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Abstract

The task of alert detection in event logs, i.e. determining which events
in the event log require action from an administrator, is very important
in preventing or recovering from downtime events. The ability to do this
automatically and accurately provides significant savings in time and cost
of downtime events. In this work we combine message type extraction
based alert detection with the entropy based approach of the Nodeinfo
algorithm, which is in production use at Sandia National Laboratories, to
significantly improve its performance. We show that with Message Type
Indexing (MTI) and some modifications to the Nodeinfo framework, we
can achieve an ∼99% reduction in the computational effort required for
Nodeinfo and an F-Measure score of up to 100% in the identification of
regions of the event log which contain alerts. Our work demonstrates a
practical application of employing MTI on a real world data set using an
alert detection framework that is currently in production use in a major
government run national laboratory.

1 Introduction

Unscheduled downtime events are an unfortunate reality of any computer system
in production. These downtime events come at a huge cost, both in personnel
time required to troubleshoot but also in lost man hours if the downtime leads
to a disruption of workflow. The ability to recover quickly when such events
occur is therefore a major preoccupation of systems administrators. In such
events, one of the major sources of information for system administrators are
event logs. Event logs are a feature of most computer systems.

While event logs present a rich source of information, most systems admin-
istrators find them cumbersome to work with due to their typical large size and
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complexity. Not all events in an event log are symptomatic of a failure. We
refer events that are symptomatic of failure or require the attention of admin-
istrators as alerts. Unless administrators know exactly what they are looking
for, locating alerts in an event log can be cumbersome when done manually,
due to the large amount of data and the unstructured messages, which could
be misinterpreted, in the event logs. The task of alert detection would therefore
benefit from some amount of automation.

We can define the task of alert detection as the task of automatically finding
those events, which are alerts, or regions in an event log which contain alerts[1].
Nodeinfo [1, 2] is one such alert detection algorithm. Unlike previous automated
approaches to anomaly detection in event logs [3] [4], Nodeinfo has been shown
to work with an acceptable false positive rate (FPR) of 0.05%. Utilizing the
information entropy of message terms (a concatenation of a word and its token
position within a message), Nodeinfo is able to detect the portions (Nodehours)
of an event log, which are most likely to contain alerts.

Another concept closely related to the context of encoding of word and
position pairs in log files, is the concept of Message Types. The work of Vaarandi
was probably the first to show the importance of these word and position pairs,
which we refer to as terms, in the task of automatically finding message types
[5, 6]. Message types are semantic groupings of event messages which can be
described using a textual template consisting of constant tokens and variable
tokens. Knowledge of these message types is useful in imposing structure on the
unstructured content of event logs for further automatic analysis. Unfortunately
these message types are not always known a priori. Recent work using IPLOM
(Iterative Partitioning Log Mining) [7], has demonstrated an effective way of
finding these message types automatically.

In this work we attempt to integrate the concept of message types into the
term based information entropy scoring mechanism of Nodeinfo. Using mes-
sage types produced by IPLOM, we transform the messages in the BlueGene/L
(BGL) dataset before they are input to Nodeinfo. The BGL dataset is one of five
supercomputer logs, which have recently been made public [8]. By transforming
the messages based on their message types, we aim to achieve:

• A reduction in computational complexity. Nodeinfo calculations will no
longer need to be carried out using every term in the data.

• An improvement in accuracy by helping to mitigate undue contribution
of message types with a large number of tokens to a Nodeinfo score.

We also propose modifications to the original Nodeinfo framework to improve
the accuracy of alert detection and resolve an issue that we discovered with the
score assignment mechanism of the original Nodeinfo framework. It is important
to state that some of these changes made to the framework would not be possible
without the use of the message type indexing (MTI) paradigm proposed in this
paper. The results of our experiments show that it is possible to reduce the
computational effort required for alert detection by upward of 99% using our
MTI based approach. Moreover, it is possible to achieve an F-Measure accuracy
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of up to 100% in the separation of the regions of the event log that contain
alerts and those that do not (in one portion of the data), using our proposed
modification to the Nodeinfo framework. This is a significant improvement on
the 75% Precision at 50% Recall benchmark achieved using the original Nodeinfo
framework [1].

