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Abstract

In this work, we describe our research efforts at detecting alerts in
event logs by analyzing the spatio-temporal partitions of a system log.
Our research shows that these spatio-temporal partitions produce clus-
ters, which can separate normal activity from anomalous activity, with a
high accuracy. Therefore, a system, which can accurately identify these
clusters into classes would provide an effective alert detection mechanism.
While the steps of the framework described in this paper utilizes an en-
tropy based approach for the clustering of the spatio-temporal partitions
and heuristics for the identification of the resultant clusters, it is general
enough to allow flexibility in the choice of methods used at each step of
the framework.

1 Introduction

Faults and downtime events are routine in the world of large scale system man-
agement. Such faults can in some situations be fixed with a simple solution
like a reboot, if there is adequate redundancy in the system. In more serious
cases, quick diagnosis and repair are crucial to maintain uptime requirements
and conform to service-level-agreements (SLAs). Information sources, such as
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system logs (that contain event descriptions from the several interrelated com-
ponents on the system), which can provide pointers to the failure root cause(s),
are crucial at this point [2, 6]. Manual inspection of system logs proves to be
unrealistic in large environments. Furthermore, recent adoption of virtualized
cloud computing infrastructure causes systems logs to be multi-tiered, i.e. dis-
joint log information is gathered on multiple physical, and virtual appliances.
Due to this fact, current research efforts have focused on the development of
tools and techniques for the automatic analysis of system logs [15].

This work describes our research efforts at developing a Spatio-Temporal
Alert Detection (STAD) framework for alert detection in system logs. We refer
to alerts as events (or groups of events) in a system log that are symptomatic
of failure or require the attention of an administrator. The framework consists
of three main components/steps. Firstly, it decomposes the contents of a log
spatio-temporally. Secondly it clusters the resultant decomposed units. If the
clustering technique used in the second step is able to produce clusters that
group different kinds of normal and anomalous activity together, then a third
step is activated to separate the clusters that contain anomalous activity from
those that contain normal activity, thus effectively detecting the alerts in the
anomalous clusters. The framework can be implemented with limited user (sys-
tem/network administrators) input and the methods used at each step of the
framework can be chosen at the discretion of the user.

In our implementation, we utilize nodehours [10] as spatio-temporal units.
Other spatio-temporal units can be chosen, the choice is purpose and system
dependent. A nodehour is one hour of log information from a single node on
the network. We utilize entropy based information content for clustering of the
nodehours, which follows from entropy based alert detection [10, 9, 8]. The en-
tropy based Nodeinfo alert detection is already deployed on production systems
at Sandia National Laboratories (SNL) in Alburquerque, NM [10]. On the other
hand, we utilize a heuristic approach for cluster identification.

Our research contributes to entropy based approaches to alert detection in
two ways. Firstly, it allows alert detection in situations where the nodes on the
network are dissimilar (an entropy based assumes similarity between the nodes
on the network) and secondly it allows the determination of alerts without resort
to the information content ranking of spatio-temporal partitions. The heuristics
used in identifying the clusters, which do not directly relate to entropy based
approaches, are also a contribution of this paper.

Our evaluation of this technique shows that we are able to detect 100% of
all alerts with a false positive rate of 0.8% in the best case, while achieving a de-
tection rate of 78% and a false positive rate of 5.4% on average. This evaluation
was carried out using real-world log data from four high performance clusters
(HPC), which are some of the fastest supercomputers in the world [11]. These
logs are publicly available from the USENIX Computer Failure Data Repos-
itory (CFDR) and contain approximately 750 million log events in 81GB of
textual files [17]. The alert messages in these system logs have been previously
labelled by the system administrators at the institutions where these HPC sys-
tems are deployed i.e. Sandia National Laboratories and Lawrence Livermore

2



National Laboratories (LLNL) in Livermore, California. Thus, showing that
the automatic discovery of these alerts is interesting and useful in a real-world
application. Since these datasets are publicly available, our research results are
also reproducible.

We compare our method with alert detection results from a version of Node-
info that uses message types as terms [9]. We will refer to this version as
NodeinfoPlus. For this comparison, we determine the value of k required to
achieve a similar detection rate as STAD and calculate the false positive rate
at that point. The average false positive rate achieved by NodeinfoPlus across
the datasets is approximately 25% compared to 5.4% for STAD. An analysis of
variance (ANOVA) test (at 5% significance) carried between the false positive
rates achieved by NodeinfoPlus and those achieved by STAD show a statisti-
cally significant difference in favor of STAD. These results provide a comparison
between our work and a deployed alert detection mechanism.

