
Compact Hilbert Indices

Chris Hamilton

Technical Report CS-2006-07

July 24, 2006

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

Compact Hilbert Indices

Chris Hamilton

chamilton@cs.dal.ca

July 5, 2006

Abstract

Space-filling curves are continuous self-similar functions which map
compact multi-dimensional sets into one-dimensional ones. Since their
invention they have found applications in a wide variety of fields [12,
21]. In the context of scientific computing and database systems, space-
filling curves can significantly improve data reuse and request times be-
cause of their locality properties [9, 13, 15]. In particular, the Hilbert
curve has been shown to be the best choice for these applications [21].
However, in database systems it is often the case that not all dimen-
sions of the data have the same cardinality, leading to an inefficiency in
the use of space-filling curves due to their being naturally constrained
to spaces where all dimensions are of equal size.

We explore the Hilbert curve, reproducing classical algorithms for
their generation and manipulation through an intuitive and rigorous
geometric approach. We then extend these basic results to construct
compact Hilbert indices which are able to capture the ordering proper-
ties of the regular Hilbert curve but without the associated inefficiency
in representation for spaces with mismatched dimensions.

1 Introduction

Space-filling curves are continuous one-to-one functions which map a com-
pact interval to a multi-dimensional unit hypercube. Originally formulated
by Giuseppe Peano in 1890 [24], the first space-filling curve was constructed
to demonstrate the somewhat counter-intuitive result that the infinite num-
ber of points in a unit interval has the same cardinality as the infinite number
of points in any bounded finite-dimensional set. Since their invention, space-
filling curves have found applications in a variety of fields, including math-
ematics [7], image processing [16, 27], image compression [20], bandwidth
reduction [23], cryptology [19], algorithms [25], scientific computing [9, 13],

1

parallel computing [2, 14], geographic information systems [1] and database
systems [5, 15, 18]. Notably, space-filling curves have also found applica-
tion in quickly computing approximate solutions to the travelling salesman
problem, with this approach leading to the development of a low-complexity
delivery vehicle routing system [3].

Since Peano introduced the first space-filling curve numerous others have
been constructed and extensively studied. Among these further develop-
ments is the family of curves generated by Hilbert [11], which to this day
finds many applications. Due to the recursive geometric nature of the orig-
inal construction, the Hilbert curves naturally impose an ordering on the
points in finite square lattices. In particular, the Hilbert curve used in this
manner has been found to be the best space-filling curve for preserving data
locality [21]. As such, it has been the focus of much research, with numerous
algorithms constructed to compute it [4, 6, 7, 8, 12, 17, 22, 26], each directed
towards a particular application.

In the first part of this paper we recreate Butz’s classic algorithm [8] for
Hilbert curves, but from a completely rigorous geometric point of view. This
intuitive approach allows for a deeper level of understanding of the primitives
used in Butz’s algorithm, at the same time providing insight into other
algorithmic approaches such as Bartholdi and Goldsman’s vertex-labelling
approach [4] and Jin and Mellor-Crummey’s recent table-driven methods
[12].

By considering the order on which the curve visits the points in an n-
dimensional lattice with 2m points per dimension, we may assign an index
to each point between 0 and 2mn − 1. In the context of database systems
this enumeration is used to sort the points while preserving data locality,
meaning that points close in the multi-dimensional space remain close in
the linear ordering. This in turn translates to data structures with excellent
range query performance [21].

In the real world, not all dimensions are of equal size and consequently
the space in which the data points reside may be significantly smaller than
the full lattice of side lengths 2m. As such the Hilbert indices require mn
bits to represent, which may be significantly larger than that required to
represent the points in their native space. In the second part of this paper
we explore the notion of compact Hilbert indices, which assign to points
an index whose representation requires the same space as that required to
represent the points in their native space.

2

2 Hilbert Curves

The results of this section construct from the ground up the necessary tools
for the exploration of Hilbert curves. We take a largely geometric approach,
yielding algorithms that are essentially identical to those of Butz in the
classic paper [8], whose standard implementation was created by Thomas
[26] and later refined by Moore [22].

The terminology and notation used in this section is largely my own, and
I have chosen to deviate from existing convention in order to highlight the
geometric approach taken here, and the relationship to standard boolean
operators. Notation will be introduced upon first use, but for the reader’s
convenience a complete table of notation may be found in Appendix A. The
need for the level of detail in this construction will become apparent in the
construction of algorithms for compact Hilbert indices in Section 3.

We consider first the traditional recursive definition of the two dimen-
sional Hilbert curve. For reasons that will become apparent later, we con-
sider the Hilbert curve that starts in the bottom left corner and finishes in
the upper left1. The curve is initially defined on a 2 × 2 lattice, as shown
in Figure 1. Given the order k curve defined on a 2k × 2k lattice, we may
refine it to visit all points on a 2k+1 × 2k+1 lattice as follows:

• Place a copy of the original curve, rotated counter-clockwise by 90◦,
in the lower left sub-grid.

• Place a copy of the original curve, rotated clockwise by 90◦, in the
upper left sub-grid.

• Place a copy of the original curve in each of the right sub-grids.

• Connect these four disjoint curves in the obvious manner.

This construction may be visualized in Figure 2, with the first four iterations
of the construction shown in Figure 3. In a completely analogous manner
one may define the Peano curve, which travels through lattices of size 3k×3k

as shown in Figure 4.
Any finite approximation of the Hilbert curves allows a simple mapping

from 2-dimensions into 1, by simply associating a given lattice point with
its index along the curve. This same concept can be extended to arbitrary
space-filling curves, as well as to higher dimensions. It is worth noting the

1In the traditional presentation, the two-dimensional Hilbert curve finishes in the bot-

tom right corner.

3

Figure 1: Order 1 Hilbert lattice Figure 2: Building the order 2
Hilbert lattice

fact that the Hilbert curves always take steps of unit length: immediate
neighbors on the curve are also immediate neighbors in the plane. This
translates to a notion of data locality: points close to each other in the
plane tend to be close to each other in their associated Hilbert order. For
the rest of this section we will be dealing implicitly with Type I Hilbert
curves.

2.1 Higher Dimensions

The geometric approach to the two-dimensional Hilbert curve starts by con-
sidering a 2×2 lattice of points and describes the path through them. It then
recurses by replacing each point with another 2×2 lattice (making a 22×22

lattice) and defining the curve through each of those, appropriately rotated
such that the entrance and exit points to these sub-lattices remain adja-
cent. We consider an analogous recursive approach to the multi-dimensional
Hilbert curve. Consider a lattice of 2 × · · · × 2 points in n-dimensions, cor-
responding to the corners of the unit hypercube in Rn. The key property of
the Hilbert curve is that successive points are immediate neighbors in the
lattice. Thus, to maintain this property we are looking for a walk through
the 2n points such that every point will be enumerated, and successive points
will be neighboring corners of the hypercube.

