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Abstract

In this paper we address the problem of automated classification of
isolates, i.e., the problem of determining the family of genomes to which
a given genome belongs. Additionally, we address the problem of auto-
mated hierarchical clustering of isolates according only to their statistical
substring properties. For both of these problems we present algorithms
based on nucleotide n-grams. Results obtained experimentally are very
positive and suggest that the proposed techniques can be successfully used
in a variety of related problems.

1 Introduction

The number and sizes of genome databases grow rapidly over the last years.
Huge amount of information requires new ways for processing them and using
them in efficient ways. One of the most important problems is clustering of
genomes and classification of genomes, i.e., determining a group to which it
belongs. For example, distinguishing virus subspecies, strains and isolates is
important in vaccine development, diagnostics and other fields of biological and
medical research and practice.

The genetic information of every organism is written in the universal lan-
guage of DNA sequences, and the DNA sequence of any given organism can be
obtained by the standard biochemical techniques. Using these sequences, it is
now possible to catalogue and characterize any set of living organisms. From
such comparisons we can estimate the place of each organism in the family tree
of living species—the “tree of life.”



In this paper we address the following two problems:

e given several families of genomes and a genome, determine the family to
which it most likely belongs;

e define a procedure for clustering of genomes (according only to their statis-
tical substring properties ); such procedure should be effective and should
not require any expert knowledge.

This work follows some of the ideas from [13]. This paper includes results
on using a character n-gram technique for the problem of authorship attribu-
tion, i.e., the problem of identifying the author of an anonymous text, or text
whose authorship is in doubt. We address the problem of genome sequences
classification and extend the approach and ideas reported in [13].

The results obtained following the proposed technique are very positive and
encouraging. We believe that the technique can find many applications, both
in academic research and in medicine and industry.

Overview of the paper In Section 2 we give some background information
and basic notions. In Section 3 we introduce the notion of dissimilarity mea-
sures and present several dissimilarity functions. In Section 4 we report on our
experimental results that led us to good dissimilarity functions. In Section 5 we
discuss how the proposed technique can be used for genome sequences classifi-
cation and in Section 6 we discuss how the proposed technique can be used for
genome clustering and we present some experimental results. In Section 7 we
briefly discuss the related work. In Section 8 we present some plans for future
work and in Section 9 we draw final conclusions.

2 Background

2.1 N-grams

Definition 1 Given a sequence of tokens S = (si1,82,..., 8N4 (n—1)) over the
token alphabet A with N and n positive integers, an n-gram of the sequence is
an n-long subsequence of consecutive tokens. The it" n-gram of S is the sequence
(8i5 841y -y Siyn—1) [18].

Note that there are N such n-grams in S. There are (| A|)™ different n-grams
over the alphabet A (|A| is the size of A).

For n < 5 Latin names are commonly used for n-grams (e.g., trigrams) and
for n > 5 numeric prefix are common (e.g., 6-grams).!

N-grams have been successfully used for a long time in a wide variety of
problems and domains, including: text compression (1953) [20], spelling error
detection and correction (1962) [2, 21], optical character recognition (1967) [1],

ISince “gram” is a Greek word, some authors prefer using names monogram, digram,
trigram, tetragram, ... instead of unigram, bigram, trigram, quadrigram, . ...



information retrieval (1973) [8], language identification (1991) [17], automatic
text categorization (1994) [5], music representation (1999) [9], computational
immunology (2000) [15], analysis of whole-genome protein sequences (2002) [11],
authorship attribution (2003) [13].

In many domains, techniques based on using n-grams gave very good results.
For instance, in natural language processing, n-grams can be used to distinguish
between documents in different languages in multi-lingual collections and to gage
topical similarity between documents in the same language [5, 7], but also in
some other problems. In this field, n-grams show some of its good features:

e robustness: relatively insensitive to spelling variations/errors;
e completeness: token alphabet known in advance;

e domain independence: language and topic independent;

e efficiency: one pass processing;

e simplicity: no linguistic knowledge is required.

On the other hand, the problem which can appear in using n-grams is ex-
ponential explosion. If A is the Latin alphabet with the space delimiter, then
|A| = 27. If one distinguishes between upper and lower case letters, and also
places significance in numerical digits, then |A| = 63. It is clear that many of
algorithms with n-grams are computationally too expensive even for n = 5 or
n = 6.

