3
 IndexedFaceSet {

coordIndex [0, 1, 2, -1,…..]
materialIndex [8, 8, …..]

 } # IndexedFaceSet
} # end of object 'SILL01'

Separator { # Object 'GLASS01'
 Coordinate3 {

point [150 108 4,….] # point
 } # Coordinate3
 IndexedFaceSet {

coordIndex [0, 1, 2, ……..]
materialIndex [6, 6…..]

 } # IndexedFaceSet
} # end of object 'GLASS01'

} # end of clfd1f

The last part of our conversion process was to redefine the material indices for each object in each
file. Initially, all faces of each object, for example WALL01 were assigned by the conversion process
the same material index. As we needed to assign different materials to, for example, the interior side of a
wall as opposed to the exterior side, it was necessary to assign to faces on different planar surfaces
different material indices. A program was written that walks across the face sets identifying faces that
define the same side (plane) of each object. This allows us to change the material of each side of the
object by just changing which material palette is refered to. See the Section 3.7.2 for more details.

3. 5 ‘Inline’ Vs ‘Define and Use’

There are two quite different ways in VRML to reuse parts. In the first, each object is defined in a
separate file and then called by a WWW Inline Node in the main house file. This can have advantages,
especially when combined with level of detail nodes, but was rejected in our case due to the fact that
every time a piece was to be used, the viewer had to download the piece from the server. This resulted
in a lot of unnecessary communication over the Internet and slowed down the performance of our
application.

 The Inline Approach
wall.wrl { }

roof.wrl { }

house.wrl {
WWW Inline { name=”wall.wrl” }
WWW Inline { name=”roof.wrl” }

 }

The Define and Use Approach
house.wrl {

Switch { whichChild -1
 DEF roof { }
 DEF wall { }

 }

 USE roof { }
 USE wall { }
}

The second method is to define the objects in the file using DEF Nodes, which associates a name
with an object. Under normal circumstances when an object is defined, it is also displayed, but the
appropriate use of a SWITCH node allows one to define, but not display an object. The defined objects
can then be used as many times as required through the USE Node. Although this approach resulted in
larger file sizes, the total upload and render time was greatly reduced. The table below shows a
comparison of the file sizes and download and render times for a simple model with seven objects using
WWW Inline and DEF Nodes.

A 7 object Model using File Size (bytes) Total Time (upload and render)
WWW Inline 1,576 bytes main house file,

36,566 bytes object files
18.74 seconds

DEF and USE 40,417 bytes main house file 7.76 seconds
Tested on a Cyrex 6x86 p166, 32 MB RAM, PPP TCP/IP on a 28.8 modem, running Win95 - Netscape 3.0 Beta 6. Times are from the initial

download time to when the DONE appears in the status bar.

3. 6 Overlapping of Parts

The houses to be visualized by the Design Development Tool are to be physically realized using a
modular building system called “Smart Sticks”. This system is somewhat analogous to a traditional post
and beam construction system. Each “wall” piece sits between two post and on top of a beam. In our
initial implementation of the Visualization component we modeled each post and beam. This turned out
to be prohibitively expensive in term of the number of parts needed to define even a reasonably simple
structure, also this type of model presented coloring problems as it was difficult to compute what
material to assign to each side of each post to ensure that the post and beam type structure was not
visible.

wall 1 wall 2

 post overlapping posts post

Figure 5: Assembly of wall parts

To reduce the number of parts in the models, we decided to combine the supporting structure (post
and beams) with the wall parts. The wall libraries were redesigned such that each wall included posts on
both sides and a beam underneath. This reduced the number of polygons in our house files and brought
the performance back up to acceptable levels. The coloring problem was also solved as we just had to
color a wall and not worry about the beams and posts.

This approach did however have its own complexities. Since each wall segment includes the posts on
either side, when two wall objects were placed side by side or at right angles to each other, the posts
will overlap each other. The overlapping of post means that only a single set of walls needs to be created
as they can be joined together at either 90°, 180° or 270° degrees without change, but has a tendency to
produce visual aberrations (particularly seaming effects) in many browsers.

3. 7 On-the-Fly Generation of 3D Models

The creation of a house model involves the assembly of the selected parts in the correct
positions/orientations, the definition of default viewpoints, and the addition of appropriate light sources.
When the user follows a “visualize link” in the Design Development Tool, the current house scheme is
passed to the house2VRML compiler which generates the 3D model. Basically, a house schema defines
for each part to be used its position, orientation and an appropriate materials palette. The compiler works
in two passes. It makes a first pass through the input file to identify and then define all of the parts and
palettes that will be need. This is done so that each part or pallet is defined only once, rather than every
time that it is referenced. Once the definitions are complete, a second pass over the input file is made in
which individual parts are assembled into a complete model by reference to the earlier definitions. When
this is complete, the model is passed to the user’s VRML enabled broswer to be displayed.