We let each of the 2n vertices be labelled by an n-bit string of the form
b = [βn−1 · · ·β0][2], where βi ∈ B represents the position of the vertex along
dimension i (0 for low, 1 for high). This is easily interpreted as an n-bit

4

(a) (b)

(c) (d)

Figure 3: First four iterations of the Hilbert curve.

(a) (b) (c)

Figure 4: First three iterations of the Peano curve.

5

non-negative integer value in Z2n , or equivalently, B
n. Restricting ourselves

to taking steps to immediate neighbors implies that in the binary label of
successive vertices, only one bit may change. In other words, we are looking
for an ordering of the 2n distinct n-bit numbers such that any successive
pair of numbers differ in exactly one bit. This corresponds exactly to the
classic Gray code [10].

2.1.1 Gray Code

In general, a Gray code is an ordering of numbers such that adjacent numbers
differ in exactly a single digit with respect to some base. More specifically,
we are concerned with a binary Gray code. Perhaps the simplest form of
a binary Gray code is the binary reflected Gray code, which is intuitively
constructed in the following manner:

1. Start with the Gray code over 1-bit numbers:

[[0][2] , [1][2]]

2. Write the sequence forwards and then backwards, prepending zeroes
to the first half and ones to the second half. This creates the Gray
code over all 2-bit numbers:

[[00][2] , [01][2] , [11][2] , [10][2]]

3. Repeat step 2, each time growing the Gray code over k-bit numbers
to one over k + 1 bits.

Assuming the input to step 2 is itself a Gray code over all k-bit numbers, it
is easy to see that the output will be a valid Gray code over all (k + 1)-bit
numbers. The 2-bit Gray code generated in this manner coincides exactly
with the ordering through the four points in a two-dimensional Hilbert curve
(it generates the familiar ‘A’ shape), and it can be used as a basis to extend
the concept of the Hilbert curve to higher dimensions2. Given this construc-
tion of the binary reflected Gray code, we may easily derive a closed form
for the ith Gray code integer. The following results on Gray Codes are well
known, but we have provided original proofs for the sake of completeness.

2This exact agreement is due to the non-standard orientation we have chosen for the

Hilbert curve. Given the standard orientation, the agreement would only be up to a

rotation.

6

Theorem 2.1 (Closed-form Binary Reflected Gray Code) The binary
reflected Gray code sequence is generated by the function

gc(i) = i Y (i . 1).

Proof: We consider the value of the jth bit of the ith Gray code, bit (gc(i), j).
The construction begins with the Gray code sequence over B. After j it-
erations we have the Gray code defined over all (j + 1)-bit values. In this
sequence, the first half of the values are defined such that the jth bit is zero,
while the second half has a one for the jth bit. In the next iteration of this
construction the pattern reverses itself such that (for 0 ≤ i < 4(2j)):

bit (gc(i), j) =







0, if 0 ≤ i < 2j ,
1, if 2j ≤ i < 2(2j),
1, if 2(2j) ≤ i < 3(2j),
0, if 3(2j) ≤ i < 4(2j)

=







0, if b i
2j
c = 0,

1, if b i
2j
c = 1,

1, if b i
2j
c = 2,

0, if b i
2j
c = 3.

In subsequent iterations of the construction this pattern will simply be re-
peated as it is already symmetric. Hence, it follows that for all i ≥ 0

bit (gc(i), j) =







0, if b i
2j
c mod 4 = 0,

1, if b i
2j
c mod 4 = 1,

1, if b i
2j
c mod 4 = 2,

0, if b i
2j
c mod 4 = 3.

Since b i
2j+1 c mod 2 = 1 if and only if b i

2j
c mod 4 ∈ {2, 3} we see that

bit (gc(i), j) =







0, if b i
2j
c mod 4 = 0,

1, if b i
2j
c mod 4 = 1,

0, if b i
2j
c mod 4 = 2,

1, if b i
2j
c mod 4 = 3

+

⌊
i

2j+1

⌋

mod 2

=

⌊
i

2j

⌋

+

⌊
i

2j+1

⌋

mod 2

= (i . j) + (i . (j + 1)) mod 2

= bit (i, j) + bit (i, j + 1) mod 2

= bit (i, j) Y bit (i . 1, j)

= bit (i Y (i . 1), j) .

Thus it follows that gc(i) = i Y (i . 1). ¥

7

Given a non-negative integer we may wish to find at which position it
lies in the Gray code sequence. In other words, we may wish to determine
the inverse of the Gray code.

Theorem 2.2 (Binary Reflected Gray Code Inverse) Consider a non-
negative integer i. Let m be the precision of i. That is, let m = dlog2(i+1)e
such that i requires m bits in its binary representation. Then it follows that

bit (i, j) =

m−1∑

k=j

bit (gc(i), k) .

Proof: By Theorem 2.1 we have

bit (gc(i), j) = bit (i, j) + bit (i, j + 1) mod 2.

Summing over j ≤ k < m we find that

m−1∑

k=j

bit (gc(i), k) =
m−1∑

k=j

(
bit (i, k) + bit (i, k + 1)

)
mod 2

=





m−1∑

k=j

bit (i, k) +
m∑

k=j+1

bit (i, k)



 mod 2

= bit (i, j) +



2

m−1∑

k=j+1

bit (gc(i), k)



+ bit (i,m) mod 2

= bit (i, j) + bit (i,m) mod 2.

By the definition of m we see that bit (i,m) = 0 and the result follows. ¥

We may use Theorem 2.2 to construct Algorithm 1, which computes the
inverse as desired.

We are interested in knowing along which bit the Gray code will change
when preceding from one term to the next. Equivalently, we are interested
in knowing along which dimension we will step when proceeding from one
vertex to another on the Hilbert curve. To this end, we define g(i) as

g(i) = k, such that gc(i) Y gc(i+ 1) = 2k, 0 ≤ i < 2n − 1.

Lemma 2.3 (Dimension of Change in the Gray Code) The sequence
g(i) is given by

g(i) = tsb(i),

where tsb is the number of trailing set bits in the binary representation of
i.

8

Algorithm 1 GrayCodeInverse(g)

Given a non-negative integer g, calculates the non-negative integer i such
that gc(i) = g.

Input: A non-negative integer g.
Output: The non-negative integer i such that gc(i) = g.

1: m← number of bits required to represent g
2: (i, j)← (g, 1)
3: while j < m do
4: i← i Y (g . j)
5: j ← j + 1
6: end while

Proof: We examine the difference between two consecutive values of the
Gray code:

gc(i) Y gc(i+ 1) = i Y (i . 1) Y (i+ 1) Y ((i+ 1) . 1)

= (i Y (i+ 1)) Y ((i . 1) Y ((i+ 1) . 1))

= (i Y (i+ 1)) Y ((i Y (i+ 1)) . 1).