2.2 Definitions of Relevant Biological Terms

Definition 2 (Genome) Genome is the complete genetic material of an or-
ganism. Its size is generally given as its total number of base pairs.[12]

Definition 3 (Base pair) Base pair are two nitrogenous bases (adenine and
thymine or guanine and cytosine) held together by weak bonds. Two strands of
DNA are held together in the shape of a double helixz by the bonds between base
pairs.[19]

Definition 4 (Base sequence) Base sequence is the order of nucleotide bases
in a DNA molecule.[19]

Definition 5 (Nucleotide) Nucleotide is a subunit of DNA or RNA consist-
ing of a nitrogenous base (adenine, guanine, thymine, or cytosine in DNA; ade-
nine, guanine, uracil, or cytosine in RNA), a phosphate molecule, and a sugar
molecule (deoxyribose in DNA and ribose in RNA). Thousands of nucleotides
are linked to form a DNA or RNA molecule.[19]

Definition 6 (Isolate) Isolate is a genome instance.



As it can be seen from above definitions, genome is a general term, but
isolate is genom from concrete specific organism.

Genome (isolate) can be represented as a base sequence. It can be seen as
word on alphabet {A,G,C,T,N,R,W,Y,M,K,S,H, B,V, D} where the domi-
nant letters are {A,G,C,T}. This set of dominant letters represents standard
nucleotide codes 2. A represents Adenosine, T - Thymidine, C - Cytosine,
G - Guanosine. They are dominant because DNA sequence is made of 4 nu-
cleotide which they represent. Other letters represent ambiguous nucleotide
codes: N € {A4,G,C,T}, Re {G,A}, W € {A,T},Y € {C,T}, M € {A,C},
K € {G,T}, S € {G,C}, H € {A,C,T}, B € {C,G,T}, V € {A,C,G},
D € {A,G,T}. [4] These letters appears in DNA sequence, because of genetic
variability.

Clustering is the process of grouping data objects together on the basis
of the features they have in common. It is a standard data mining task in
which items are grouped in clusters of objects with the objective of maximizing
the intra-cluster similarity and the inter-cluster dissimilarity between objects.
Hierarchical clustering is the clustering in which the clusters do not simply make
a partition of the set of objects, but they organized into a tree hierarchy, so that
any child cluster is a subset of the parent cluster and the sibling clusters are
disjoint. When applied to genomes, hierarchical clustering produces a biological
taxonomy, which helps us to make sense of the enormous diversity of living
organisms. In any organism, there are many different kinds of features to choose
from, and in principle all of them can be used in classification. For example, one
could use external anatomy, internal anatomy, chromosomes, molecules, genome
etc. [16]

Ideally, classification should be based on homology; that is, shared charac-
teristics that have been inherited from a common ancestor. The more recent
ancestor is shared between two species,

e the more homologies they share, and
e the more similar these homologies are.

However, since the birth of molecular biology, homologies can now also be stud-
ied at the level of proteins and DNA (DNA-DNA Hybridization, Chromosome
Painting, Comparing DNA Sequences).[14] Genome analysis gives powerful way
to determine evolutionary relationships. The complete DNA sequence (genome)
of an organism defines the species with a big precision. This specification is in
a digital form (a string of letters, word on a given alphabet) and can be easy
stored in computer and compared with genomes of other living things.

3 Dissimilarity Functions

Dissimilarity measure d is a function on two sets of sequences P; and P, (defining
specific profiles) and it should reflect the dissimilarity between these two, i.e.,

2U is also standard nucleotide code and represents Uridine which is replacement of T in
RNA



it should meet the following conditions:
e d(P,P)=0;
o d(P1,P2) = d(P2, P1);
e the value d(P;,P>) should be small if Py and P, are similar.

e the value d(P;,Ps) should be large if P; and P» are not similar.

The last two conditions are informal as the notion of similarity is not strictly
defined. By similar sequences we will usually mean sequences with similar dis-
tributions of n-grams.