The rest of this paper is organized as follows. We discuss previous work
in Section 2. Section 3 discusses the steps of the STAD framework in detail.
Section 4 and Section 5 discuss observed characteristics and assumptions about
alert clusters and how these are used in deriving identification heuristics, respec-
tively. In Section 6 we describe the methodology of our evaluations, whereas
the results of those evaluations are discussed in Section 7. Finally, conclusions
are drawn and the future work is discussed in Section 8.

2 Previous work

Perhaps the earliest work to recognize the importance of system log events to
automatic system management and autonomic computing can be found in [16].
In this work, the author proposes a 3-tiered data driven approach to discovering
knowledge in system logs. Other interesting approaches to the use of system
logs in system management can be found in [5] and [12], in both works the
authors propose frameworks that categorize system logs events into categories
and the use of temporal information, statistical modeling and visualization to
interpret and find relationships between the event categories.

Specifically, as it relates to alert detection in system management, approaches
to alert detection vary from simple approaches that search system logs for mes-
sage patterns, which are indicative of previously known failure conditions [13], to
visualization techniques that aid the detection of alerts manually [5] and to more
complex schemes that use computational techniques. Recent computational ap-
proaches include entropy based Nodeinfo [10], Principal Component Analysis
(PCA) based detection [19], Principle Atom Recognition in Sets (PARIS) [1]
and Finite State Auotmata (FSA) based detection [3].

Recent work has attempted to improve on the Nodeinfo entropy based alert
detection technique [9, 8] by introducing the concept of message types into the
framework and making modifications to its anomaly scoring mechanism. En-
tropy based alert detection in system logs work by assigning an information
content score to spatio-temporal partitions of an event log. The information
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content scores of the spatio-temporal partitions are calculated by exploiting the
similarity between node sources. When the spatio-temporal partitions of the
log are ranked based on their information content scores, we assume that the
partitions on the top of the list are more likely to contain alerts. The STAD
framework implementation described in this work utilizes an entropy bases ap-
proach for clustering spatio-temporal log partitions. The STAD framework is
described in detail in the next section.

3 Spatio-Temporal Alert Detection

In this section, we detail the methods and techniques used in the STAD frame-
work. The STAD framework has three main steps: 1) Spatio-Temporal De-
composition of log events, 2) Clustering of Spatio-Temporal partitions and 3)
Anomaly based identification of clusters. We describe the steps in detail in the
following sections.

3.1 Spatio-Temporal Decomposition of log events

System logs on large and complex systems where the manual inspection of sys-
tem logs has become unrealistic, would contain information from several com-
ponents that make up the system. For this reason, system logs should be good
indicators of system state. However, a single reported event in the system log
is unlikely to be a good indicator of system state. Strongly correlated events in
the log are generally more interesting and are better indicators of system state
[14].

Previous work in the log analysis have usually based their analysis on the
correlated events in the log rather than single events. Previous approaches to
find correlated events in logs include frequent itemset mining [18, 6], tracking
of variables reported in message types [19] and the PARIS (Principal Atom
Recognition in Sets) algorithm [1]. One of the major mitigations against finding
correlated events in system logs is the fact that correlated events may not always
follow each other in sequence in the system logs [18]. To this end, the approach
utilized here is the decomposition of the event log spatio-temporally.

Events in system logs are typically not homogenous entities. Apart from
the textual descriptions of the event, they also contain information about the
reporting component (source), which could be a hardware and/or software com-
ponent, and the occurrence time of the event (timestamp). By using the source
and timestamp information to decompose the events in an event log such that
each resultant unit of the event log contains only events from a single source
over a unit of time, we increase the chance that the events reported in such
units are correlated. Any combination of source and time information can be
used for decomposing the contents of an event log spatio-temporally, however
we utilize nodehours in this work [10].

4



3.2 Clustering of Spatio-Temporal partitions

The aim of this step of the process is to place the spatio-temporal partitions
of the event log into partitions based on their similarity while minimizing the
similarity between the eventual clusters. Any clustering technique could be used
to achieve this aim, however, we utilize an information content based technique
for this step. The technique leverages on previous work in the entropy-based
approach to alert detection in system logs [10, 9, 8].