We consider first the portion i Y (i + 1). Adding 1 to i will cause a carry
past the first digit if the first digit is 1. Similarly past the second digit and
so on. Letting k be the number of trailing ones in the binary representation
of i (or, alternatively, the index of the first zero valued bit), it follows that
i + 1 will have a one at position k, zeroes at positions 0 through k − 1,
and be identical to i elsewhere. Thus, taking the exclusive-or of these two
will result in a number with k + 1 trailing one bits. Similarly, the result
of (i Y (i + 1)) . 1 will be a number with k trailing one bits. Taking the
exclusive-or of these two results in a number with a single non-zero bit at
the kth position. Hence, between the ith and (i + 1)th Gray code integers
it is the kth bit that changes. This corresponds exactly to the definition of
‘tsb’ thus it follows that g(i) = tsb(i). ¥

Lemma 2.4 (Symmetry of the Gray Code) Given n ∈ N and 0 ≤ i <
2n, it follows that gc(2n − 1− i) = gc(i) Y 2n−1.

Proof: This property follows immediately from the construction algorithm
for the reflected binary Gray code. The second 2n−1 values are simply equal
to the first 2n−1 values in reverse, with the (n − 1)th bit set as a 1. Thus
we see that

gc(2n − 1− i) = gc(i) ∨ 2n−1, for 0 ≤ i < 2n−1.

9

Replacing the ‘or’ operation by an ‘exclusive-or’ (justified in this case as
exaclty one of gc(2n − 1 − i) or gc(i) will have a zero in the (n − 1)th bit)
leads to the desired result. ¥

Corollary 2.5 (Symmetry of g(i)) The sequence g(i) is symmetric such
that g(i) = g(2n − 2− i) for 0 ≤ i ≤ 2n − 2.

Proof: Without loss of generality we consider i ≤ 2n−2
2 . Lemma 2.4 tells

us that
gc(2n − 2− i) = gc(i+ 1) Y 2n−1.

By the definition of gc we know that gc(i+1) = gc(i)Y2g(i) and gc(2n−2−
i) = gc(2n − 1− i) Y 2g(2n−2−i). Substituting these into the above equation
yields

gc(2n − 1− i) Y 2g(2n−2−i) = gc(i) Y 2g(i)
Y 2n−1.

By Lemma 2.4 this simplifies to the desired result,

g(2n − 2− i) = g(i).

¥

Analogous to the Hilbert curve in two-dimensions, the Gray code order-
ing can be used to give an ordering through the vertices of a unit hypercube
in Rn. As in the recursive construction in two dimensions, we will recur-
sively define the Hilbert curve by zooming in on each point in the sequence
(each sub-hypercube) and iterating through the points within using a trans-
formed/rotated version of the original curve. Like the two-dimensional case,
we must determine orientations for the Hilbert curve through each of the
2n sub-hypercubes. These orientations must be consistent in that the exit
point of the curve through one sub-hypercube must be immediately adja-
cent to the entry point of the next sub-hypercube. Additionally, the entry
and exit points of the parent hypercube must coincide with the entry point
of the first sub-hypercube and the exit point of the last sub-hypercube, re-
spectively. These constraints on entry and exit points are visualized for the
two-dimensional case in Figure 5.

2.1.2 Entry Points

Using the same labelling as the vertices of the parent hypercube, we let e(i)
and f(i) refer, respectively, to the entry and exit vertices of the ith sub-
hypercube in a Gray code ordering of the sub-hypercubes. Since the ith

10

3 2

10

f(3) = 10 e(3) = 11 f(2) = 10

e(2) = 00

f(1) = 10

e(1) = 00f(0) = 01e(0) = 00

i e(i) f(i) d(i) g(i)

0 [00][2] [01][2] 0 0

1 [00][2] [10][2] 1 1

2 [00][2] [10][2] 1 0

3 [11][2] [10][2] 0 −

Figure 5: Entry and exit points of the 2 dimensional Hilbert curve (the x-axis
corresponds to the least significant bit and the y-axis the most significant).

and (i+ 1)th sub-hypercubes are neighbors along the g(i)th coordinate, we
must have that f(i) Y 2g(i) = e(i + 1). Like the entry and exit points of
the parent hypercube, entry and exit points of a given sub-hypercube must
be neighboring corners. That is, e(i) and f(i) may only differ in exactly
one bit position, meaning we must have that e(i) Y f(i) = 2d(i) for some
d(i) ∈ Zn. We refer to d(i) as the intra sub-hypercube direction, and g(i) as
the inter sub-hypercube direction. Combining these two results shows that
entry points must satisfy the relation

e(i+ 1) = e(i) Y 2d(i)
Y 2g(i), 0 ≤ i < 2n − 1. (1)

Additionally, as mentioned earlier, we must have that e(0) is the same as
the entry point of the parent hypercube and f(2n−1) is the same as the exit
point of the parent hypercube. These constraints are displayed graphically
for the two-dimensional case in Figure 5.

In order to fully determine closed forms for e(i), d(i) and f(i), we first
explore various properties of these sequences.

Lemma 2.6 (Symmetry of e(i) and f(i)) The sequences e(i) and f(i) are
symmetric such that e(i) = f(2n − 1− i) Y 2n−1.

11

Proof: We consider walking through the Hilbert curve backwards, such that
ēi = f(2n − 1 − i) and the ith sub-hypercube is gc(i) = gc(2n − 1 − i). By
Lemma 2.4 this is equivalent to gc(i) = gc(i) Y 2n−1. Thus, it follows that
f(2n − 1− i) = ēi = e(i) Y 2n−1. ¥

Corollary 2.7 (Symmetry of d(i)) The sequence d(i) is symmetric such
that d(i) = d(2n − 1− i) for 0 ≤ i ≤ 2n − 1.

Proof: Lemma 2.6 tells us that e(i) = f(2n− 1− i)Y 2n−1 and equivalently
e(2n − 1− i) = f(i) Y 2n−1. Combining these two yields

e(i) Y f(i) = e(2n − 1− i) Y f(2n − 1− i).

By the definition of d(i) we have that e(i) Y d(i) = f(i) thus we see

d(i) = d(2n − 1− i).

¥

Lemma 2.8 Suppose that

d(i) =







0, i = 0;
g(i− 1) mod n, i = 0 mod 2;
g(i) mod n, i = 1 mod 2,

for 0 ≤ i ≤ 2n − 1. Then d(i) is symmetric as per Corollary 2.7.

Proof: Suppose i = 0. Then d(0) = 0. Similarly, d(2n − 1) = g(2n − 1) =
tsb 2n − 1 = n mod n = 0. Suppose i = 0 mod 2. Then d(i) = g(i − 1).
Since 2n − 1 − i = 1 mod 2, we see that d(2n − 1 − i) = g(2n − 1 − i) =
g(2n−2− (i−1)) = g(i−1). Suppose i = 1 mod 2. Then d(i) = g(i). Since
2n− 1− i = 0 mod 2, we see that d(2n− 1− i) = g(2n− 2− i) = g(i). Thus,
this form for d(i) meets the symmetry requirement of Corollary 2.7. ¥

Theorem 2.9 (Intra Sub-hypercube Directions) The formula of Lemma
2.8 satisfies Equation 1, and hence defines the sequence of intra sub-hypercube
directions, d(i).