In the following, we discuss concepts important to understanding our work
and previous work in Section 2. Section 3 discusses the methodology of the
experiments we carried out to evaluate our proposed framework, whereas the
results of those experiments are discussed in Section 4. Finally, conclusions are
drawn and the future work is discussed in Section 5.

2 Background and Previous Work

2.1 Definitions

An event log E can be defined as a collection of lines of text reporting occur-
rences that occur on a computer system setup in temporal order. Thus an event
log E is a record of a sequence of events e1 to eN , with N being the number of
events contained in E. Each event ei in E can further decomposed into several
fields, exact nature and order of which would generally differ from event log to
event log but will generally consist of a timestamp (ti), reporting computer or
node (ci), severity information (si) and a free form message (mi).

Each message (mi) in an event can be sub-divided into tokens, t1 to tp ,
where p is the number of tokens in the message, using a delimiter, which is
usually whitespace. It should be noted that p varies from line to line. The
message fields of events are generally unstructured. This is due to the fact
that they are free form messages. This fact makes it difficult for the message
field of events to be used in building models based on the content of event
logs. Message type extraction or message type clustering is a way of building
structured context into the unstructured message fields of events. Its goal is to
find a set of textual templates, defined by constant tokens and variable tokens
(wildcards), that abstract all the messages in an event log. Each message can
be produced by one and only one template.

Not all events in an event log are indicative of a failure or require the con-
sideration of an administrator. Events that do are what we refer to as alerts.
The event field that is most likely to indicate if an event is an alert or not is
the severity field. However previous work has shown that this approach is not
reliable [8] due to ambiguous usage of terms by system programmers. This im-
plies a need for more advanced techniques for alert detection. The task of alert
detection can therefore be defined as the task of identifying actionable events
in an event log or identifying portions of an event log where these actionable
events are likely to exist [2].
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2.2 Alert (Anomaly) Detection in Event Logs

A review of the literature shows that there are several previous attempts at
automating the task of alert (anomaly) detection in event logs. They vary from
simple approaches that search event logs for message patterns which are indica-
tive of previously known failure conditions [9], to visualization techniques that
aid the quick detection of anomalies manually [10], to more complex schemes
that use computational techniques like time periodicity of messages [11] or term
weighting schemes [3].

A more recent computational approach to anomaly detection is Nodeinfo.
Nodeinfo proceeds from the work of Liao [4] and Reuning[3] by using the more
complex “log.entropy” term weighting scheme. Nodeinfo raises the bar of alert
detection by achieving an operationally acceptable FPR of 0.05% at a Recall rate
of 50%. Though it utilizes the concept of encoding token and position pairs,
Nodeinfo does not fully capture message context as it does not use message
types. This is most likely because message types are not always known a priori.
Previous approaches to alert detection that have utilized message types have
had to assume that they are known [12].

Our work extends Nodeinfo by using the concept of message types. We how-
ever do not assume that these message types are known, but we instead utilize
message types that are extracted automatically using the IPLOM message type
extraction algorithm [7]. Our work therefore demonstrates that a framework
that is fully automatic from the extraction of the message types to the actual
detection of the alerts in the event log is possible to achieve.

2.3 The Nodeinfo Framework

Central to the Nodeinfo framework is the concept of a Nodehour. Given any
event log E, a Nodehour can be defined as any grouping of lines produced
by a single node (c) within a one hour interval in tune with wall clock time
[2]. Therefore we define Hc

j as the jth Nodehour for node c. For each line
ei in the event log the reporting time and source node are determined by the
timestamp (ti) and reporting node (ci) fields. Nodehours form the basis of the
decomposition of an event log into documents for analysis.