Before information content based clustering of nodehours can be carried out,
the entropy based analysis of the contents of a log needs to be completed. So
firstly, we assign entropy based information content scores to each term that
appears in the free form message fields of the events in the log. Terms in our
case would refer to the tokens in the free-form message field of a log event after
Full Message Type Transformation (MTT) is applied[9]. Full MTT works by
determining the message type of each free-form message in the system log, and
replacing the free-form message with a single token. Message types are textual
templates which abstract the free-form messages in event logs. Messages which
belong to the same message type usually have the same semantic meaning.
Unfortunately, message types are not always known apriori. Therefore in our
work, we extract them automatically using the Iterative Partitioning Log Mining
(IPLoM1) message type extraction algorithm [7].

We now describe how the entropy based analysis of an event log is completed.
Let W be the set of unique terms in an system log, we can calculate the entropy
based information content of each term using Eqs. 1 and 2. If we let S be
the set of sources which the events in the log are attributed to, then matrix X
represents a |W | × |S| matrix where xw,s is the count of the number of times
term w appears in messages having s as source. The set of sources in S need to
selected based on their similarity. In our evaluations, we decomposed log files
firstly based on the functionality of the node sources in the log. In cases where
the group of functional nodes were considered similar, S corresponds to the set
of nodes which report events in the log partition. In cases where the group of
functional nodes were considered dissimilar, the logs where further decomposed
so that each log was produced by only a single node. For each log file produced
by a single node, S would correspond to each 24 hour period in the log. Hence,
the events are now attributed to a temporal source.

The output of this stage is a vector G with cardinality |W |, where each
element gw of G represents that entropy based information content of term w.
Its values are in the range [0, 1], with 0 signifying low information content and
1 signifying the highest information content possible.

gw = 1 +
1

log2(S)

S∑
s=1

pw,s log2(pw,s) (1)

1An open source implementation of the IPLoM algorithm is available for download from
http://web.cs.dal.ca/∼makanju/iplom/
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Table 1: HPC log Data Statistics
System # Days Size(GB) # Events

Blue-Gene/L (BGL) 215 1.21 4,747,963

Liberty 315 22.82 265,569,231

Spirit 558 30.29 272,298,969

Thunderbird(Tbird) 244 27.37 211,212,192

pw,s =
xw,s∑S

s=1 xw,s

(2)

An information content score can thus be assigned to each spatio-temporal
partition of the event log. Let’s define Hc

j as the jth Nodehour for node c and
H as the set of nodehours, we assign an information content score (ICS) to Hc

j

using Eq. 3. In Eq. 3, Z is a |W | × |H| matrix, where zc
w,j effectively only

records unique occurrences of terms in the event data i.e. zc
w,j is 1 if term w

appears in nodehour Hc
j , 0 otherwise. Therefore, Eq. 3 assigns an ICS to a

nodehour based on the magnitude of the vector of information content values
of the terms contained in Nodehour Hc

j .

ICS(Hc
j ) =

√√√√ |W |∑
w=1

(gw ∗ zc
w,j)2 (3)

The terms in a nodehour and the information content score for the nodehour
thus become the features by which information content clustering is carried out.
Information content clustering assigns each nodehour to a cluster or bin, which
can be described using the tuple:
(ICS, “MaxEntropyMsgType′′), where ICS is a nodehour information content
score value and “MaxEntropyMsgType′′ is the ID of the message type with the
maximum information content score value among all the message types that
have instances in the nodehour. All nodehours with the same values for the
tuple will end up in the same cluster.

This simple conceptual clustering technique exploits the strong clustering of
nodehours around single ICS values, which we observed in our experiments. We
utilized this method to cluster the event logs from the HPC logs. The statistics
of these event logs are shown in Table 1.

The graph in Fig. 1 shows a scatter plot of nodehours from the BGL-
Link category. The BGL-Link category is one of the functional node categories
derived from BGL HPC log in Table 1. Aside from the fact that the alert node-
hours, i.e. nodehours that contain alert signatures have high ICS, we also notice
a strong clustering of nodehours around single ICS values. Such clustering of
values could be considered odd, since information content scores are real num-
bers that theoretically can take any value in the range [0,∞). The information
content score value derived from the use of Eq. 3, is in a way a hash value for
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the set of unique message types in a nodehour, so we can link a distinct infor-
mation content score to a (some) set(s) of unique message type combinations.
We therefore theorize that Nodehours with the same information content score
value contain the same unique set of message types and information content
scores, which occur frequently, represent some system behavior or characteristic
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Figure 1: BGL-Link Category: Scatter Plot of nodehours (x-axis) vs. information con-

tent scores (y-axis). The plot differentiates between alert nodehours and normal nodehours.