In [3], some pioneer methods for authorship attribution problem? and dis-
similarity measures were discussed. In that book, in the chapter about the use
of computers for language processing, a range of problems from some early ideas
about language modelling to cryptography, language evolution and authorship
attribution, are discussed and tackled using character-level n-grams. Specifi-
cally, for authorship attribution problem (i.e., author identification problem as
called in the book), the bigram letter statistic was used. Two texts are compared
for the same authorship, using the dissimilarity formula:

d(M,N) = Z[M(I,J) — E(I,J)]-[N(I,J)— E(I,J)], (1)
I,J

where I and J are indices over the range {1,2,...,26}, i.e., all letters of English
alphabet, M (I, J) and N(I,J) are normalized character bigram frequencies for
one and the other author and E(I,J) is the same normalized frequency for
“standard English”. As the bigram frequencies of “standard English” are obvi-
ously language-dependent parameters, another dissimilarity measure is given:

d(M,N) = "[M(1,J) - N(I,J). (2)
1,J

In [13], ideas from [3] are followed and adapted for larger n-grams (and
also used for the author attribution problem). Namely, the above dissimilarity
functions (functions (1) and (2)) give equal weight to frequency differences of all
n-grams included in a profile. This may be justified for bigrams that were used in
[3], because all of them were reasonably frequent and the sparse data problem is
not an issue. However, with larger n-grams the frequency varies more and more,
so if we used this absolute difference measure the more frequent n-grams would
be emphasized more because the absolute differences in their frequencies are
larger. In order to “normalize”these differences, they are divided by the average
frequency for a given n-gram. This, in [13], led to the following dissimilarity
measure (which we will denote by d; within this paper):

- 2-(fi(n) — f2(n))\?
d1(P1,P2) = Z ( fi(n) + fa(n) )

neprofile

3 Authorship attribution problem is as follows: given texts written by authors A1, As, ...
Ay, and one additional piece of text, guess who of the given authors wrote that piece of text.



where fi(n) and fa(n) are frequencies of an n-gram n in the author profile (P1)
and the document profile (Ps).

A document profile in [13] is the set of L most frequent n-grams in a set of
documents, with their attached relative frequencies. The value of parameter L
ranges from 20 to 5000. We define genome profiles in the analogous way.

In this paper, we introduce several new dissimilarity measures. Some of them
are based on similar considerations as the above one from [13], while we explore
some additional variations. In the function d; frequency differences are divided
by the “average” (arithmetic mean value — (f1(n) + f2(n))/2) frequency for a
given n-gram. In some of the functions we introduce in this paper, we divide
frequency differences not by arithmetic mean value, but by geometric mean
value for a given n-gram (1/ f1(n) - f2(n)), or harmonic mean value (2/(1/ f1(n)+
1/ f2(n))) or quadratic mean value \/(f1(n)? + f2(n)?)/2. Also, elements in the
sums may be squared, or we may sum the absolute values of differences, in the
fashion of the L measure.

~ 2f1(n) — fo(n)|
dy(Py,P2) = ne;ﬁle “h() + foln)

fi(n) = fo(n)
d3(P1,P2) =
3P, ) Zﬁl (\ﬁfl ) f2(n) + 1)

dy(P1,P2) = [f1(n) = f2(n)]

nepzr;ﬁze fi(n) - fa(n) +1

An additive constant 1 is used in the numerator of the function dy4 since f1(n)
or f2(n) can be zero. This function (d4) will be in focus of our attention in the
rest of the paper.

The following two functions are based on the harmonic mean:

_ (f1(n) = o(m)(fr(n) + fo(n)) |
dS(PI;PQ) - ne;ﬁle ( 2f1 (n)fg(n) )
fi(n) f2(n)#0
N |f1(n) — f2(n)|(f1(n) + fo(n))
d6(P17P2) ne%ﬁle 2f1(n)f2 (n)
f1(n) f2(n)#0

The following functions are based on the geometric mean value without the
use of the additive constant:

2
fi(n) — f2(n)
dr(P1,Py) = N0
7(P1, P2) negﬁle ( fl(n)f2(”))
f1(n)fa(n)#£0
|fi(n) — fa(n)]
ds(P1,P2) = VA fm)
s(P1,P2) negﬁle fi(n) fa(n)
f1(n)f2(n)#0



