
Scalable Algorithm Design Techniques forDiscrete Problems that Lack Obvious StructureAndrew Rau-Chaplin �AbstractTo be relevant in practice parallel algorithms must be developed forrealistic models of parallel computing, such as the BSP, LogP, and CoarseGrained Multicomputer (CGM) models. This paper surveys three algo-rithm design techniques - Spatial Partitioning, Sampling, and Data Struc-ture Partitioning - that have led to e�cient and practical algorithms for avariety of problems on such realistic models. One particularly noteworthyfeature of these techniques is that they often led to algorithms involv-ing only O(1) global communications steps, even for problems that mayappear highly unstructured.1 IntroductionParallel algorithms for problems involving discrete objects, such as those foundin geometric, graph and string problems have been studied extensively [1, 16].These studies have been motivated by important application areas includingcomputational biology, computational geometry, geographic information sys-tems, image processing, �nite element mesh generation and AI/knowledge rep-resentation. Until recently, these studies focused almost exclusively on parallelalgorithms for highly abstract PRAM and distributed memory models. Typi-cally, a given problem of size n has been solved on a parallel computer with pprocessors (e.g., a pram, mesh, or hypercube multiprocessor) in time Tparallel .The goal has been to develop optimal solutions where Tparallel = O(Tsequentialp),Tsequential being the sequential time complexity of the problem, and the focushas been on the case np = O(1), also referred to as the �ne grained case.However, to be relevant in practice, parallel algorithms must be developedfor more realistic models that better re
ect existing parallel machines, such asthe BSP, LogP, C3, and Coarse Grained Multicomputer (CGM) models and�School of Computer Science, Technical University of Nova Scotia, P.O. Box 1000, Halifax,Nova Scotia, Canada B3J 2X4. E-mail: arc@tuns.ca. Research partially supported by NaturalSciences and Engineering Research Council of Canada.1

these algorithms must be scalable, that is, they must be applicable and e�cientfor a wide range of ratios np [12].Recently there has been a growing interest in coarse grained computationalmodels [20, 4, 13] and the design of coarse gained geometric algorithms [7, 11,6, 9]. The work on computational models has tended to be motivated by theobservation that \fast algorithms" for �ne-grained models rarely translate to fastcode running on coarse grained machines. The BSP model, described by Valiant[20], uses slackness in the number of processors and memory mapping via hashfunctions to hide communication latency and provide for the e�cient executionof �ne grained PRAM algorithms on coarse grained hardware. Culler et. al.introduced the LogP model which, using Valiant's BSP model as a startingpoint, focuses on the technological trend from �ne grained parallel machinestowards coarse grained systems and advocates portable parallel algorithmdesign[4]. Other coarse grained models focus more on utilizing local computation andminimizing global operations. These include the C3 model [13], and the CoarseGrained Multicomputer (CGM) model used in this paper [7]. All of these modelsdi�er somewhat in their focus, operations and accounting models, but share asa principle tenant that parallel algorithms must minimize the number of globalcommunication steps (H-relations, Supersteps) to obtain e�ciency on \real"machines.The ultimate realization of the desire to minimize communications is thedevelopment of deterministic algorithms which involve only O(1) global com-munications steps. Perhaps surprisingly such algorithms can be developed, evenfor problems that may appear highly unstructured. In this paper we survey threealgorithmic design techniques - Spatial Partitioning, Sampling, and Data Struc-ture Partitioning - that have led to deterministic scalable algorithms involvingonly O(1) global communications steps.Throughout this paper we will use the coarse grained multicomputer model,cgm(n; p), although any of the other realistic models mentioned above wouldsu�ce. The advantage of this model for our purposes is its simplicity and naturalmapping onto existing parallel machines.Most existing multicomputers (e.g. the Intel Paragon, Intel ipsc/860, andThinking Machines Corp. cm-5) consist of a set of p state-of-the-art processors(e.g. sparc proc.), each with considerable local memory, connected to someinterconnection network (e.g. mesh, hypercube, fat tree). These machines areusually coarse grained, i.e. the size of each local memory is \considerably larger"than O(1). The coarse grained multicomputer, cgm(n; p), considered in thispaper is a set of p processors numbered from 1 to p with O(np) local memoryeach, connected via some arbitrary interconnection network or a shared memory.Commonly used interconnection networks for a cgm include the 2D-mesh (e.g.Intel Paragon), hypercube (e.g. Intel ipsc/860) and the fat tree (e.g. ThinkingMachines cm-5). Each processor may exchange messages of O(logn) bits withany one of its immediate neighbors in constant time. For determining timecomplexities both, local computation time and interprocessor communication2