Nodehours are sorted based on information content score in the plot.

Our evaluations of the clusters formed from the nodehours of the functional
node categories of the four HPC logs has shown these hypotheses to be plausible.
These clusters created via information content clustering showed high internal
cohesion and high external separation. We also observed that if the signature
of an alert type could be found in one of the nodehours in a cluster then we
could predict with 96% confidence that all the other nodehours in the cluster
would also contain the signature for the alert type. With this observation, alert
detection is reduced to the task of identifying the derived clusters based on the
chance that they contain alert nodehours. This is what the third step of STAD
framework attempts to achieve.

3.3 Anomaly based Identification of clusters

This step of the framework involves the separation of the clusters into two
classes; an anomalous class and a normal class. Once a cluster is determined
to be anomalous, all the nodehours that are part of that cluster are assumed
to contain alerts. As with the other steps of the framework, any method of
separation can be utilized to achieve this.

To carry out the separation of the clusters, we identified four important
characteristics of alerts. These are the Bursty, Endemic, Epidemic and Near-
Periodic properties. Using these properties, we derive three assumptions about
alert clusters, which can be used in separating them from normal clusters. By
alert cluster, we refer to clusters which contain a majority of nodehours with
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alert signatures. These properties/assumptions and the identification heuristics
implemented based on the assumptions are described in detail with real exam-
ples from the HPC logs in Table 1 in Section 4 and Section 5. The methods
described for the identification of the clusters described in Section 5 have not
been previously published and thus represent a contribution of this work.

4 Cluster Separation

In this section, we first describe the four alert characteristics, which we identi-
fied, see Section 4.1. Then, we propose three assumptions about alert clusters
based on the identified characteristics, see Section 4.2. Finally, in Section 5,
we describe the heuristics based on the assumptions as implemented in our
evaluations.

4.1 Alert Characteristics

Four important alert characteristics are identified. They are described in detail
below. We note that these alert properties are not mutually exclusive and are
not intended to be exhaustive.

• Bursty Property: The bursty property occurs when we see a significant
increase in the number of events over a period of time. An example of
the bursty property is shown in Fig. 2. This figure shows the number of
events (measured by size in bytes) produced by a single node (Ln30) on the
Liberty high performance cluster on an hourly basis over a 24 hour period.
We see a significant increase in the number of bytes produced in the 15th
to 18th hours in the logs. Based on the labeling, there were at least 9
alert types active during this period, with the R EXT CCISS, R EXT FS IO

and R EXT INODE1 types being the major contributors to the burstiness
experienced during this period. The number of bytes produced by this
node drops to zero in the 19th hour right up to the 24th hour. This
indicates that the alert that caused this burstiness, led to a failure of the
node. This graph highlights the importance of alert detection in system
management. The detection of the this alert in the 15th hour would
have given administrators a 3 hour window within which they could have
applied remedial action to prevent the failure of the node, which occurred
in the 19th hour.

• Endemic Property: The endemic property occurs when a cluster shows
sporadic activity over a period of time and also shows localized activity at
each occurrence. The graph in Fig. 3 shows the activity of a cluster from
the BGL log. This cluster is associated with the KERNMC alert type. We
can see that occurrences of this cluster type are sporadic and affect only
one node at each occurrence.

• Epidemic Property: The epidemic property on the other hand occurs
when a cluster shows sporadic activity over a period of time just like in
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Figure 2: Bursty Property: This graph shows the size in Bytes (Log) of the events

produced by a single node from the Liberty HPC at hourly intervals over a 24 hour period.

the endemic case but instead affects a relatively large number of nodes at
each occurrence. The graph in Fig. 4 shows an example of another cluster
from the BGL log, which shows the epidemic property. This cluster is
associated with the KERNREC alert type. We can see that occurrences of
this cluster type are sporadic and affect as many as 2, 000 nodes at each
occurrence. The activity though wide spread does not affect all nodes, the
total number of nodes in the BGL event log category to which this cluster
belongs contains 65,554 nodes.

• Near-Periodic Property: The near-periodic property occurs when ac-
tivity in a cluster occurs at almost regular intervals. The graph in Fig. 5
shows an example of a cluster exhibiting the near-periodic property. In
this example from the Spirit event log, the cluster seems to occur almost
on an hourly basis, over a period spanning about 4 weeks. This almost
regular rate of occurrence and the frequency of occurrence is an indication
of the near-periodic property. The cluster shown in Fig. 5 is linked to the
R HDA NR and R HDA STAT alert types.