Nodeinfo bases its assessment of each Nodehour on the information content
of the individual tokens, t1 to tp in the free form message (mi) field of an
event ei. To incorporate the encoding of token position into the framework, we
introduce the concept of a term, which is formed by concatenating each token
with a number corresponding to its ordinal position in the message. For each
token tj in message mi we create a term wj = tj .j. Now let W be the set of
unique terms and let C be the count of nodes on the network. We compute
a |W | × C matrix X where xw,c is the count of the number of times term w
appears in messages having node c as source. We then use matrix X to compute
vector G with cardinality |W |, where each element gw of G, is calculated using
Eq. 1. The pw,c component of Eq. 1 is calculated using Eq. 2. The output of
Eq. 1 corresponds to 1 plus each term’s Shannon information entropy [2]. Its
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value ranges between 0 and 1, with 0 signifying low information content for the
term and 1 signifying the highest information content possible.

The second step assigns a Nodeinfo score to each Nodehour based on the
entropy of the terms contained in the Nodehour and how many times they
appear. Let H be the set of all Nodehours, we define a |W | × |H| matrix Y
where yc

w,j is the count of the number of times term w appears in Nodehour Hc
j .

The Nodeinfo score for Nodehour Hc
j can then be calculated using Eq. 3.

gw = 1 +
1

log2(C)

C∑
c=1

pw,c log2(pw,c) (1)

pw,c =
xw,c∑C

c=1 xw,c

(2)

NodeInfo(Hc
j ) =

√√√√ |W |∑
w=1

(gw log2(yc
w,j))2 (3)

A ranking of Nodehours based on their Nodeinfo scores can then be estab-
lished. Nodehours with high Nodeinfo scores are then considered more likely to
contain alerts than those that come up lower in the ranking. For more details
on the Nodeinfo framework please see [1, 2].

2.4 Message Types and Message Type Extraction

A basic task in automatic analysis of log files is message type or event cluster
extraction [13]. The goal of message type or event cluster extraction is to
group the free form messages of system log events into semantic groupings and
produce textual templates (consisting of constant tokens and variable tokens)
which represent all members of the cluster. Semantic groupings usually coincide
with statements which are produced by the same print statement in the code of
the underlying program that generates the message. The extraction of message
types makes it possible to abstract the contents of event logs and facilitates
further analysis and the building of computational models. For example, this
line of code:
sprintf(message, Connection from %s port %d, ipaddress, portnumber);
in a C program could produce the following log entries:
“Connection from 192.168.10.6 port 25”
“Connection from 192.168.10.6 port 80”
“Connection from 192.168.10.7 port 25”
“Connection from 192.168.10.8 port 21”.

When message type extraction is applied, these four log entries would form
a cluster or event type and can be represented by the message type description:
“Connection from * port *”.
The wild-cards “*” represent message variables or variable tokens. The goal
of message type extraction is to find the message type representations of the
message type clusters that exist in a log file.
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Table 1: Log Data Statistics
Start Data Days Size(GB) Messages

2005-06-03 215 1.207 4,747,963

As traditional clustering algorithms have been found to be unsuitable for
message type extraction from event logs [5], specialized event log clustering
algorithms have been developed. One such algorithm is IPLoM (Iterative Par-
titioning Log Mining) [7]. IPLoM works though a 4-Step process. In its first
3 steps IPLoM hierarchically partitions the messages in an event log into their
respective clusters. In its 4th and final stage IPLoM generates templates for
each of the clusters produced. Evaluation of IPLoM shows that it has the capa-
bility of improving on the results of previous message type extraction/clustering
algorithms by nding not only frequent patterns in the data but also infrequent
ones. . In addition, IPLOM can produce patterns, which can match patterns
produced by a human more closely. In a recent evaluation of IPLoM with the
BGL dataset, IPLoM was able to achieve an F-Measure result of 91% based
on micro-average classification accuracy, when its results were compared with
message types produced manually on the same data [14]. It is this set of auto-
matically produced message types that we utilize in this work.

3 Methodology

3.1 BlueGene/L dataset

The BGL dataset utilized in our work is one of several supercomputer datasets
[8] recently made available in the USENIX Computer Failure Data Repository
[15]. The architecture of the BlueGene/L supercomputer on which the data
is collected is detailed in [16]. In our recent work, we extracted message types
automatically from these logs using IPLOM [14] . These automatically extracted
message types were shown to achieve 91% F-Measure accuracy based on micro-
average classification accuracy. It is these automatically generated message
types that we utilize in transforming the message fields of the BGL data in this
work. The characteristics of the BGL log are described in Table 1.