3. 7. 1 Placing the Parts
The positions of each object in a house schema file is defined in terms of a floor number and x and y

coordinates. These coordinates are converted to the x, y and z coordinate system of VRML.

House Schema VRML
'id' '103'
'l' 450 348
'wc' 'clfd1f'
't' 'esie'
'asu' '9' ' '

Separator {
 Translation {
 translation 653.0 28.0 550.0
 }
 USE esie
 USE clfd1f
}

The ‘l’, ‘wc’ and ‘t’ in the house schema file stand for location, wall class and type (material palette
definition), respectively. The other fields are used by the Customization Applet and Design Engine
programs.

3. 7. 2 Coloring and the Material Palettes
As described earlier, the face sets that define each object are grouped into subsets of faces that define

planar surfaces of the object. Each such subset is mapped into a different location in a material palette.
This allows us to change the material of each side (planar surface) of an object by just changingwhich
material palette we are using [1]. Using the same example as above, the part of the definition section that
indexes the materials for the window sill object of the clfd1f wall would look like the following.

Separator { # Object 'SILL01'
 Coordinate3 { point [42 14 5,….] # point } # Coordinate3
 IndexedFaceSet {

coordIndex [0, 1, 2, -1,….] # coordIndex
materialIndex [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8] # materialIndex

 } # IndexedFaceSet
} # end of object 'SILL01'

In this case, all the sides of the window sill object are being indexed to the same entry in our palette,
#8. This will result in the window sill being the same color no matter what angle you look from. Here is
a sample of the esie palette, where it is being referenced.

DEF esie Material {
 diffuseColor [
 1.0 1.0 1.0, #normal
 0.584 0.505 0.384, #exterior
 1.0 1.0 1.0, #interior
 1.0 1.0 1.0, #left
 0.584 0.505 0.384, #right
 0.0 0.5 1.0, #wall
 0.0 0.0 0.0, #glass
 0.8431 0.7215 0.4901, #door
 0.8431 0.7215 0.4901, #sill
 0.8431 0.7215 0.4901, #frame
 1.0 0.2 0.0, #Roof
]
 transparency [
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25 0.0, 0.0, 0.0, 0.0,
]
 }

The transparency section of the definition corresponds to the defined materials. Here, the 7th entry in
transparency refers to the 7th row in the materials definition. This results in the glass material being 25%
transparent. The transparency attribute adds significant realism of the models, as it allows the viewer to
see some of the inside of the house.

3. 7. 3 Generation of Viewpoints
We found from experience that the most useful thing we could do for a user, in terms of making

navigation around and inside the models manageable, was to predefine important viewpoints. This is
very consistent with the idea of an automated architectural service in that it allows us to suggest to the
user what positions and angles it is important to look at their design from. Defining appropriate
viewpoints requires both knowledge of the geometry of the house and knowledge of its functional
organization. For example, if a house contains a kitchen with a large kitchen island that looks out on the
dining room it may be important to define a viewpoint at head height looking out over the island into the
dining room to help a user experience what it might be like to live in the house.

Currently we define about 10 preset views so that the user can navigate through the 3D model by
moving from one view point to another. The view points are defined using PerspectiveCamera’s node
that take the x, y and z position of the camera location. The orientation, or the way the camera is to point
is specified by the Orientation node.

3. 7. 4 Lighting and Shading
Control of lighting, shading and rendering quality is perhaps where current VRML technology lags

farthest behind other 3D graphical environments. Although, VRML supports Material nodes that include
diffuse, emissive, ambient, and specula color values there appears little point in trying achieve subtle
effects. Variations between browsers, colour palettes, and monitors from machine to machine conspire
to make a model that looks good in one setting into an eye sore in another.

Figure 6: Smooth Vs flat shading of composite house models

Most VRML viewer support two types of shading: smooth and flat. Unfortunately, due to the way
we construct our models, as a composite of parts, smooth shading results in many undesirable visual
effects by highlighting the interfaces between the parts. Flat shading produces very abstract looking
models, which although not bad looking, have a kind of “dark side of the moon” feeling to them which
is intensified by the lack of shadows. Although we are still experimenting with ways to achieve more
realistic lighting we have for the moment decided to depend on the “headlight” provided by most VRML
browsers as our main light source.