4.2 Alert Cluster Assumptions

In this section, we describe the properties, which we assume that alert clusters
have. These assumptions are based on the identified alert characteristics and
are the basis for cluster separation.

• Bursty, Endemic and Epidemic alert types show activity in relatively few
time periods. This implies that the number of active periods for a cluster
type should be a good indication of whether a cluster contains alerts or
not, a cluster type that is active during relatively few time periods is
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Figure 3: Endemic Property: The graph shows an example of a nodehour cluster which

is known to be related to an alert type. The cluster type shows localized sporadic activity.

likely to contain alerts. This supports the assumption that alerts are
usually infrequent in an event log. The number of active periods is also a
better measure of frequency than the count of active nodes or the count
of nodehours.

• Endemic alerts show localized activity each time they occur. Measuring
localized activity in a cluster would therefore be a good indicator for an
alert cluster. A cluster type, which show a high degree of localized activity
each time it occurs is likely to contain alerts.

• Near-Periodic alert types have frequent occurrences and may or may not
be localized. They therefore may not be captured by the heuristics above.
They, however, have the property of having close to regular rates of occur-
rence. Measuring the periodicity of a cluster would therefore be a good
indicator of this property. Clusters, which are relatively frequent and show
periodic or almost periodic activity are therefore likely to contain alerts.

5 Identification Heuristics

We utilized the assumptions detailed above as a means of identifying the node-
hour clusters which are derived from HPC logs detailed in Table 1. The details
of the evaluations of the identification method are described in Section 6. How-
ever, in this section we describe the heuristics, which were implemented. There
are three heuristics, one for each assumption. Before describing the heuristics,
we first provide the following definitions.

• Let E be the event log, which we intend to analyze. Let each temporal
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Figure 4: Epidemic Property: The graph shows an example of a nodehour cluster which

is known to be related to an alert type. The cluster type shows sporadic activity that affects

a relatively large number of nodes.

period spanned in E be assigned an ordinal number, n. The first hour
is assigned a value of 1 and every subsequent hour is assigned a value of
n+ 1 relative to its preceding hour, which would have a value of n.

• We define set C of spatio-temporal partition clusters derived from E,
where ci ∈ C is the ith element of C.

• We define arrays P and S, such that P[i] and S[i] are the counts of tem-
poral periods and event sources reported in the nodehours in cluster ci
respectively.

• For each cluster ci, we define array Qi such that Qi[j] is the ordinal
number of jth temporal period of activity for cluster ci.

• For each cluster ci, we define array Ri such that Ri[j] is the count of
the number of event sources reporting activity of type ci during the jth
temporal period of activity for cluster ci.

• |Qi| = |Ri| = P[i] = m

5.1 Heuristic Definitions

• First Heuristic: This heuristic implements the first assumption about
alert clusters.

1. Let med per = Median(P), ignoring values where P[i] = 1.

2. For cluster ci, if P[i] < med per, then ci is considered an alert.
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Figure 5: Near-Periodic Property: The graph shows an example of a nodehour cluster

which is known to be related to an alert type. The cluster type shows very frequent activity

compared to either the endemic or epidemic types and has almost periodic rate of occurrence.

Due to the pareto property, which is generally true for statistics involving
system logs [18], several values in array P are = 1. Hence they are ignored
in the calculation of med per, if this is not done, then med per = 1 most
of the time.

• Second Heuristic: This heuristic implements the second assumption
about alert clusters.

1. Calculate the average inverse node frequency INFi for cluster ci using
Eq. 4.

INFi =

∑m
j=1

1
Ri[j]

m
(4)

2. Set an average inverse node frequency threshold INT .

3. For cluster ci, if INFi >= INT , then then ci is considered an alert.
The average inverse node frequency metric, which is described in Eq.
4 attempts to provide a measure for localized activity. Its values
are in the range (0, 1] and the values close to one indicate localized
activity within the cluster. The graph in Fig. 6 is a scatter plot of
the alert clusters in the Liberty-Compute node category versus their
average inverse node frequency values. The Liberty-Compute node
category is one of the functional node categories from the Liberty
HPC log detailed in Table 1. Fig. 6 shows that most of the alert
clusters have an average inverse node frequency value of 1 and there-
fore are showing the endemic property. In our implementation, INT
is set to 0.95.
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Figure 6: Liberty-Compute Alert Clusters: The graph shows a scatter plot of the alert
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clusters are sorted based on their average inverse node frequency scores.