The Nodeinfo framework relies on the assumption that “Similar computers
correctly executing similar work should produce similar logs” [1]. For this reason
log events from similar nodes need to be analyzed together for the framework to
work effectively. To this end, we separated the messages in the BGL data based
on the functional roles of the nodes that produced them, leading to four cate-
gories i.e. Compute, IO, Link and Other categories. The Other node category is
actually not a functional grouping of messages but consists of all messages that
could either not be placed in any of the three other categories or has unknown
source information. The data statistics of the resultant datasets based on func-
tional groupings is detailed in Table 2. We note that the 500,000 messages
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Table 2: Functional Group Data Statistics
# Events # Nodes # Nodehours # Alert Nodehours

Compute 500,000 32,770 184,641 37,409
IO 400,923 1,024 219,722 83,973

Link 2,935 517 1,395 33
Other 191,096 2,167 13,666 59

recorded for the Compute nodes do not constitute all the messages generated
by Compute nodes in the original data but just the first 500,000 messages. The
actual number of messages from the Compute nodes is 4,153,008. The sampling
of 500,000 messages in this work was due to computational limitations of the
original Nodeinfo algorithm.

3.2 Message Transformation Techniques

Using the message type templates extracted from the BGL event log by IPLoM,
we transformed the messages in the event data so that we have a more concise
representation. In the calculation of term based entropy used in the Nodeinfo
framework, what is most important is the distribution of the terms across the
nodes on the network and not the terms themselves. This means that we could
get equally interesting results if we are able to transform the messages such
that we end up with fewer terms, which means less computation, while still
maintaining the distribution of the terms across the nodes. In this work, this is
what we aim to achieve with our message transformation techniques (MTT) on
the BGL data using the message types extracted by IPLOM.

Our first MTT is a phrasal message transformation technique, see Fig. 1.
It breaks up the message using the position of the variable (wild-card) tokens
in the message type template as delimiters. Each group of constant tokens
is then treated as one term and replaced with a unique term throughout the
log data. This MTT was designed to transform the message with minimal
disruption to its original format. We call this technique MTT-1 in the rest of
this paper. The second MTT transforms a message by first representing it using
a unique term that represents its message type. It then appends its variable
tokens to the transformation in the same order they appeared in the original
message. The encoding of token positions is very important to the Nodeinfo
framework, hence the importance of maintaining the order of the variable tokens
in the original message format. We call this technique MTT-2 in the rest of the
paper. The third MTT makes the most drastic changes to the data. It simply
replaces a message with a token representing its message type and ignores its
variables completely, see Fig. 3. Our intuition here is that variable tokens would
perhaps in most cases not add much value to the task of identifying alerts, the
message types being more important. This MTT was designed to investigate
this hypothesis. We call this MTT-3 in the rest of this paper.
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Figure 1: Phrasal Message Type Transformation: The procedure starts with an individual

message as contained in the first box on the right. The box on the left contains the message type

template which matches the message in the first box on the right. Each phrase consisting of constant

tokens is replaced with unique token. In the final box on the right XX represents an
ordinal number assigned to the message type and will thus change for different
message types.

Figure 2: Message Type Transformation with variables: The procedure starts with an

individual message as contained in the first box on the right. The box on the left contains the

message type template which matches the message in the first box on the right. In the final box on

the right XX represents an ordinal number assigned to the message type and will thus change for

different message types.

3.3 Modifications to Nodeinfo framework

In this section, we describe the modifications we made to the Nodeinfo frame-
work to ameliorate the following problem we discovered with the framework
and to improve the accuracy of the separation between the alert Nodehours and
non-alert Nodehours. To understand the problem, consider a Nodehour that
contains only one message. Every term in such a Nodehour will occur only
once. Irrespective of the alert category of such a message, Eq. 3 will assign a
Nodeinfo score of 0 to this Nodehour. This means that an alert Nodehour with
only one message in it will be ranked low in a list of Nodehours sorted accord-
ing to their Nodeinfo scores. We therefore made modifications to the Nodeinfo
framework to address this problem.