In order to explore the affect of square differences, the following two functions
are constructed as weighted linear combinations of linear and square differences:

dy(P1,Pa) = Y (Alfiln) = fo(m)| + |f1(n)* = fo(n)?])
neprofile
for A(Pl,Pz) =100 and B=1
dio(P1,P2) = Y (Alfi(n) = fo(n)| + Blfi(n)* = fo(n)?))
neprofile

for A(P1,P2) = 1000 and B = 0.1.
The following two functions are based on the quadratic mean value:

di(PL,P2) = Y (ﬁ(fl(n) — fa(n) )2
, neprofile fl (n)2 + fg(n)2
di2(P1,Ps) = V2| fi(n) — fo(n)

neEprofile f1 (n)2 + f2 (TL)2

Using the following function we explore the affect of the additive constant
on the geometrical mean based function:

A= )\
dl 1, /72 =
3P 2) neg;ﬁle<\/f1(”)f2(”)+10>

Although following ideas and considerations from [3] and [13], the above
functions are only heuristic measures. Their quality is to be tested and ensured
by experiments that follow.

We also use several functions, based on measures for similarity/dissimilarity
between patterns from [10]:

Euclidean distance:

dia(P1,P2) = Z (fi(n) = f2(n))?

neprofile

Manhattan distance:

dis(P1,P) = 3 1fin) = foln)

neprofile

23 neprofite f1(n) f2(n)
ZnEproﬁle fl (n)Z + Enepmﬁle f2 (TL)2

dig(P1,P2) =1 -

ZnEproﬁle fi (TL) f2 (n)
ZnEpraﬁle f1 (TL)2 + ZnEproﬁle f2 (TL)2 - ZnEproﬁle fl (’I’L)fz (n)

di7(P1,P2) =1—



Znez)'[‘offile fl (n) f2 (n)
\/(EnEprofile fl (n)2) (EnEprofile f2 (n)2)

ZnEprofile fi (n) f2 (’I’L)
min((} e propite S1(0)*) (Xneprogie f2(n)?))

dig(P1,P2) =1—

dlg(Pl,Pz) =1-

4 Looking for Good Dissimilarity Functions

Encouraged by the success rate of the system for authorship attribution pre-
sented in [13], we try to use the same or a similar technique to the analogous
problem of classifying genome sequences. Namely, we want to build a system
that, given several groups of genome sequence and a genome sequence, deter-
mine a group to which it most likely belongs. The basic idea is simple: for
the given set of families P;, i+ = 1,2,...,k and the given genome sequence g,
compute the dissimilarity measures D({g},P;), i = 1,2,...,k. If the value
D({g}, Ps) is the smallest one, then the guess is that g belongs to the family P;.
Thus, the algorithm for classifying genome sequences is trivial and its quality
completely relies on the appropriateness of the dissimilarity measure used. This
is essentially the well-known & Nearest Neighbours (kNN) classification method,
with k =1 [10].

In the following experiments we used isolates with complete genome se-
quences of HIV-1 and HIV-2 virus. HIV — Human immunodeficiency virus is
categorized in the family of viruses known as retroviruses. Within this family of
viruses, HIV is further classified in the genus lentiviruses. HIV-1 and HIV-2 are
the two species of human immunodeficiency viruses. They differ in the nature of
some of the accessory genes.* Scientists have produced SHIV, simian-human im-
munodeficiency virus, by putting the outer envelope of HIV onto an SIV core.?
SIV is also a lentivirus, but this virus infects only monkeys. In the following
experiments we use also isolates with complete genome of SHIV virus to make
classification more demanding (instead of SIV, because SHIV closer related to
HIV then SIV). In any case, we just decided to take this corpora to demonstrate
our method. Our method is not specially adapted for HIV/SHIV corpora, it
can be applied to any other corpora as well, it is not based on corpora selection.

Corpus 1 The corpus is made out of three group of isolates with complete
genomes (available from hitp://www.ncbi.nlm.nih.gov/, as in October 2004):

e a group of 445 isolates of HIV-1;
e a group of 18 isolates of HIV-2 ;

4http://biology.fullerton.edu/courses/biol_302/Web/Browser/index.html  Understanding
Human Immunodeficiency Virus

Shttp://www.niaid.nih.gov/daids/vaccine/advoslide/sld001.htm NATIONAL AIDS VAC-
CINE ADVOCATES FORUM Vaccine Basic Science Mary A. Allen, R.N, M.S. November 8,
1997.




e a group of 8 isolates of SHIV.