time are considered, in the standard way. The term \coarse grained" refers tothe fact that the size O(np) of each local memory is assumed to be \considerablylarger" than O(1). In reporting results in this model, we are interested in threeimportant resource measures:1. The amount of local computation required;2. The number and type of global communication phases required;3. The scalability assumption of the algorithm, that is the minimum valuefor the ratio np for which the algorithm is applicable.Ideally, our coarse grained algorithms would be \completely scalable", i.e. havescalability assumptions of np � 1, however in practice np � p� (� > 0) or np � pwill su�ce.All of the CGM algorithms referred to in this paper consist of local computa-tion plus calls to a small number of standard communication operations includ-ing parallel pre�x, segmented broadcast, multinode broadcast, total exchange,circular rotation, and sorting. Since all of these communication operations canbe implemented in terms of sorting we will often summarize the complexity ofa constant number of them as O(Ts(n; p)), which represents the time to sort ndata on a p-processor CGM. For a more detailed description of the model andits associated operations, see [7].2 Technique 1: Spatial PartitioningSpatial partitioning is perhaps the simplest technique for developing e�cientCGM algorithms. In a nutshell, the basic idea is as follows: Try to combineoptimal sequential algorithms for a given problemwith an e�cient global routingand partitioning mechanism. Devise a constant number of partitioning schemesof the global problem (on the entire data set of n data items) into p subproblemsof size O(np). Have each processor solve sequentially a constant number ofsuch O(np) size subproblems, and then use a constant number of global routingoperations to permute the subproblems between the processors. Eventually,by combining the O(1) solutions of its O(np) size subproblems, each processordetermines its O(np) size portion of the global solution.The above is necessarily an oversimpli�cation. Most actual algorithms willdo more than just those permutations. The main challenge lies in devising theabove mentioned partitioning schemes. Note that, each processor will solveonly a constant number of O(np) size subproblems, but eventually will have todetermine its part of the entire O(n) size problem (without having seen all ofthe n data items). The most complicated part of the algorithm is to ensure thatat most O(1) global communication rounds are required.3

Not surprisingly this technique has been most e�ective in geometric problemswhere the data items (typically, points, line or polygons) tend to interact morewith other spatially close data items than with distant ones.As an example of the spatial partitioning technique, consider the followingalgorithm from [7] for computing the lower envelope of non-intersecting linesegments in the plane. The problem is de�ned as follows: Given a set S of nnon-intersecting line segments in the plane, the lower envelope problem consistsof computing the set LE(S) of segment portions visible from the point (0;�1).Observation 1 The lower envelope of n non-intersecting line segments is x-monotone and has size O(n).Algorithm 1Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with ar-bitrary interconnection network and local memories of size O(np), np � p.Input: Each processor pi stores a set Si of np line segments of S.Output: Each processor stores O(np) segment portions of LE(S).(1) Each processor pi computes sequentially LE(Si) for its subset Si of linesegments (ignoring all other segments).[15](2) Globally sort the segments in Spi=1 LE(Si) by the x-coordinate of theirright endpoints, which moves to each processor pi a new set Vi of O(np)segments. Note that, each processor pi also keeps the set LE(Si).(3) Each processor pi determines the vertical line li through the rightmostvertex of a segment of Vi. Perform a multinode broadcast where processorpi sends li to all other processors. Hence, each processor stores all pvertical lines l1; : : : ; lp.(4) Perform a total exchange, with processor pi sending segment s 2 LE(Si)to processor pj i� s intersects the vertical line lj . Let Rj be the set ofsegments received by processor pj.(5) Each processor pi computes sequentially LE(Vi [Ri).| End of Algorithm |This algorithm works by �rst reducing the amount of data pertinent tothe global solution (Step 1) and then spatially partitioning the plane into pvertical slabs (Step 2 and 3). Each slab consisting of np line segments is storedon a single processor which needs only p pieces of \global information" (Step4) to complete the computation of the lower envelope for its slab (Step 5).The algorithm solves the lower envelope problem for a set of n non-intersectingline segments in the plane on a p-processor coarse grained multicomputer with4