Our modifications were only made to the step that assigns a Nodeinfo score
to each Nodehour, i.e. Eq. 3. We modify Eq. 3 by removing the log2 component,
giving us a new equation for assigning Nodeinfo scores to Nodehours, i.e. Eq.
4. Its is pertinent to mention that without the use of MTT, removing the
log2 component would not make sense. The log2 component of Eq. 3 was
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Figure 3: Full Message Type Transformation: The procedure starts with an individual

message as contained in the first box on the right. The box on the left contains the message type

template which matches the message in the first box on the right. This method is identical to the

message type transformation with variables except that the variable values are discarded in the

final transformation. In the final box on the right XX represents an ordinal number assigned to the

message type and will thus change for different message types.

likely introduced by its designers to ameliorate a situation where a Nodehour
consisting of a lot of low-entropy terms gets a high Nodeinfo score. However,
such a problem is avoided when MTT is employed, since MTT reduces the
number of terms in each message. Therefore, the alternative solution to this
problem using MTTs, allows us to remove the log2 component.

NodeInfo(Hc
j ) =

√√√√ |W |∑
w=1

(gw ∗ yc
w,j)2 (4)

With MTT (especially MTT-3) we transform the approach from a token
based indexing one to an approach that is based on message type indexing
(MTI). As individual message types can be easily mapped to alert categories.
This means that what is important is the presence of a message type in a
Nodehour and not the number of times the message type appears in a Nodehour.
With this intuition in mind, we define a new matrix Z analogous to matrix Y in
the original framework, where zc

w,j is 1 when term w appears in Nodehour Hc
j

and 0 otherwise. Matrix Z effectively only records unique occurrences of terms
in the event data. We now define a new equation for assigning a Nodeinfo score
i.e. Eq. 5.

NodeInfo(Hc
j ) =

√√√√ |W |∑
w=1

(gw ∗ zc
w,j)2 (5)

We can say that a Nodeinfo score assigns a value to a Nodehour that defines
the degree of oddity of its contents. Intuitively since we index based on message
types with MTT, we can say that a Nodehour is only as odd as the oddest message
type it contains, irrespective of the other message types it may contain. With
this intuition, we define a new vector Ic

j for each Nodehour Hc
j , where Ic

j [i] is
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equal to gi∗zi,c,j . We can now assign a Nodeinfo score to Nodehour using Eq. 6,
effectively the highest entropy value of the terms reported during the Nodehour.

NodeInfo(Hc
j ) = maxi(Ic

j [i]) (6)

3.4 Experiments

Our experiments are twofold. In our first set of experiments we evaluate the
effect of our message type transformation techniques on the accuracy of sep-
aration between alert Nodehours and normal Nodehours. An alert Nodehour
is a Nodehour that contains at least one alert. In this set of experiments the
original Nodeinfo framework [2] was used without modifications, as outlined in
Fig. 4. To provide a baseline for performance, we also repeat this experiment
without using IPLOM or MTTs.. In this case, achieving equal or better perfor-
mance with the MTTs would be considered a success as we can make a claim
to achieving this with less computational effort.

Figure 4: Process flow for first batch of experiments. The baseline for performance had the raw

data input into Nodeinfo without preprocessing using IPLOM and MTTs.

In our second set of experiments, we evaluate the effect of our modifications
(detailed in Section 3.3) to the original Nodeinfo framework. So our process flow
changes to what is shown in Fig. 5. The baseline for performance in this case are
the results from the first round of experiments where IPLOM and the MTTs are
used along with the original Nodeinfo framework. Achieving better performance
than with the original framework is imperative for success in this case. In both
sets of experiments, we utilized the binary scoring metric as defined in [2], which
defines the true positives (TP), false positives (FP), true negatives (TN) and
false negatives(FN). With these values, we are able to calculate Precision, Recall
and F-Measure results using Eqs. 7, 8 and 9 respectively.

Figure 5: Process flow for second batch of experiments. The baseline for performance are the

results from the first round of experiments where no modifications were made to Nodeinfo.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)
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Table 3: Percentage Reduction in # of terms
Compute IO Link Other Avg.

#Terms % Red. #Terms % Red. #Terms % Red. #Terms % Red.