For all experiments presented, we used an originally developed software, but
also softver package Ngrams written by Vlado Keselj.®

4.1 Preliminary Confirmation of Expectations

In order to test whether the technique proposed in [13] can be used for genome
sequences classification, we performed the following experiment (using Corpus

1).

Experiment 1 Take one (random) genome sequence (isolate)g from HIV-1
and compute the values:

d(g, HIV-1\{g}), d(g,HIV-2), d(g,SHIV)

for different n-gram lengths (n=1,2,...,10).
The plausible outcome is that d(g, HIV-1\{g}) is the smallest value for each
nm=12,...,10).

We performed the above experiment using the dissimilarity function d;
(from [13]). The results are shown in Figure 1.7 Despite the very high success
rate in the author attribution problem, this function and this experiment did not
meet our expectations. Namely, as can be seen from Figure 1, d(g, HIV-1\ {g})
is not smallest among d(g, HIV-1\ {g}), d(g,HIV-2), d(g,SHIV) (moreover, for
most n (n=1,...,10) d(g, HIV-1\ {g}) is the largest value. Hence, this dissimi-
larity function cannot be successfully used for genome sequences classification.

100000

d1(g,HIV-1)
G1(g HIV-2) ---1-
A1(G.SHIV) ---7--

80000 -

60000 |

dissimilarity

40000 -

20000 -

0

0 2 4 6 8 10
n-gram

Figure 1: Results for Experiment 1 performed by using dissimilarity function d

6Ngrams package is available at http://www.cs.dal.ca/ vlado/srcperl /Ngrams/ .
7 All experimental data can be obtained on request from the first author.



In addition to the attempt with the function d;, we performed Experiment 1
using the dissimilarity function ds (and the same random genome sequence as
with the function dy). Unlike dy, the function ds produces really encouraging
results. They are shown in Figure 2. As required, for each n (n =1,2,...,10),
the value d(g, HIV-1\ {g}) is the smallest one.

20

d4(g,
4,
94(gS

IV-1
IV-2) —--—z~
HIV) ="

dissimilarity
T

0

- L L L
0 2 4 6 8 10
n-gram

Figure 2: Results for Experiment 1 by using dissimilarity function dy4

4.2 Establishing Preliminary Findings

The outcome of Experiment 1 using the dissimilarity function dy is encouraging,
but might be misleading if the random genome selected (from HIV-1) within
experiment has some specific properties. Therefore, we want to verify that this
is not the case. More precisely, we want to check that d4(g, HIV-1\ {g}) is the
smallest among the values d4(g, HIV-1\ {g}), d4(g, HIV-2), d4(g, SHIV) for all
(or almost all) genomes g from HIV-1.

In order to simplify further presentation (and to consider only two values),
the above condition will be replaced by the following equivalent conditions:
da(9,HIV-2) — d4(g9,HIV-1\ {g}) > 0, ds(g, SHIV) — d4(g,HIV-1\ {g}) > 0. We
introduce the function D, difference of dissimilarities, in the following way:

D(d, P1, P2, P3) = d(P1,P3) — d(P1,P2)
Therefore, now we can state the above conditions in the following way:
D(ds,{g},HIV-2,HIV-1\ {g}) > 0
D(d4,{g},SHIV,HIV-1\ {g}) >0

These conditions were met for the genome g used in the described experiment
and the results of the experiment in this form are presented in Figure 3.

Now, let us describe the next experiment in terms of function D.

10



D(d4(g) HIV-2HIV-1\ (g) ——
D(dd.{g] SHIV.HIV-1\ {g}) -----

of dissimilarities

difference

Figure 3: Results for Experiment 1 by using dissimilarity function d4 and pre-
sented in terms of function D

Experiment 2 For all genome sequences g from HIV-1 compute the values:

D(d,{g}, SHIV, HIV-1\ {g})

for different n-gram lengths (n =1,2,...,10).

The plausible outcome is that D(d,{g}, HIV-2, HIV-1\ {g}) > 0 and
D(d,{g}, SHIV,HIV-1\ {g}) > 0 hold for all (or almost all) genomes g from
HIV-1 and for all n-gram lengths (n=1,...10).