arbitrary interconnection network and local memories of size O(np), np � p, intime O(n lognp + Ts(n; p)).Scalable CGM algorithms based on spatial partitioning have been developedfor the following problems:(1) All 2D-nearest neighbors in a point set,(2) 2D-weighted dominance counting in point sets,(3) 3D-maxima in point sets,(4) Area/Intersection of the union of rectangles,(5) Lower envelope of non-intersecting line segments in the plane (and, withslightly more memory, for possibly intersecting line segments),(6) Lower envelope of �xed degree polynomial functions,(7) Rectangle �nding problems: all isonormal rectangles, all rectangles, allisonormal squares, all squares(8) Minimization of Hausdor� distances between point sets(9) and a variety of dynamic computational geometry problems concerninggeometric properties of moving point-objects.The algorithms for Problems 1-5 appeared in [7] and have a running time ofO(Tsequentialp +Ts(n; p)) on a p-processor coarse grained multicomputer, cgm(n; p),with arbitrary interconnection network and local memories of size O(np) wherenp � p. Ts(n; p) refers to the time to sort globally n data items stored on acgm(n; p), np data items on each processor. Since Tsequential = �(n logn) forProblems 1-5, the algorithms either run in optimal time �(n lognp) or in sorttime Ts(n; p) for the respective architecture.The algorithms for Problems 6-9 are described in [3] and also require np � p.Problem 6 is to �nd the lower envelope or minimum of S, an n element set ofpolynomial functions of degree at most k, and is fundamental to the solutionof a variety of interesting problems. The lower envelope of S can be computedon a CGM (p �(�(np ; k); k); p) in Ts(p �(�(np ; k); k); p) time, where �(n; s) isthe maximal length of a Davenport-Schinzel sequence [5] de�ned by parameters(n; s) and is, at worst, slightly more than linear in n.The Hausdor� distance [18] is a measure of how well two sets A and B re-semble each other with respect to their positions; if A and B are �nite setsregarded as statistical populations, this measure is an alternative to more com-mon statistical measures of population similarity. When A is subjected to atranslation T so that h = H(T (A); B) is minimized, h may be regarded asa measure of how well an image A matches a template B. Problem 7 is the5

following: compute a translation T of A that minimizes the Hausdor� distanceH(T (A); B), where A [B � R1, jAj = m; jBj = n. It can be solved usingspatial partitioning on a CGM (m+ n; p) in O(Tsequentialp + Ts(m+ n; p)) time.Scalable CGM algorithms for a variety of problems concerned with geo-metric properties of moving objects have also been developed based on spatialpartitioning. These problems all assume that k is a �xed positive integer, andthat S = fs0; s1; : : : ; sn�1g is a set of point-objects moving in the Euclideanspace Rd so that for each s 2 S, the location of s at time t is described bya vector-valued function, each of whose Cartesian coordinates is a polynomialfunction of t of degree at most k. Scalable algorithms using spatial partitioningare given in [3] to solve the following problems.� What is the nearest s 2 S n fs0g to s0?� When is S contained in a given �xed rectilinear, iso-oriented hyperrectan-gle?� What is the edge-length of the smallest rectilinear, iso-oriented hypercubethat contains S at time t?� Assume d = 2. When is s0 a vertex of the convex hull of S?3 Technique 2: SamplingConsider the problem of constructing the Convex Hull of a set S of n points inthe plane. The obvious approach in the CGM setting is as follows: 1) Sort thepoints in S by x-coordinate and let Si denote the set of np sorted points nowstored on processor i. 2) Independently and in parallel, have each processor icompute the convex hull of the set Si and let Xi denote the result on proces-sor i. 3) Merge the p convex hulls, Xi, into a convex hull using O(1) globalcommunication rounds.Step 1 of the algorithm above can be completed by using a global sort op-eration and Step 2 is a totally sequential step and can be completed in timeO(n lognp) using well known sequential methods [19]. The problem that now re-mains is how to merge p convex hulls, stored one per processor on a p processorCGM, into a single convex hull using a constant number of global communi-cation rounds. We will focus on how to merge upper hulls, lower hulls andtherefore the complete hull, can be computed analogously. Sequentially, twoupper hulls of size O(n) can be merged by �nding their upper common tangentusing a logn time binary search algorithm [19], but straight-forward applica-tion of this algorithms in the CGM setting yields O(logp logn) communicationssteps!The �rst trick to performing this merge in fewer communication steps is notto do pair-wise merging of upper hulls, but rather to �nd all p2 upper tangent6