Proof: Let d(i, n) be the sequence of intra sub-hypercube directions for
a fixed dimension n. By inspection (see Figure 5) we see that the above
definition holds for the case n = 2. Suppose that the definition holds for
1, . . . , n and consider the case n+1. As long as g(i) < n, then g(i) mod n+

12

1 = g(i) mod n. Thus, we consider the first i such that g(i) ≥ n. By
Lemma 2.3 we see that this occurs when i = 2n − 1, the smallest positive
integer with n trailing set bits. Hence, for i < 2n − 1 we must have that
d(i, n+ 1) = d(i, n). Now consider d(2n − 1, n+ 1). Since the exit point of
the ith cell must touch the face of the (i + 1)th cell along the g(i)th axis,
we must have that

bit (f(i), g(i)) = bit (gc(i+ 1), g(i)) .

Substituting Equation 1 into this we must have that

bit

(
2n−1

Y
j=0

2d(j,n+1)
Y

2n−2

Y
j=0

2g(j), g(2n − 1)

)

= bit

(
2n−1

Y
j=0

2g(j), g(2n − 1)

)

,

which simplifies to

bit

(
2n−1

Y
j=0

2d(j,n+1), g(2n − 1)

)

= 1,

bit

(
2n−2

Y
j=0

2d(j,n+1)
Y 2d(2n−1,n+1), g(2n − 1)

)

= 1,

bit

(
2n−2

Y
j=0

2d(j,n)
Y 2d(2n−1,n+1), g(2n − 1)

)

= 1.

By the symmetry of d(i, n) most of the first term cancels, leaving

bit
(

2d(0,n)
Y 2d(2n−1,n+1), g(2n − 1)

)

= 1.

Since d(0, n) = 0 then we must have that d(2n − 1, n+ 1) = g(2n − 1). We
know that d(i, n+ 1) holds for 0 ≤ 0 ≤ 2n − 1, and by Lemma 2.8 we know
that this holds for the other half, 2n ≤ i ≤ 2n+1 − 1. Hence that definition
holds for the case n+1 and by the inductive hypothesis it holds for all n ≥ 2.
¥

Theorem 2.10 (Entry Points) The sequence of entry points is defined by

e(i) =

{
0, i = 0,
gc(2b i−1

2 c), 0 < i ≤ 2n − 1.

13

Proof: By recursive application of Equation 1 we have that

e(i) =
i−1

Y
j=0

2d(j)
Y

i−1

Y
j=0

2g(j).

By definition, for all n we have that e(0) = 0, thus we consider only the case
i > 0. Simplifying the above yields

e(i) = 2g(0)
Y

i−1

Y
j=1

2d(j)
Y gc(i)

= 2g(0)
Y 2d(0)

Y 2d(1)

︸ ︷︷ ︸
Y 2d(2)

Y 2d(3)

︸ ︷︷ ︸
Y . . . Y 2d(i−1)

Y gc(i).

Suppose i = 0 mod 2. Then by Theorem 2.9 all of the d(i) cancel out except
d(i−1), leaving us with e(i) = 2g(0)Y2d(i−1)Ygc(i). Since g(0) = tsb(0) = 0 =
tsb(i) = g(i) this yields e(i) = gc(i)Y 2d(i−1) Y 2g(i) = gc(i)Y 2g(i−1) Y 2g(i) =
gc(i− 2). Thus, e(i) = gc(2b i−1

2 c).
Suppose now that i = 1 mod 2. All of the d(i) cancel, leaving e(i) =

gc(i) Y 2g(0). Since g(0) = tsb(0) = 0 = tsb i− 1 = g(i − 1) this simplifies
to e(i) = gc(i − 1). For i = 1 mod 2 we have that i − 1 = 2b i−1

2 c, hence
e(i) = gc(2b i−1

2 c). ¥

2.1.3 Rotations and Reflections

As noted in Section 2.1.1 the recursive construction of the Hilbert curve
requires us to construct a curve through the corners of a hypercube when
provided with a particular entry and exit point. The classic Gray code
explored earlier starts at gc(0) = 0 and ends at gc(2n − 1) = 2n−1, thus
implicitly has an entry point e = 0, an internal direction d = n − 1 and an
exit point f = 2n−1. We wish to define a geometric transformation such
that the Gray code ordering of sub-hypercubes in the Hilbert curve defined
by e and d will map to the standard binary reflected Gray code.

To this end, let us define the right bit rotation operator © as

b © i =
[
b(n−1+i mod n) · · · b(i mod n)

]

[2]
, where b = [bn−1 · · · b0][2] .

Conceptually, this function rotates the n bits of b to the right by i places.
Analogously, we define the left bit rotation operator, ª. Trivially, both the
left and right bit rotation operators are bijective over Zn2 (or equivalently
B
n) for any given i. Given e and d, we may now define a transformation T

as
T(e,d)(b) = (b Y e) © (d+ 1).

14

Being the composition of two bijective operators, we see that the mapping is
itself bijective. We first explore the behaviour of the mapping on the entry
and exit points.

Lemma 2.11 (Transformed Entry and Exit Points) The transform
T(e,d) maps e and f to the first and last terms, respectively, of the binary
reflected Gray code sequence over Bn. That is,

T(e,d)(e) = 0, and T(e,d)(f) = 2n−1.

Proof: Straightforward:

T(e,d)(e) = (e Y e) © (d+ 1) = 0 © d+ 1 = 0; and,

T(e,d)(f) = (f Y e) © (d+ 1)

= (e Y 2d Y e) © (d+ 1)

= 2d © (d+ 1)

=



 0 · · · 0
︸ ︷︷ ︸

n− d− 1

1 0 · · · 0
︸ ︷︷ ︸

d





[2]

© (d+ 1)

=



1 0 · · · 0
︸ ︷︷ ︸

n− 1





[2]

= 2n−1.

¥

Given the nature of bit-rotation and the exclusive-or operator, it is also
easy to see that if neighboring elements of a sequence differ in only one
bit position, then the same will hold true for the two transformed points.
Hence, they will be neighbors as well. This and the fact that the mapping is
bijective tells us that T will in fact preserve this critical property of a Gray
code sequence.

Lemma 2.12 (Inverse Transform) The inverse of the transform T(e,d) is
itself a T -transform, given by

T−1
(e,d) = T(e©(d+1),n−d−1).

15

Proof: It is easy to see that (T(e,d)(a) ª (d+1))Ye = a, simply by reversing
the individual operations of T(e,d). Letting b = T(e,d)(a), this simplifies to

(b ª (d+ 1)) Y e = (b © (n− d− 1)) Y e

=
(
b © (n− d− 1)

)
Y
(
e ª (n− d− 1) © (n− d− 1)

)

=
(
b Y (e ª (n− d− 1))

)
© (n− d− 1)

=
(
b Y (e © (d+ 1)

)
© (n− d− 1).