• Third Heuristic: This heuristic implements the third assumption about
alert clusters.

1. Calculate the mean time between activity µi for cluster ci using Eqn.
5. µi represents the expected time between system activity of type
ci, if cluster ci was periodic.

µi =

∑m−1
j=1 (Qi[j + 1]−Qi[j])

m− 1
(5)

2. Calculate the standard deviation STDi from µi of intervals between
system activity of type ci using Eqn. 6. We assume that STDi values
close to 0 indicate near-periodic activity.

STDi =

√∑m−1
j=1 [(Qi[j + 1]−Qi[j])− µi]

m− 1
(6)

3. Set a standard deviation threshold STT .

4. For cluster ci, if STDi < STT , then ci is considered an alert.

Lets set the norm per cnti (normalized period count) for any cluster ci as
P[i]

Max(P) . The bar graph in Fig. 7 shows STD for the Spirit-Admin clusters
with a norm per cnt greater than 0.1. The Spirit-Admin node category
is one of the functional node categories from the Spirit HPC log detailed
in Table 1. Clusters with a norm per cnt greater than 0.1 represent those
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clusters with relatively high number of active periods. Cluster 16 with
a STD value of approximately 2 is the only cluster that contains alert
nodehours. The adjacent clusters i.e clusters 15 and 16 have STD values
of approximately 1.8 and 4.0 respectively. This shows that a STD close
to zero is a good indicator for an alert cluster. In our implementation,
STT is set to 2.5.

0 

50 

100 

150 

200 

250 

300 

Cl
us
1 

Cl
us
2 

Cl
us
3 

Cl
us
4 

Cl
us
5 

Cl
us
6 

Cl
us
7 

Cl
us
8 

Cl
us
9 

Cl
us
10

 

Cl
us
11

 

Cl
us
12

 

Cl
us
13

 

Cl
us
14

 

Cl
us
15

 

Cl
us
16

 

Cl
us
17

 

Cl
us
18

 

Spirit‐Admin: Clusters with Normalized Period 
Count > 0.1 

STD 

Figure 7: Spirit Admin Clusters: This graph shows a bar chart of clusters with a

norm per cnt > 0.1 from Admin functional node category of the Spirit HPC log. Cluster 16

is the only cluster which is know to contain alerts.

Since the near-period property requires frequent occurrence, we only ap-
ply this heuristic to mid-size clusters, which is in respect to the count of
active periods. We leave out clusters with large period counts as they are
likely normal. With this in mind, we can set upper and lower bounds
for the norm per cnt and apply this heuristic only to clusters with a
norm per cnt value, which falls within these bounds. In our implemen-
tation, we set upper and lower bounds to 0.3 and 0.1 respectively. The
values were set based on the pareto property of event logs, clusters with
mid-sized period counts would likely fall within these bounds.

We know summarize the procedure for identifying a cluster ci as either an
alert or a normal cluster using the heuristics above. For any cluster ci, if either
of the heuristics above are true, it is set as an alert cluster and all the node-
hours in it as set as alert nodehours. If all of the heuristics are false then ci is
considered along with all the nodehours in ci. We note that the 2nd heuristic
is not used, when dealing with a dissimilar node scenario. The average inverse
node frequency metric has no value for distinguishing alert clusters in such a
scenario.

6 Experiments

The evaluations involved 13 datasets. The 13 datasets are based on the func-
tional node groups from the 4 HPC event logs listed in Table 1. Statistics
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Table 2: System log Data Functional Grouping Statistics
# Events # Nodes # Nodehours # Msg-Types % Alerts Similar Nodes