lines between the upper hulls. Clearly this is more tangent lines than we strictlyneed but not so many that we can't store them and computing them this wayavoids the logp communications rounds that come from pairwise merging.So how can we compute the upper common tangent between an upper hullXiand an upper hullXj (to its right) in only a constant number of communicationsrounds? The answer is to work with a sample of many points from Xi, ratherthan just the one point that is used in each step of the logn step sequentialbinary search. The following simple algorithm assumes np � p2, but can beextended to scale over a larger range of values of n and p, assuming only thatnp � p� (� > 0) (See [11]).Algorithm 2Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with ar-bitrary interconnection network and local memories of size O(np), np � p2.Input: The set of p upper hulls Xi consisting of a total of at most n points fromS, where Xi is stored on processor qi, 1 � i � p.Output: A distributed representation of the upper hull of S.(1) Each processor qi sequentially identi�es a sample set Gi composed of everypth point from Xi. Note jGij = np2 .(2) Perform an all-to-all broadcast of Gi and associate with each point a 2 Giits two neighbours in Xi. Each processor qj receives O(np) points and cancompute for each received point a if the upper tangent line between Xiand Xj is rooted in Xi before, at or after a in O(np log np) [17]. Performan all-to-all broadcast to return these results.(3) Each processor qi can now identify with respect to each Xj a region Ri;jof p points from Xj which is guaranteed to contain the point that rootsthe upper tangent line between Xi and Xj .(4) Repeats Steps 2 and 3 using a personalized all-to-all broadcast with thepoint sets Ri;j being sent to qi, rather than Gi. Note that every processorreceives p2 points and therefore np � p2 must hold.(5) Each processor has now identi�ed the upper common tangent between theupper hull Xi and all upper hulls Xj, j > i, and can perform an all-to-allbroadcast to distribute this information globally. Using this infomationthe the part of the upper hull of S that resides on earch processor can belocally computed.| End of Algorithm |The algorithm given above is based on ideas developed in [17] and appearedin [11]. It requires time O(n lognp + Ts(n; p)) on a p-processor coarse grained7

multicomputer, cgm(n; p), with arbitrary interconnection network and localmemories of size O(np) where np � p2. Since computing 2d Convex Hull re-quires time Tsequential = �(n logn) this algorithm either run in optimal time,�(n lognp), or in sort time, Ts(n; p), for the interconnection network in question.These results become optimal when Tsequentialp dominates Ts(n; p) or for inter-connection networks like the mesh for which optimal sorting algorithms exist.Furthermore, this convex hull algorithm can be extended to scale over a largerrange of values of n and p, assuming only that np � p� (� > 0) (See [11]). Thesame technique can also be used to compute the triangulation of n points in theplane for the same model and with the same space and time complexities [11].The sampling technique demonstrated in the CGM convex hull algorithmappears to be a powerful technique for designing scalable algorithms requiringonly O(1) communication rounds. Attempting to applying it to other problemsinvolving discrete data sets is an interesting avenue for further research.4 Technique 3: Data Structure PartitioningThe idea behind data structure partitioning is the following: If you can't �nda way to spatially partition or sample your data, �nd a data structure thatrepresents the data and partition it instead. Often data structures have a higherdegree of regularity than the data they represent.Consider for example, the problem of determining for a given set S of rpairwise disjoint m-vertex polygons of simple polygons all directions d suchthat S is separable by a sequence of r translations in direction d (one for eachpolygon). This is called the uni-directional translation ordering problem.Most sets S of simple polygons defy useful spatial partitioning. Any straight-forward spatial partition of S into p rectangularly bounded regions leaves them polygons cut into basically unrelated fragments. However, there is a datastructure, the segment tree, which can ably represents the problem and canbe partitioned and searched e�ciently (i.e. in O(1) communication phases) ona CGM using a distribute data structuring technique called Multisearch. TheMultisearch paradigm was �rst described in [8] for hypercubes and has sincebeen extended in other parallel models [2, 7]. To illustrate this approach wewill describe a simple version of CGM multisearch for balanced k-ary trees,that �rst appreared in [7].Let T = (V;E) be a balanced k-ary tree of size n and height h = O(logk n),where k is a �xed constant. The de�nition of the multisearch problem for T anda set Q = fq1; : : : ; qmg of m = O(n) search queries on T is as follows:Each query q 2 Q has a search path, path(q) = (v1(q); : : : ; vh(q)), of h ver-tices of T (from the root to a leaf of T) which is a sequence de�ned by a successorfunction f : (V [start)�Q! V with the following properties: f(start; q) = v1,f(vi; q) = vi+1 where (vi; vi+1) 2 E and f(vi; q) can be computed by a single8