Original 10,486 0.00 7,391 0.00 599 0.00 11,795 0.00 0.00
MTT-1 10,397 0.85 7,205 2.52 560 6.51 11,634 1.36 2.81
MTT-2 10,368 1.13 7,176 2.91 554 7.51 11,562 1.98 3.38
MTT-3 86 99.18 48 99.35 12 98.00 92 99.22 98.94

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(9)

To produce the Precision-Recall graphs, which we present in Fig. 6 and
Fig. 7, we define Rk as the set of Nodehours formed by taking the top k
Nodehours in a list of Nodehours sorted using their Nodeinfo scores at the end
of an experiment. We vary the value of k from minimum to maximum and
calculate Precision and Recall values for each value of k. This set of Precision
and Recall pairs are then used to plot the trend line for each experiment in the
Precision-Recall plots.

4 Results

The primary motivation for the design of the message type transformations is
to reduce the number of unique terms contained in the data. This reduction
in number of terms in turn leads to a similar reduction in the computational
effort required to compute the Nodeinfo scores. So we first report on the how
these message type transformations affect the number of unique terms in the
data. The results show an average percentage reduction in the number of terms
of ∼3%, ∼3% and ∼99% for MTT-1, MTT-2 and MTT-3 respectively, see Table.
3. While there is reduction in the number of terms for all 3 types of transfor-
mations, only MTT-3 shows a reduction that would be considered significant.
We believe that the reasons for the lack of significant reduction with MTT-1
and MTT-2 stems from the fact that they retain the variable tokens. The ma-
jority of tokens in log event data occur very infrequently and there is a strong
correlation between these infrequent tokens and the variable tokens in message
type templates. This finding agrees with properties of event data outlined in [5].
MTT-1 and MTT-2 only reduce the number of frequent tokens, which correlate
with the constant tokens, hence we do not see a significant decrease in the total
number of tokens. We note however that we set a minimum support threshold
of 3 for the terms used with the original data and MTT-1 and MTT-2 i.e. we
eliminated all terms that appeared less than 3 times throughout the data. Most
tokens which occur infrequently in log data are usually variable tokens and are
not likely to add much to the alert detection process. We however did not do
this for MTT-3 since we had already explicitly discarded all variable tokens.

The results of running the original Nodeinfo framework on the original and
transformed data is provided in Fig. 6. While the results differ for each set of
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nodes, our overall conclusion from the results is that it is possible to achieve a
similar if not better result by using the proposed message type transformations.

In the case of the Compute nodes, the results show exactly the same perfor-
mance for all the data representations for Recall rates above ∼50%. However
MTT-3 seems to outperform the other representations at Recall rates lower than
∼50%, achieving ∼50% Recall at ∼65% Precision. This is in spite of the ∼99%
reduction in its term list. This result advances the notion of a correlation be-
tween message types and alert types. However, with the IO nodes we do not
notice this trend, we can only state here that there is no visible significant dif-
ference in the results for each data representation, we still count this a success
as we achieved similar results with less computational effort.

For the Other nodes we also notice no visible significant difference between
the results, Fig. 6. We do however note that results achieved here are of no use as
none of the data representations achieves a Precision rate higher than 2%. This
observation reaffirms the Similar Nodes, Similar Work, Similar Logs statement
highlighted in [1]. On the other hand, the Link nodes also show interesting
results. As expected, we see no significant difference between the results for
each data representation. We however noticed that a majority of the Nodehours
in the Link data group contained only 1 message, hence these Nodehours ended
up with a Nodeinfo score of 0. We theorize that the performance on this data
group could have been significantly better if the singularity problem discussed
in Section 3.3 is solved, because this data group is severely affected by the
singularity problem. This result highlights the need for modifications to be
made to the original Nodeinfo framework [2].

Since our previous set of results show that we can achieve similar or bet-
ter performance using all message transformation techniques, we only test our
modified Nodeinfo assignment equations using MTT-3 as it is the only one that
showed a significant decrease in the number of tokens, using the results for the
original data. This allows us to achieve similar if not better performance with
less computational cost. So in this new set of experiments we only employed
MTT-3 transformation and compared it to the above results, the new results are
highlighted in Fig. 7. For the Other nodes as expected, we again got less than
desirable results for all frameworks. The IO nodes however show no change in
results from the baseline even with the changes applied to the framework. The
reasons behind this will be discussed later.