BGL-Compute 4,153,009 65,554 1,581,845 399 4.2 Y
BGL-IO 400,923 1,024 219,722 49 38.22 Y
BGL-Link 2,935 517 1,395 13 2.37 Y
BGL-Other 191,096 2,167 13,666 97 0.43 Y
Liberty-Compute 200,940,735 236 1,748,865 481 0.29 Y
Liberty-Admin 52,211,676 2 27,162 601 0.04 N
Liberty-Other 12,416,820 6 44,447 510 0.22 N
Spirit-Compute 218,697,851 512 6,648,719 854 0.19 Y
Spirit-Admin 41,847,257 2 26,216 443 3.10 N
Spirit-Other 11,753,861 7 57,532 707 0.25 N
Tbird-Compute 155,403,254 4,514 14.520,204 1,262 0.17 Y
Tbird-Admin 15,306,749 20 100,740 627 0.02 N
Tbird-SM 19,109,810 2 8,859 597 0.00 N
Tbird-Other 21,392,379 1,319 626,030 1,387 0.02 Y

about these datasets are provided in Table 2. In the table # Events refers to
the number of lines in the log, # Nodes refers to the number of nodes in the
functional group, # Nodehours refers to the number of spatio-temporal parti-
tions derived from the dataset via Nodehour decomposition, # Msg-Types refers
to the number of message types found in the dataset using IPLoM, % Alerts
refers to percentage of spatio-temporal partitions, which contain alert signatures
based on the domain expert labeling in the logs, while Similar Nodes refers to
processing methodology used for the dataset. A Y in the Similar Nodes column
indicates that the dataset was processed under the assumption that the nodes
in this dataset were sufficiently similar, while a N indicates that the nodes were
assumed to be dissimilar.

The values for all parameters were set as described in Section 5, except in the
case of the med per parameter. Our implementation calls for the value of this
parameter to set automatically. We found that the value automatically assigned
to this parameter was always in the range [3, 5]. Based on this observation, we
ran experiments for each dataset where the value of med per was set manually
to values in the range [2, 6], in addition to experiments where its value was set
automatically. We compare the manually set evaluations against the auto-tune
evaluations in the Result section.

The evaluation metrics used for the experiments are Recall (Detection) and
False Positive Rates. These metrics are calculated using Eqs. 7 and 8, re-
spectively. The values for the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) used in these equations were derived
using the binary scoring metric as defined in [10]. In a dissimilar node scenario,
processing is performed on a node-by-node basis, but during the evaluation the
TPs, FPs, TNs and FNs are summed to provide a single value for Recall and
False Positive Rates for the functional group.

To provide a baseline comparison, we compare our method against Node-
infoPlus [9]. NodeinfoPlus uses a rank based mechanism for alert detection,
for this reason we only compare false positive results. We determine the value
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of k required to the achieve a similar detection rate as those achieved in our
experiments for the Topk separation of nodehours. We then calculate the false
positive rate as this point and compare to the false positive rates achieved using
STAD.

Recall =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

7 Results

For the similar node categories, depending on the value for the med per pa-
rameter, we were able to achieve above 50% detection, with a single digit false
positive rate for all node categories except the BGL-IO category, see Figs. 8a
and 8b. With the BGL-IO node category only about 8% detection was achieved.
The reasons for this performance are explained in previous work [8]. In this node
category, approximately 80% of the alert events are closely correlated to mes-
sage type signatures that have entropy based information content values, which
are less than 0.1. This indicates an almost equal rate occurrence across nodes.
This observation is due to the fact that certain error types in this category
are not generated by the individual nodes but by an IO subsystem, such errors
are then sensed and reported by all nodes. This means that these errors are
attributed to the wrong source for the entropy based analysis. The high alert
nodehour ratio of this node category of 38.22% further emphasizes the fact that
the alerts in this node category are unusual. If the results for this node category
are adjusted by ignoring the alerts that show this property, the detection rate
goes up to approximately 60%. We also note that we were able to achieve 100%
detection in three node categories i.e. BGL-Link , BGL-Other and Tbird-Other,
irrespective of the value of med per.

For the dissimilar node categories we were also able to achieve above 60%
detection for all node categories depending on the value of the med per param-
eter. Also achieving 100% detection in two node categories, Liberty-Admin and
Tbird-Admin, irrespective of the value of med per. What is however interesting
here is that while we note that setting the med per to 2 gives us single digit
false positive rates for 4 out 5 node categories, the false positive rates here tend
to be on the order of about 1.5 times larger than those experienced with similar
node detection. While these false positive rates are higher, they do improve on
the baseline.
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Figure 8: This figure shows recall and false positive rates for evaluations of STAD on the

datasets listed in Table 2.
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Table 3: ANOVA Test Summary
Treatment F P-Value F crit