3. 7. 5 Optimizations
There are many ways to optimize our models in VRML that can decrease file sizes, reduce rendering

time and increase the overall performance. It is important to us to pursue these optimizations simply
because when the models are optimized, one can add more detail to them, making them visually richer,
while maintaining the same performance. Our primary optimization, the reuse of parts in different
conditions has already been discussed. We have also implemented several simple optimization [1,6].
Unnecessary spaces, tabs and decimal digits take up space in a VRML file and have been removed.
Untruncated decimal digits require the rendering routines to perform more work often at no visible
benefit. The use of ShapeHint nodes allows browsers that implement backface culling to reduce
drastically the number of polygons that have to be rendered.

Perhaps the most important optimization turns out to be file compression. The recent introduction of
automatic compression and decompression by many VRML viewers has drastically increased the size of
models that can be reasonably worked with. In our experience, if the final models are gzipped it results
in an over 90% reduction in file size and an equally large reduction in download times. File compression
make such a difference that we are considering moving from a composite model for the main shell of the
houses (i.e. where the shell consists of a collection of parts) to a integral model, which although much
bigger is easier to render well.

4. 2D Visualization: Working with Plan Views

Plans and plan views are a very natural way to view and understand architectural forms and
organizations. In the Design Development Tool plan views appear in both the Selection and
Customization components. In Selection, the “digital brochure” describing each house contains plans for
each floor. In Customization, it is by manipulating plans that users customize their houses.

Creating and displaying plans in the Web-setting is not as straight forward as one might think. The
primary challenge is the lack of a good vector graphics standard on the Web. When we started there was
no way to display vector files on the Web. Today there is a large variety of vector graphic applets and
plug-ins, but no single standard.

The challenge in creating plan views using bitmapped images is in how to handle resizing. Bitmaps
simply do not scale well. In the end, we decided to create two different libraries of bitmaped images of

our 2D parts. The first library is at a scale of 1 pixel = 2 inches, which means that most plans fill an
average sized screen and walls have a thickness of 3 pixels, which allows different types of fenestration
to be identified. The second library is at a scale of 1 pixel = 6 inches which allows several plans to be
displayed at once, but shows walls as only one pixel thick lines such that differences in fenestration
don’t show. All of the images were created using the GIF format as it is a standard format that gives
very good compression on images of the type found in plan views.

4. 1 2D Customization: A Constraint Based Graphical Editor

The task of the Customization component is to allow the user to modify/evolve their base house
design into one that more fully meets their needs. The current customization tool is a graphical constraint
based editor written in Java that allows the user to perform the following basic actions:

1) Replace one tile (room organization) with another - provided the new tile is “compatible” with its
neighbors, has associated wall types that are compatible with its neighbors, and maintains the
connectivity of the house’s underlying circulation graph.

2) Add a secondary form (“bump”) to the house design - provided it is compatible with its neighbors (as
determined by information computed by the grammar at generation time) and that it does not violate
any of a set of important 3D constraints (e.g., second story secondary forms must be over first story
ones).

The user interface is based on the idea of replacement (see Figure G and H). The user is presented
with one window containing a floor plan and another that will display possible replacement tiles. When
the user selects a room or wall tile in the plan window, the interface computes based on the constraints a
set of possible replacement tiles, that are then displayed in the replacement window. The user can then
browse the set of possible replacements and select one to effect the replacement.

Addition of secondary forms is handled in the same way, with the user selecting a “glue line” in the
plan window which is a special type of tile that is created during generation to express the potential for
adding various kinds of secondary forms to a particular region of a plan. Secondary forms currently
include bay windows, small rooms (study, den, sun-room etc.), balconies, and decks. We have focused
on the addition of secondary forms as they are far less likely to adversely effect the massing and
proportions of the house as carefully constructed by the design engine. The customization tool also
supports the modification of internal partitions and the editing of fenestration.

It is interesting to note that both the simplicity and power of the customization tool are directly
derived from the fact that the designs to be edited were created by a shape grammar. The underlying
deep structure in the designs allows individual parts of the design to be reworked relatively
independently. The constraints that maintain the geometry, circulation and servant/served relationships
between spaces can be effectively expressed in terms of relationships that the grammar creates and
records in the house schema data structure.