processor in time O(1). We say that query q visits node vt(q) at time t. Themultisearch problem for Q on T consists of executing (in parallel) all m searchprocesses induced by the m search queries. It is important to note that the msearch processes may overlap arbitrarily. That is, at any time t, any node ofT may be visited by an arbitrary number of queries. See [2] and [8] for moredetails.De�ne as T0 the subtree of T induced by the root and all nodes of T whichhave a distance from the root of at most logk p. Subtree T0 has p0 � p leaves.To simplify exposition, assume w.l.o.g. that p0 = p. Let Ti be the subtree of Trooted at the i-th leaf of T0, 1 � i � p.Algorithm 3Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with ar-bitrary interconnection network and local memories of size O(np), np � p.Input: Each processor stores np nodes of T and mp = O(np) queries q 2 Q.Result: Each q 2 Q visits its entire search path path(q).(1) Using a total exchange operation, create p copies of T0 and distribute themsuch that each processor has one copy of T0.(2) Using its copy of T0, each processor performs the �rst logk p multisearchsteps for its O(np) search queries.(3) For each tree Ti compute c(Ti) = l jfq2Q:vlogk p(q)2Tigjmp m, 1 � i � p.(4) Create c(Ti) copies of each subtree Ti and and distribute them such thateach processor stores at most two subtrees.(5) Redistribute Q such that every query q 2 Q is stored at a processor thatalso stores a copy of the subtree Ti (1 � i � p) containing vlogk p(q).(6) Each processor performs the remaining h� logk p multisearch steps for itsO(np) search queries.| End of Algorithm |Using the algorithm given above, the multisearch problem for a balancedsearch tree of size O(n) and �xed degree k, and a set of m = O(n) searchqueries, can be solved on a p-processor coarse grained multicomputer with arbi-trary interconnection network and local memories of size O(np), np � p, in timeO(n lognp + Ts(n; p)) [7].Extensions to this basic technique allow queries to move both up and downthe data structure and to both read and write values to the nodes. To use thistechnique one needs only to describe how to construct in parallel the tree T to9

be used in a particular application, and give the application speci�c function f :(V [start)�Q! V with the appropriate properties, before calling Multisearchto advance all of the queries down their search paths. Scalable algorithms havebeen developed, based on this CGM Multisearch algorithm, for the followingproblems:(1) Uni-directional separability problem for simple polygons(2) Multi-directional separability problem for simple polygons(3) Trapezoidal decomposition of a set of line segments(4) One-Dimensional Range Search Query Reporting(5) Bichromatic Segment Intersection reporting problem(6) d-Dimensional Range Search Query ProblemsLet S be a set of r pairwise disjoint m-vertex polygons. The uni-directionalseparability problem consists of determining all directions d such that S is sepa-rable by a sequence of r translations in direction d (one for each polygon). Themulti-directional separability problem asks if S is separable by a sequence of rtranslations in di�erent directions. These problems (Problems 1-2) were solvedin [7] on a p-processor coarse grained multicomputer with arbitrary intercon-nection network and local memories of size O(np), n = O(r2 + rm) and np � p,in time O(r2(m+log r)p + Ts(r2; p)).Problems 3-5 were solved in [9] using data structure partitioning via anextended version of Multisearch. Let k denote the size of the output. Prob-lems 3 was solved on a CGM (n logp; p) with local memories of size O(n log pp),np � p, in time O(n logn logpp + Ts(n log p; p)). Problems 4 was solved on aCGM (max(n; k); p) with local memories of size O(max(n;k)p), np � p, in timeO(n lognp + kp + Ts(n; p)). Problems 5 was solved on a CGM (max(k; n logp); p)with local memories of size O(max(k;n log p)p), np � p, in time O(n logn log pp + kp +Ts(n logp; p)).Problem 6 is a basic geometric and database problem. Consider a collectionL of n records, where each record l has a value key(l) and is identi�ed by anordered d-tuple (x1(l); :::; xd(l)) 2 Ed, the d-dimensional Cartesian space. In therange search problem, the query speci�es a domain q in Ed, and the outcomeof the search, depending on the application, may be either the subset Lq of thepoints of L contained in q, or the number of such points, or more generally afunctionNl2Lq f(l), where f(l) is an element of a commutative semigroup withoperation
. Problems 6 can be solved using data structure partitioning [10]for a range tree T of size s = O(n logd�1 n) on a CGM (max(k; s); p) with localmemories of size O(sp), sp � p, in time O(sp + Ts(s; p) + kp), where k is the sizeof the output. 10