FPR-Baseline vs. FPR-Autoset 5.036 0.034 4.259

FPR-BestCase vs. FPR-Autoset 0.003 0.957 4.259

DR-BestCase vs. DR-Autoset 0.817 0.375 4.259

A summary of the results of the evaluation is given in Fig. 9. In this graph,
we select the best case result for each dataset, from the experiments where the
value of the med per parameter was manually set and compare it with the result
where the value of med per was set automatically. We also show a baseline false
positive rate result using NodeinfoPlus. In choosing the best case, a balance be-
tween a high detection and low false positives was considered. The graph shows
that the overall best case was achieved with the BGL-Link category with 100%
detection at a false positive rate of 0.8%. The average detection (across node
categories) was 78% and 77% for the manual experiments and auto-tuned ex-
periments, respectively, while the average false positive rate was 5.4%, 6.9% and
25% for the manual experiments, auto-tuned and NodeinfoPlus experiments, re-
spectively. An ANOVA test carried out at 5% significance indicates that there
is no statistically significant difference between the results achieved by setting
the value of med per manually and those achieved by setting it automatically.
A similar test between the baseline false positive rates achieved by Nodeinfo-
Plus against those achieved by the auto-tuned STAD results show a statistically
significant difference. We note that even if there was no statistically significant
difference between the results, the fact that STAD achieves similar results with-
out the the manual determination of k for Topk analysis remains a contribution
of our method. In the determination of alerts through the information content
ranking of spatio-temporal partitions by a Topk analysis, it may be difficult to
choose a value for k, which can be used on all datasets. The ANOVA results
are summarized in Table 3.
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Figure 9: This graph shows the best case results for the experiments where the med per

parameter is set manually and the results where its value is set automatically. It also shows the

false positive rate achieved by NodeinfoPlus for a similar detection as the autoset experiments.

The results for the BGL-IO category are adjusted.

8 Conclusion and Future Work

In this work, we evaluated a Spatio-Temporal alert detection framework on the
system logs of 4 HPCs. The results show that we could on average detect 78%
of all alerts while maintaining a false positive rate of of 5.4%. In the best case,
100% detection at a false positive rate of 0.8% was achieved.

The FPRs achieved by our experiments are not uncommon with anomaly
detection systems, where having relatively high FPRs is well documented [4]. It
is our opinion that the FPRs achieved in our experiments are low enough to as-
sist a semi-supervised approach. This would involve an administrator going over
the detected alerts to document root causes and signatures for actual alerts and
flagging signatures for the FPs. The system can therefore use such information
for future detection by searching for and reporting known alert signatures thus
suppressing future FPs. Such an approach will, over time, lead to the reduction
of the FPs to much lower levels. This approach has been used successfully with
intrusion detection alarms [4].

Perhaps the most important lesson learnt from our experiments is that it is
possible (with an appreciable level of accuracy), once the right properties are
identified, to separate clusters of spatio-temporal partitions of event logs that
may contain anomalous activity from those that contain normal activity. The
anomaly detection heuristics developed in this work are intended to show that
separation of the clusters is possible. It is possible to provide further automation
by using these properties as training features for a machine learning algorithm.
The separation produced from such automatic classification, might increase the
accuracy further.
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The framework can easily be deployed with little or no user input. The
only significant user input is the definition of the similarity categories used
in the entropy based calculations. The methods involved in the framework
are computationally inexpensive and easy to understand. As reported by our
industry partner to this project, recent adoption of virtualized cloud computing
infrastructure causes systems logs to be multi-tiered. Thus, manual analysis
of these logs proves to be difficult. System administrators of cloud computing
systems are desperately in need of tools to make sifting through large volumes of
inter-related log data an easier task. A tool such as STAD would prove useful in
the correlation of events across multiple tiers making log analysis efforts easier.

The major contributions of this work are: (i) the proposed framework for
identification of alert clusters, (ii) the ability to determine the alerts without
resorting to a ranking, and (iii) extension of the scope of an entropy based alert
detection mechanism to allow detection on a group of dissimilar nodes. The last
contribution therefore requires an update of the basic assumption for entropy
based alert detection, i.e. “Similar computers correctly executing similar code
will have similar logs”. The updated basic assumption would thus be: “System
logs events which are produced by similar spatial sources or produced during
periods of similar system activity are likely to be similar”.

Future work will involve the semi-supervised association of alerts to faults
(converting anomalies to fault signatures), which should lead to reduction in
false positives. Improving the various sub-tasks of the framework i.e message
type extraction, spatio-temporal decomposition, nodehour clustering to improve
the final output of the framework. Also the use of the identified cluster proper-
ties to produce features to train an automatic classifier for the clusters.
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