¥

We are now ready to construct the Hilbert curve starting at e with di-
rection d. We define gc(e,d)(i) = T−1

(e,d)(gc(i)). By our earlier discussion it
follows that the sequence generated by gc(e,d) is a Gray code sequence. Fur-
thermore, by Lemmas 2.11 and 2.12 it follows that this Gray code sequence
begins and ends on the desired points, and the mapping T(e,d) maps it back
to the standard binary reflective Gray code. Hence, we now have the tools
necessary to consistently construct Hilbert curves through hypercubes with
arbitrarily defined entry points and directions. We finish this section with
one last result on composed transforms which will be necessary later to deal
with the recursive nature of the Hilbert curve.

Lemma 2.13 (Composed Transforms) Consider the composed transform

b = T(e2,d2)

(
T(e1,d1)(a)

)
.

Then it follows that
b = T(e,d)(a)

where e = e1 Y (e2 ª (d1 + 1)) and d = d1 + d2 + 1.

Proof: Straightforward:

T(e2,d2)

(
T(e1,d1)(a)

)
= T(e2,d2)

(
(a Y e1) © (d1 + 1)

)

= T(e2,d2)

(
(
a © (d1 + 1)

)
Y
(
e1 © (d1 + 1)

)
)

=

(
(
a © (d1 + 1)

)
Y
(
e1 © (d1 + 1)

)
Y e2

)

© (d2 + 1)

=

(

a Y e1 Y
(
e2 ª (d1 + 1)

)

︸ ︷︷ ︸

e

)

© (d1 + d2 + 1
︸ ︷︷ ︸

d

+1).

¥

16

It is important to note that T -transforms do in fact have the desired
geometric interpretation when applied to our binary labels of the vertices
of the unit hypercube. The bit rotation operator can be interpreted as a
rotation operator in Rn, while the exclusive-or operation can be interpreted
as a mirroring operation, inverting the axes i where bit (e, i) = 1. Hence, the
T -transform may be interpreted as a type of rotation and reflection operator
over the space Rn.

2.1.4 Algorithms

We consider a space of n-dimensional vectors where each component is an
integer of precision m; that is, where each component may be represented
using m bits. Given the Hilbert curve through this space Bnm, we wish to
determine the Hilbert index, h, of a given point p = [p0, . . . , pn−1], pi ∈ B

m.
The result may be found in a series of m projections and Gray code

calculations. Given p, we may extract an n-bit number

lm−1 = [bit (pn−1,m− 1) · · · bit (p0,m− 1)][2] .

Each bit of l tells us whether the point p is in the lower or upper half set of
points with respect to a given axis. Thus, the point lm−1 locates in which
sub-hypercube the point p may be found. Equivalently, it tells us the vertex
of the Hilbert curve through the vertices of the unit hypercube to which p
belongs. We wish to determine the Hilbert index of the sub-hypercube
containing p, given e and d. As discussed in Section 2.1.3, we do this in
two steps: (1) rotate and reflect the space such that the Gray code ordering
corresponds to the binary reflected Gray code, l̄m−1 = T(e,d)(lm−1); and, (2)
determine the index of the associated sub-hypercube, wm−1 = gc−1(l̄m−1).

We may now calculate e(wm−1) and d(wm−1) in order to determine the
entry point and direction through the sub-hypercube containing the point
p. The values e(wm−1) and d(wm−1) are relative to the transformed space,
thus we may compose this transformation with the existing transformation
using Lemma 2.13, calculating e = e Y (e(wm−1) ª (d + 1)) and d = d +
d(wm−1) + 1. At this point, the parameters e and d describe the rotation
and reflection necessary to map the sub-hypercube containing p back to
the standard orientation. We then narrow our focus on the sub-hypercube
containing p. We repeat the above steps to calculate wm−2 and update e
and d appropriately. We continue for wm−3 through w0 and finally calculate
the full Hilbert index as

h = [wm−1wm−2 · · ·w0][2] =
m−1∑

i=0

2niwi =
m−1

∨
i=0

(wi / ni).

17

63 62

6160

59

58 57

56 55

54 53

52

5150

49 48 47

46 45

44 43 42

4140

39 38

373635

3433

32

31

30 29

28 27 26

2524

23 22

212019

1817

161514

13 12

11

109

87

65

4

3 2

10

47

46 45

44 43 42

4140

39 38

373635

3433

32

47

46 45

44

i = 2 i = 1 i = 0

p = [5, 6] = [[101][2] , [110][2]]

i l T(e,d)(l) w e(w) d(w) e d h

- - - - - - 0 1 0
2 [11][2] = 3 3 2 0 1 0 1 2

1 [10][2] = 2 2 3 3 0 3 0 11

0 [01][2] = 1 1 1 0 1 3 0 45

Figure 6: Running algorithm HilbertIndex with n = 2, m = 3 and p =
[5, 6].

We formalize this approach in Algorithm 2. Inverting the HilbertIndex

algorithm is straightforward, with the inverse given by Algorithm 33.
We consider an example in two dimensions where m = 3. Let p be the

point at x = 5 and y = 6. Figure 6 displays both graphically and in tabular
form the results of running Algorithm 2 on the point p.

3 Compact Hilbert Indices

As mentioned in Section 1, one use of Hilbert curves is in the segmenta-
tion of multidimensional data for R-trees [15]. Hilbert curves prove to be
excellent at preserving data locality and minimizing data fragmentation as

3In these algorithms we have chosen to initialize the direction d as 0, instead of n− 1.

This corresponds to the standard orientation where the Hilbert curve starts and finishes

at opposite ends of the x-axis, the orientation we had originally shunned in Section 1.

18

Algorithm 2 HilbertIndex(n,m,p)

Calculates the Hilbert index h ∈ B
mn of a point p ∈

P.

Input: n,m ∈ Z+ and a point p ∈ P.
Output: h ∈ BM , the Hilbert index of the point p.

1: (h, e, d)← (0, 0, 0)
2: for i = m− 1 to 0 do
3: l← [bit (pn−1, i) · · · bit (p0, i)][2]

4: l← T(e,d)(l)
5: w = gc−1(l)
6: e← e Y (e(w) ª (d+ 1))
7: d← d+ d(w) + 1 mod n
8: h← (h / n) ∨ w
9: end for

Algorithm 3 HilbertIndexInverse(n,m, h)

Calculates the point p ∈ P corresponding to a given Hilbert index h ∈
B
mn.

Input: n,m ∈ Z+ and h ∈ Bmn, the Hilbert index of the point p.
Output: A point p ∈ P.