5 Summary and ConclusionsIn this paper we have surveyed three algorithmic design techniques - Spatial Par-titioning, Sampling, and Data Structure Partitioning - that have led to scalableCGM algorithms involving only O(1) global communications steps for problemsthat appeared to be highly unstructured. Implementations of algorithms usingthese techniques [7, 11] have indeed veri�ed that they do result in fast practicalcodes on real parallel machines. For the most part, we have described geometricapplications, but many interesting open discrete problems remain in this set-ting. In particular those problems dealing with graphs seem important and verychallenging.References[1] S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice-Hall, New York, 1993.[2] M.J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. TsayMultisearch techniques for implementing data structures on a mesh-connected computer. Proc. ACM Symposium on Parallel Algorithmsand Architectures, pp. 204{214, 1991.[3] L. Boxer, R. Miller and A. Rau-Chaplin, Some Scalable Parallel Geo-metric Algorithms, In Preparation.[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. San-tos R. Subramonian, and T. von Eicken, LogP: Towards a RealisticModel of Parallel Computation. Proc. 4th ACM SIGPLAN Sym. onPrinciples of Parallel Programming, 1993.[5] H. Davenport and A. Schinzel, A combinatorial problem connectedwith di�erential equations. Amer. J. Math. 87 (1965), 684-694.[6] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar, A random-ized parallel 3D convex hull algorithm for coarse grained multicom-puters, Proc. 7th IEEE Symp. on Parallel and Distributed Processing,1995.[7] F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel geometricalgorithms for multicomputers, Proc. 7th ACM Symp. on Computa-tional Geometry, 1993.[8] F. Dehne and A. Rau-Chaplin. Implementing data structures on ahypercube multiprocessor and applications in parallel computationalgeometry. Journal of Parallel and Distributed Computing, Vol. 8, No.4, pp. 367{375, 1990. 11

[9] A. Fabri, and O. Devillers, Scalable Algorithms for Bichromatic LineSegment Intersection Problems on Coarse Grained Multicomputers,Proc. 3rd Workshop on Algorithms and Data Structures, 1993.[10] A. Ferreira, C. Kenyon, A. Rau-Chaplin, and S. Ubeda, Scalable Al-gorithms for the d-Dimensional Range Search on Coarse Grained Mul-ticomputers,In Preparation.[11] A. Ferreira, A. Rau-Chaplin, and S. Ubeda, Scalable 2d convex hulland triangulation algorithms for coarse grained multicomputers, Proc.7th IEEE Symp. on Parallel and Distributed Processing, 1995.[12] Grand Challenges: High Performance Computing and Communica-tions. The FY 1992 U.S. Research and Development Program. AReport by the Committee on Physical, Mathematical, and Engineer-ing Sciences. Federal Council for Science, Engineering, and Technology.To Supplement the U.S. President's Fiscal Year 1992 Budget.[13] S. Hambrusch, and A. Khokhar, C3: An Architecture-IndependentModel For Coarse-Grained Parallel Machines, Purdue University Com-puter Sciences Technical Report CSD-TR-93-080 (1993).[14] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequencesand of generalized path compression schemes, Combinatorica 6 (1986),151-177.[15] J. Hershberger. Finding the upper envelope of n line segments inO(n logn) time. Information Processing Letters 33, pp. 169{174, 1989.[16] F.T. Leighton. Introduction to Parallel Algorithms and Architectures:Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo,CA, 1992.[17] R. Miller and Q. Stout. E�cient Convex Hull Algorithms IEEE Trans.on Computers, 37, pp. 1605{1618, 1988.[18] S.B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, Inc., New York,1978.[19] F.P. Preparata and M.I. Shamos. Computational Geometry: an Intro-duction. Springer-Verlag, New York, NY, 1985.[20] L.G. Valiant, A Bridging Model for Parallel Computation, Communi-cations of the ACM 33 (1990), 103-111.12