On the other hand, with the Compute and Link nodes, we notice visible
significant changes in the results, the most significant of course being with the
Link nodes where the results improve impressively to achieve 100% Precision
and 100% Recall with the framework that uses Eq. 6. The frameworks using
Eq. 3 and Eq. 4 show similar results. We believe this is due to the fact that
the matrices Y and Z utilized by the frameworks, respectively, are almost the
same in this scenario, as most terms occur only once in most of the Nodehours.
With the Compute nodes the frameworks based on Eq. 5 and Eq. 6 show the
best performance achieving ∼100% Recall at ∼87% Precision. The framework
based on Eq. 4 however does not do so well, achieving a best case performance
of ∼50% Recall at ∼55% Precision which is lower than the baseline, , Fig.7. The
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Figure 6: Precision-Recall plots for all node categories using the original Nodeinfo framework

with different message type transformations. Results with suffix 1 are transformed using MTT-1,

with suffix 2 using MTT-2 and with suffix 3 using MTT-3.

results suggest that the most promise is held by the frameworks based on Eq.
5 and Eq. 6, further tests are required to determine which is the better one.

A question that arises from the results of the second set of experiments is:
Why do we not achieve similarly impressive results with the IO nodes as we
did with the Compute and Link nodes? Our investigations reveal an interesting
artifact, which may not be obvious from the data. We found that 9 out of the
17 alert categories associated with IO nodes (which account for ∼60% of all
alerts in IO node data) showed a close correlation to 5 message types. These
message types however all have entropy values, which are less than 0.1. This
would be considered very low and bordering on not being anomalous. This
makes it difficult to achieve high recall rate at high precision, as alert Nodehours
containing these alerts will be ranked very low amongst the other Nodehours.

In our opinion, this observation could be due to either one of two reasons.
First, this could mean that certain types of errors occur on the IO nodes at the
same frequency throughout the network, or it could mean that certain errors are
not generated autonomously by the individual IO nodes but by an IO subsystem,
which controls the IO nodes. These errors generated by the subsystem are then
likely broadcast to all IO nodes, leading to a near equal frequency of occurrence
across the nodes. We believe that the latter explanation may be more likely.
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Figure 7: Precision-Recall plots for all node categories using MTT-3 and the original message

format with original and modified Nodeinfo frameworks. Results with suffix NoLog are done using

Eq. 4, with suffix Uniq using Eq. 5 and with suffix Max using Eq. 6.

5 Conclusion and Future Work

In this work we succeeded in demonstrating a practical application of using
message type extraction as the basis for automatic log analysis, in this case
alert detection. Using the message types extracted by the IPLOM algorithm,
we modify the framework of the Nodeinfo algorithm for alert detection in system
logs. Nodeinfo is an alert detection algorithm which is currently in production
use at Sandia National Laboratories.

By introducing Message Type Indexing (MTI) after Message Type Trans-
formation (MTT) based on the message types produced by IPLOM, we show
that we can reduce the size of the term vector utilized in the Nodeinfo frame-
work by up to ∼99% leading to an equal reduction in computational effort. Our
results also seem to suggest that variable tokens within message types do not
add much context to the task of alert detection. Using the modifications a MTI
based framework affords, we also show that we can achieve an F-measure score
of up to 100% in the identification of regions (Link nodes group of the dataset)
of the event log which contain alerts.

Apart from showing the improvements that our new proposed framework can
provide for alert detection in system logs, this work demonstrates practically the
leverage that can be achieved by building models on event log data based on the
message types they contain. With the introduction of algorithms like IPLoM,
automatically extracting accurate message type descriptions from log data has
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become a possibility.
Future work will involve further testing of our framework on more real world

datasets and investigating further the reasons for the relatively poorer perfor-
mance of our framework on the IO nodes. For the latter investigation it may be
necessary for the information in our data set to be revised to include sub-systems
as possible sources of events.
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