1: (e, d)← (0, 0)
2: p = [p0, . . . , pn−1]← [0, . . . , 0]
3: for i = m− 1 to 0 do
4: w ← [bit (h, in+ n− 1) · · · bit (h, in+ 0)][2]

5: l = gc(w)
6: l← T−1

(e,d)(l)
7: for j = 0 to n− 1 do
8: bit (pj , i)← bit (l, j)
9: end for

10: e← e Y (e(w) ª (d+ 1))
11: d← d+ d(w) + 1 mod n
12: end for

19

compared to other space-filling curves [21]. In this setting, large data-sets of
multidimensional data are sorted based on their Hilbert index. Most real-
world applications have some need to perform operations on the points with
respect to their Hilbert indices, including merging lists of Hilbert sorted
points. In these cases it is often convenient or even preferable to store the
Hilbert index of the point so as to work directly with it. Unfortunately, in
most cases not all of the dimensions are of the same size thus the Hilbert
index, forced to be defined over a hypercube where all dimensions are the
same size, may be much larger than the original data. This costs space
when storing Hilbert indices and time when comparing them. It would be
desirable to construct an ordering on the points that requires an index of
the same size of the incoming data.

Consider an n-dimensional data set consisting of points p ∈ Bm0 × · · · ×
B
mn−1 = P, where mi ∈ Z+ is the precision of the data in the ith dimension.

Storing a point of data requires M =
∑

imi bits. However, a Hilbert index
must be calculated with respect to a hypercube of precision m = maxi{mi},
and requiresmn ≥M bits of storage. As an example, we consider a customer
database containing an id, a province and a gender of 16, 4 and 1 bits
respectively. Points in their native space require 16 + 4 + 1 = 21 bits to
store, while the associated Hilbert indices will require 3 × 16 = 48 bits,
representing a data expansion factor of 48/21 ≈ 2.29.

We wish to find an indexing scheme that preserves completely the order-
ing of the Hilbert indices, but requires only M bits to represent. A simple
method to do this is to walk through all the points in P, calculate their
Hilbert indices and sort them based on these Hilbert indices. Then, assign
to each point its rank as an index. Trivially, this index has the same ordering
as the Hilbert ordering over P, and it requires only

∑

imi bits to represent.
However, in order to generate such an index we must first enumerate the
entire space, a prohibitive cost. The key to calculating this index directly,
referred to as the compact Hilbert index, lies in a simple observation about
Gray Codes.

3.1 Gray Code Rankings

We consider a Gray code gc(i), where gc(i) is an n-bit integer where some
subset of the bits are fixed. We let µ be a mask and π be a pattern such that
π∧µ = 0. We restrict ourselves to values gc(i) where bit (gc(i), j) = bit (π, j)
when bit (µ, j) = 0. This is equivalent to restricting ourselves to values
gc(i) such that gc(i)∧!µ = π. We let I be the set of integers that satisfy
this condition, I = {i| gc(i)∧!µ = π}. Since ‖µ‖ counts the number of

20

unconstrained bits in the definition of I, it is easy to see that |I| = 2‖µ‖ ≤ 2n.
We wish to determine a ‖µ‖-bit value, the Gray code rank, such that for all
i 6= j ∈ I, i < j if and only if gcr(i) < gcr(j). It is plain to see that gcr(i)
must be equal to the rank of i with respect to all entries in I. However,
we wish to calculate the rank directly without having to enumerate over the
entire set I.

gc(i) 8 10 12 14 20 26 28 30
i 15 12 8 11 16 19 23 20

gcr(i) 3 2 0 1 4 5 7 6
[gc(i)][2] 001000 001010 001100 001110 011000 011010 011100 011110

[i][2] 001111 001100 001000 001011 010000 010011 010111 010100

[gcr(i)][2] 011 010 000 001 100 101 111 110

Table 1: Values of gc(i), i and gcr(i) for µ = [010110][2] and π = [001000][2].

We consider an example where n = 6, ‖µ‖ = 3, µ = [010110][2] and π =
[001000][2], shown in Table 1. The unconstrained bits are shown underlined
to help in visualizing the effect of the mask and pattern. With a quick
visual inspection it becomes readily apparent that the gcr(i) values can be
constructed simply by concatenating the unconstrained bits from i. We
formalize this concept with the following results.

Lemma 3.1 (Principal Bits) Let U = {u0 < · · · < u‖µ‖−1} be the indices
of the unconstrained bits of a mask µ, such that bit (µ, uk) = 1 for all 0 ≤
k < ‖µ‖, and let π be a pattern with respect to µ. Consider a 6= b ∈ I. Let
i be the index of the most significant bit of a and b that does not match; in
other words, i = max{k|bit (a, k) 6= bit (b, k)}. It follows that i ∈ U .

Proof: By Theorem 2.2 we have that

bit (a, i) =
∑

i≤k<n

bit (gc(a), k) mod 2.

Knowing that bit (a, j) = bit (b, j) for j > i, we can use Theorem 2.1 to infer
that bit (gc(a), j) = bit (gc(b), j) for j > i. Thus, we have that

bit (a, i) + bit (b, i) =
∑

i≤k<n

(
bit (gc(a), k) + bit (gc(b), k)

)
mod 2

= bit (gc(a), i) + bit (gc(b), i) .

21

Suppose i 6∈ U . Then it follows that bit (gc(a), i) = bit (gc(b), i) = bit (π, i),
and therefore bit (a, i) = bit (b, i), a contradiction. ¥

Theorem 3.2 (Gray Code Rank) Let µ, π, I,U and n be as in Lemma
3.1. Consider i 6= j ∈ I, and define

ī =
[
bit

(
i, u‖µ‖−1

)
· · · bit (i, u0)

]

[2]
.

Then i < j if and only if ī < j̄. That is, the Gray code rank is given by
gcr(i) = ī.

Proof: Lemma 3.1 tells us that the most significant differing bit between
these two values must be in an unconstrained bit position. In other words,
the only bits necessary to compare the relative order of i and j are precisely
the bits of index u ∈ U . If we remove the constrained bits from i, and keep
the unconstrained bits in the same relative order, we are left with ī. Thus,
it follows that ī and j̄ will always have the same relative ordering as i and
j. Since ī is a ‖µ‖ digit binary number, it follows by the definition of gcr
that gcr(i) = ī. ¥

Algorithm 4 GrayCodeRank(n, µ, π, i)

Given µ, π and n as per Lemma 3.1 and a value i ∈ I, calculates r ∈ B‖µ‖

such that r = gcr(i).

Input: n ∈ Z+, µ ∈ B
n and i ∈ I.

Output: r ∈ B‖µ‖ such that r = gcr(i).
1: r ← 0
2: for k = n− 1 to 0 do
3: if bit (µ, k) = 1 then
4: r ← (r / 1) ∨ bit (i, k)
5: end if
6: end for

As per Theorem 3.2, Algorithm 4 computes gcr(i) given n, µ, π and i.
Given gcr(i) it is natural to want to reconstruct one or both of i and gc(i).
We work in parallel to reconstruct the values of gc(i) and i given gcr(i).
Since i ∈ I it follows that bit (gc(i), k) = bit (π, k) for k 6∈ U . Additionally,
when k ∈ U it follows that bit (i, k) = bit (gcr(i), j) where k = uj . Given
any k, exactly one of bit (i, k) or bit (gc(i), k) is known. Theorem 2.1 lets
us fill in the blanks as bit (gc(i), k) = bit (i, k) + bit (i, k + 1). If we work

22

from the most significant bit to the least significant bit, bit (i, k + 1) will be
known at step k, allowing us to solve for the unknown bit. We formalize
this procedure in Algorithm 5.