Although we have come a long way there are still many challenges to be addressed in customization.
The issue of how to handle overly constrained planning situations is particularly challenging. Also,
although the customization tool maintains important physical constraints, it does not maintain a
“reasonable plan” from the perspective of function planning. For example, it will permit a user to place
the dinning room and kitchen at extreme opposite ends of a floor plan without comment. The issue here
is one of locus of control, and in the case of function planning we feel it is best to rely on the users
superior knowledge of their needs and common sense. We are currently examining whether the use of a
“design critic” [9] might not aid the user in functional issues, without directly constraining them. It
would also be interesting to explore a more cooperative approach, like the one described in [1], in which
the locus of control moves back-and-forth between end-user and the design development tool.

5. Conclusions and Future Work

Our current design development tool is very much a prototype; an environment in which to explore
design development by watching an end-user at work. After constructing a new prototype in HTML,
Java and VRML, we are in the process of enhancing its basic features and running a usability test to
evaluate its design and performance.

For network based 3D visualization VRML has proved to be a very promising environment. Our
current prototype provides enough visual detail to be very functional as a design tool and its
performance over a 28.8 modem is good. VRML viewer technology is improving, but there is still much
room for further improvements in such areas as shading, colour consistence, and navigation controls.
The issue of file size is no longer as critical an issue as before given the new compression facilities. We
feel we can now comfortably increase our uncompressed file size to around 500K (i.e. compressed files
of approximately 50-60K) and still achieve reasonable download times. One way in which we are using
this new space budget is by modifying our house2VRML compiler to build an integral description of the
shell of each house, rather than a strictly parts based one. This should significantly improve the quality
of the 3D rendering, but requires almost twice the space. The issue of rendering speed is still remains.
Given a “typical” users machine, for example a 486/50 with 16MB RAM, we find models consisting of
between 8000 and 12,000 polygons perform reasonably, while performance on larger models rapidly
degrades.

In the area of 2D visualization of plans, we are waiting for a good vector graphics format to emerge
as a standard on the Web. When it does we anticipate converting our 2D library of GIF files to the new
format in order to better support the scaling of plans. The Customization component of our Design
Development Tool is stable and about to undergo an extensive usability test.

There remain many interesting open questions concerning both 3D visualization and customization in
our context. In particular we are interested in the architectural presentation issues of how best to present
3D representations of house to end-users. We are exploring how abstract 3D models that convey the
underlying structure of LaHave house designs, rather than presenting realistic models, might be used to
better “reveal” the design to users.

Acknowledgments
We would like to thank the TUNS Faculty of Architecture and School of Computer Science for their
support and acknowledge the work of the following individuals:

Architects: J. Smirnis, D. Wigle, E. Jannasech, N. Savagen, P. McClelland

Computer Scientists: H. Ning, G. Li, D. Gemmell, D. Curry, D. Peters, G. Burrell, H. Lui, S.
Gauvin, W. Wu

References

[1] A. Ames, D. Nadeau, and J. Moreland, "TheVRML Sourcebook". John Wiley & Sons, 1996.

[2] M. Friedell and S. Kochhar, "Design and Modeling with Schema Grammars", Journal of Visual
Languages and Computing, 1991, Vol. 2 , pp. 247-273.

[3] T. Fisher, "Folk Tech", Progressive Architecture, August 1995, pp. 63-72.

[4] B. MacKay-Lyons, "The Village Architect". Design Quarterly 165, MIT Press, Editor R. Jensen,
Summer 1996.

[5] W. Mitchell, "The Logic of Architecture". MIT Press, 1990.

[6] D. Nadeau, A. Ames, and J. Moreland, "Optimizing the performance of VRML worlds", Dr.
Dobb’s Journal, 1992, No. 249, pp. 16-24, July 1996.

[7] M. Pesce, "VRML: Browsing and Building Cyberspace", New Riders Publishing, 1995.

[8] A. Rau-Chaplin, B. MacKay-Lyons, P. Spierenburg, “The LaHave House Project: Towards an
Automated Architectural Design Service”, Proc. of International Comference on Computer-Aided
Design (CADEX’96), IEEE CS Press #PR07652, Sept. 1996.

[9] B. Silverman, "Survey of Expert Critiquing Systems: Practical and Theoretical Frontiers",
Communications of the ACM, 1992, Vol. 35, No. 4, pp. 107-127.

[10] G. Stiny and W. Mitchell, "The Palladian Grammar", Environment and Planning B: Planning and
Design 5, 1978, pp. 5-18.

[11] G. Stiny, "Introduction to Shape Grammars", Environment and Planning B: Planning and Design
7, 1980, pp. 343-351.