Algorithm 5 GrayCodeRankInverse(n, µ, π, r)

Given µ, π and n as per Lemma 3.1 and a value r ∈ B‖µ‖, calculates i ∈ I,
and gc(i) ∈ Bn such that r = gcr(i).

Input: n ∈ Z+, µ, π ∈ B
n and r ∈ B‖µ‖.

Output: i ∈ I such that r = gcr(i); and g = gc(i) ∈ Bn.
1: (i, g, j)← (0, 0, ‖µ‖ − 1)
2: for k from n− 1 to 0 do
3: if bit (µ, k) = 1 then
4: bit (i, k)← bit (r, j)
5: bit (g, k)← bit (i, k) + bit (i, k + 1) mod 2
6: j ← j − 1
7: else
8: bit (g, k)← bit (π, k)
9: bit (i, k)← bit (g, k) + bit (i, k + 1) mod 2

10: end if
11: end for

3.2 Algorithms

When calculating the Hilbert index, we determine in which side of the half-
plane the coordinate p lies in with respect to each of the axes. The integer
l is calculated at each iteration i of the algorithm as

l = T(e,d)([bit (pn−1, i) · · · bit (p0, i)][2])

=
(
[bit (pn−1, i) · · · bit (p0, i)][2] © (d+ 1)

)
Y
(
e © (d+ 1)

)
.

We consider the case where axis j has precision mj instead of all axes having
precision m. Regardless of p it follows that bit (pj , i) = 0 when i ≥ mj . At
iteration i, we define

µ = [αn−1 · · ·α0][2] © (d+ 1), where αj =

{
1, if mj > i,
0, otherwise;

and π =
(
e © (d+1)

)
∧!µ. It can be seen that l∧!µ = π, thus we may apply

Theorem 3.2 to gc−1(l) to calculate a ‖µ‖-bit rank that maintains the same

23

relative ordering as gc−1(l). Thus, at each iteration i, instead of appending
the n-bit value gc−1(l) to h, we may append the ‖µ‖-bit value gcr(gc−1(l)).
Each dimension j will contribute a 1-bit to µ for iterations 0 ≤ i < mj , each
time contributing a single bit to h. Thus, each dimension j will contribute
exactly mj bits to h, yielding a final index M =

∑

jmj bits in length. As
desired, the constructed compact Hilbert code will have the same precision
as the original point p. We formalize this approach with Algorithms 6 and 7.
The inverse procedure is equally straight-forward and is shown in Algorithm
8.

Given the tools presented in this paper, it is relatively straight-forward to
construct algorithms for efficiently iterating through all points on a regular
or compact Hilbert curve, as well as for calculating various other quantities
as per Moore [22].

4 Conclusion

Due their wide variety of uses and simple elegance, space-filling curves have
been researched continuously since their discovery over a century ago. Var-
ious types of curves have been created and many of them have found appli-
cation in real-world problems. Because of this, researchers have been driven
to create algorithms for the efficient traversal and indexing of these curves.
Motivated by the lack of clarity and intuition in the near-ubiquitous Butz
[8] algorithms as implemented by Moore [22], we have reconstructed these
algorithms from a natural geometric point of view, with detail and rigor.

Furthermore, we identified an inefficiency in the use of space-filling curves
in database systems for real-world data-sets and identified a solution. We
discussed the concept of Hilbert curves over spaces with differently sized
dimensions, and introduced the idea of compact Hilbert indices.

Finally, we developed algorithms for dealing with compact Hilbert in-
dices. While yielding a family of algorithms nearly identical in implementa-
tion to those of Moore, it is hoped that the path travelled to arrive at them
has been intuitive and illuminating. Finally, it is hoped that the introduced
notion of compact Hilbert indices will prove fruitful and find application in
database systems.

24

Algorithm 6 ExtractMask(n,m0, . . . ,mn−1, i)

Extracts a mask µ indicating which axes are active at a given iteration i of
the CompactHilbertIndex algorithm.

Input: n,m0, . . . ,mn−1 ∈ Z+ and i ∈ Zn.
Output: The mask µ of active dimensions at iteration i.

1: µ← 0
2: for j = n− 1 to 0 do
3: µ← µ / 1
4: if mj > i then
5: µ← µ ∨ 1
6: end if
7: end for

Algorithm 7 CompactHilbertIndex(n,m0, . . . ,mn−1,p)

Calculates the compact Hilbert index h ∈ B
M of a point p ∈

P.

Input: n,m0, . . . ,mn−1 ∈ Z+ and a point p ∈ P.
Output: h ∈ BH , the compact Hilbert index of the point p ∈ P.

1: (h, e, d)← (0, 0, 0)
2: m← maxi{mi}
3: for i = m− 1 to 0 do
4: µ← ExtractMask(n,m0, . . . ,mn−1, i)
5: µ← µ © (d+ 1)
6: π ← (e © (d+ 1))∧!µ
7: l← [bit (pn−1, i) · · · bit (p0, i)][2]

8: l← T(e,d)(l)
9: w = gc−1(l)

10: r = GrayCodeRank(n, µ, π, w)
11: e← e Y (e(w) ª (d+ 1))
12: d← d+ d(w) + 1 mod n
13: h← (h / ‖µ‖) ∨ r
14: end for

25

Algorithm 8 CompactHilbertIndexInverse(n,m0, . . . ,mn−1, h)

Calculates the point p ∈ P corresponding to a given compact Hilbert index
h ∈ BM .

Input: n,m0, . . . ,mn−1 ∈ Z+ and h ∈ BM , the compact Hilbert index of
the point p.

Output: A point p ∈ P.
1: (e, d, k)← (0, 0, 0)
2: p = [p0, . . . , pn−1]← [0, . . . , 0]
3: m← maxi{mi}
4: M ←

∑

i{mi}
5: for i = m− 1 to 0 do
6: µ← ExtractMask(n,m0, . . . ,mn−1, i)
7: µ← µ © (d+ 1)
8: π ← (e © (d+ 1))∧!µ
9: r ← [bit (h,M − k − 1) · · · bit (j,M − k − ‖µ‖)][2]

10: k ← k + ‖µ‖
11: w ← GrayCodeRankInverse(n, µ, π, r)
12: l = gc(w)
13: l← T−1

(e,d)(l)
14: for j = 0 to n− 1 do
15: bit (pj , i)← bit (l, j)
16: end for
17: e← e Y (e(w) ª (d+ 1))
18: d← d+ d(w) + 1 mod n
19: end for

26

References

[1] D. J. Abel and D. M. Mark. A comparative analysis of some two-
dimensional orderings. International Journal of Geographic Informa-
tion Systems, 4(1):21–31, January 1990.

[2] C. Alpert and A. Kahng. Multi-way partitioning via spacefilling curves
and dynamic programming. In Proceedings of the 31st Annual Con-
ference on Design Automation, pages 652–657, San Diego, California,
June 6-10 1994.

[3] J. J. Bartholdi III. A routing system based on spacefilling curves.
http://www2.isye.gatech.edu/~jjb/mow/mow.pdf, April 1995.

[4] J. J. Bartholdi III and P. Goldsman. Vertex-labeling algorithms
for the Hilbert spacefilling curve. Software–Practice and Experience,
31(5):395–408, May 2001.

[5] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373, September 2001.

[6] G. Breinholt and C. Schierz. Algorithm 781: Generating Hilberts space-
filling curve by recursion. ACM Transactions on Mathematical Soft-
ware, 24(2):184–189, June 1998.

[7] A. R. Butz. Convergence with Hilbert’s space-filling curve. Journal of
Computer and System Sciences, 3(2):128–146, May 1969.

[8] A. R. Butz. Alternative algorithm for Hilbert’s space-filling curve. IEEE
Transactions on Computers, pages 424–426, April 1971.

[9] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recur-
sive array layouts and fast parallel matrix multiplication. In Proceedings
of the Eleventh Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA 1999, pages 222–231, Saint-Malo, France, June
27-30 1999.

[10] F. Gray. Pulse code communication. US Patent Number 2,632,058,
March 17 1953.

[11] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück.
Mathematische Annalen, 38:459–460, 1891.

27

[12] G. Jin and J. M. Mellor-Crummey. SFCGen: A framework for efficient
generation of multi-dimensional space-filling curves by recursion. ACM
Transactions on Mathematical Software, 31(1):120–148, March 2005.

[13] G. Jin, J. M. Mellor-Crummey, and R. J. Fowler. Increasing tem-
poral locality with skewing and recursive blocking. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing, page 43, Denver,
Colorado, November 10-16 2001.

[14] M. Kaddoura, C.-W. Ou, and S. Ranka. Partitioning unstructured
computational graphs for nonuniform and adaptive environments. IEEE
Parallel and Distributed Technology: Systems and Technology, 3(3):63–
69, September 1995.

[15] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using
fractals. In Proceedings of the Twentieth International Conference on
Very Large Databases, pages 500–509, Santiago, Chile, September 1994.

[16] C.-H. Lamaque and F. Robert. Image analysis using space-filling curves
and 1d wavelet bases. Pattern Recognition, 29(8):1309–1322, August
1996.

[17] J. K. Lawder. Calculations of mappings between one and n-dimensional
values using the Hilbert space-filling curve. Technical Report JL1/00,
Birkbeck College, University of London, August 2000.

[18] J. K. Lawder and P. J. H. King. Querying multi-dimensional data in-
dexed using the Hilbert space-filling curve. SIGMOD Record, 30(1):19–
24, March 2001.

[19] Y. Matia and A. Shamir. A video scrambling technique based on space
filling curves. In Proceedings of Advances in Cryptology - CRYPTO’87,
pages 398–417, Santa Barbara, California, August 16-20 1987.

[20] B. Moghaddam, K. Hintz, and C. Stewart. Space-filling curves for image
compression. In Proceedings of the First Annual SPIE Conference on
Automatic Object Recognition, volume 1471, pages 414–421, Orlando,
Florida, April 1-5 1991.

[21] B. Moon, H. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the Hilbert space-filling curve. Knowledge and
Data Engineering, 13(1):124–141, January 2001.

28

[22] D. Moore. Fast hilbert curve generation, sorting, and range
queries. Internet: http://web.archive.org/web/20050212162158/

http://www.caam.rice.edu/~dougm/twiddle/Hilbert/, 1999.

[23] E. A. Patrick, D. R. Anderson, and F. Bechtel. Mapping multidimen-
sional space to one dimension for computer output display. IEEE Trans-
actions on Computers, 17(10):949–953, October 1968.

[24] G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathema-
tische Annalen, 36:157–160, 1890.

[25] L. K. Platzman and J. J. Bartholdi III. Spacefilling curves and the
planar travelling salesman problem. Journal of the ACM, 36(4):719–
737, October 1989.

[26] S. W. Thomas. Utah raster toolkit. Internet: http://web.mit.edu/

afs/athena/contrib/urt/src/urt3.1/urt-3.1b.tar.gz, 1991.

[27] Y. Zhang and R. E. Webber. Space diffusion: An improved parallel
halftoning technique using space-filling curves. In Proceedings of the
20th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH 93, pages 305–312, Anaheim, California, August
2-6 1993.

29

A Notation

In the following table, we summarize and briefly explain the notation used
throughout this document.

Notation

[·][2] Used to denote non-negative integers written
in base 2.

x Bold-faced font is used to represent vectors.
bit (a, k) Represents the value of the kth bit of a non-

negative integer a.

Operators

‖·‖ Number of ‘1’ bits in the binary representa-
tion of a non-negative integer (the parity).

| · | The cardinality of a set.
∨ The bitwise or operator.
Y The bitwise exclusive-or operator.
∧ The bitwise and operator.
Z The bitwise not-and operator.
! The bitwise not operator.
/ The bitwise shift-left operator.
. The bitwise shift-right operator.
ª The bitwise left-rotation operator.
© The bitwise right-rotation operator.

Functions

tsb The trailing set bits function.
gc The binary reflected Gray code function.
gcr The Gray code rank function.

Spaces

Z The set of integers, {. . . ,−1, 0, 1, . . .}.
Z+ The set of positive integers, {1, 2, . . .}.
N The set of natural integers, {0, 1, . . .}.

Continued on next page...

30

...continued from previous page.

Zk The set of integers modulo k, {0, . . . , k − 1}.
B The set of integers {0, 1}.
B
k The set of positive integers of k bits, Z2k .
P The n-dimensional space Bm0 × · · · × Bmn−1 .

Sequences

m0, . . . ,mn−1 Precision (number of bits) of each of the n
dimensions.

g(0), . . . , g(2n − 2) Sequence of integers in Zn such that gc(i) Y
2g(i) = gc(i+ 1).

e(0), . . . , e(2n − 1) Sequence of entry points in Bn.
f(0), . . . , f(2n − 1) Sequence of exit points in Bn.
d(0), . . . , d(2n − 1) Sequence of directions in Zn such that e(i) Y

2g(i) Y 2d(i) = e(i+ 1).

Values

p = [p0, . . . , pn−1] A point in the space P.
n Dimensionality of the space P.
m Maximum precision, m = maxi{mi}.
e An entry point in Bn.
f An exit point in Bn.
d A direction in Zn.
M The net precision, M =

∑

imi.
h A Hilbert index in BM .
µ A mask in Bn.
π A pattern in Bn such that π ∧ µ = 0.

Sets

I The set of points {i ∈ Bn| gc(i)∧!µ = π}.
U = {u0 < . . . < u‖µ‖−1} The set of unconstrained bits associated with

a given mask µ.

31