The results of Experiment 2 for dissimilarity function ds4 are summarized in
Figures 4 and 5. Figure 4 shows minimal and maximal values over all genomes
g from HIV-1 for D(d4,{g}, HIV-2,HIV-1\ {g}). Figure 5 shows minimal and
maximal values over all genomes g from HIV-1 for D(dy, {g}, SHIV,HIV-1\{g}).
We can see that minimal values for HIV-2 are greater than 0 for all n-grams,
n = 1,...,10 and that minimal values for HIV-2 are greater than 0 for n-
grams such that n > 3. Although the plausible outcome of Experiment 2 is
not reached for all values n (for SHIV) and minimal values for HIV-2 are in
some cases close to 0, maximal values suggest that in most cases the values
D(ds,{g},HIV-2,HIV-1 \ {g}) D(ds,{g},SHIV,HIV-1\ {g}) are safely above
0. In particular, we can note that the difference of dissimilarities is uniformly
above 0 for n larger than 3. For small values of n, the n-gram profiles are small
and “information poor” so low performance in such cases is not unexpected.

4.3 Comparing Dissimilarity Functions

The results of Experiment 2 suggest that function D(d, Py, Ps,P3) can serve
as a good measure of quality for a dissimilarity function d. Of course, there

11



f dissimilarities.
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difference of

Figure 4: Minimal and maximal values over all genomes g from HIV-1 for

are many candidates for dissimilarity function d used for classifying genome
sequences. In this subsection we report on experiments aimed at comparing
different candidates.

Since all investigated dissimilarity functions are of additive type, it is sensible
to use function D as a measure of their quality (since it based on subtraction
between values of a dissimilarity function). However, for different dissimilarity
functions their values (and hence values of function D) can vary even for several
orders of magnitude (especially for larger n). Thus, for comparing different
dissimilarity functions, we introduce the function Q, ratio of dissimilarities, in
the following way:
d(Py, P2)
d(P1,Ps)

If d(P1,P2) = 0 and d(P1,P3) = 0, we define Q(d,P1,P2,P3) to be 1. If
d(P1,P3) = 0 and d(P1,P2) # 0, we define Q(d,P1,P2,P3) to be oo, where
oo > r, for any real number r.

Conditions D(d, P1,P2,P3) > 0 and D(d, P1,P2,P3) > 0 are equivalent to
Q(d,P1,P2,P3) > 1 and Q(d,P1,Pa,P3) > 1. These conditions were met for
the genome g used in the above described experiment with function d4 and the
results of the experiment in this form are presented in Figure 6.

Q(d; Pl; P?; PS) =

Minimal and maximal values for Q(dy, {g}, HIV-2,HIV-1\ {g}) (for n-grams
n=1,...10) are shown in Figure 7. Minimal and maximal values for Q(d4, {9},
HIV-2,SHIV\{g}). These results are transformed results presented in in Figures
4 and 5. Although the minimal values for SHIV are not always greater than 1
and although minimal values for HIV-2 are in some cases close to 1, maximal
values suggest that in most cases the values Q(dy4, {9}, HIV-2,HIV-1\ {g}) and
Q(ds, {9}, SHIV,HIV-1\ {g}) are safely above 1.

12



min(D(d4.(g) SHIVHIV-1\(g} ) ——
max(D(dd,{g} SHIV.HIV-1i{g)) -

of dissimilarities

difference

L
0 2 4 6 8 10
n-gram

Figure 5: Minimal and maximal values over all genomes g from HIV-1 for

Experiment 3 For all genome sequences g from HIV-1 compute the minimums
of values:

Q(d7 {9}7 P’ HIV-1 \ {g})

for different n-gram lengths (n = 1,2,...,10). Do it for different dissimilar-
ity functions d and for P=HIV-2 and P=SHIV. The outcome is comparison
between several dissimilarity functions d. The greater are the above minimal
values, the better the function is.

The results of the Experiment 3 are shown in Figure 9. The minimums are
shown only for the functions that gave best results: dy, dg, dig, dig, di7, dis,
and djg. As it can be seen from Figure 9, for all these functions, for n > 4,
minimal values for Q(d, {g},P,HIV-1\ {g}) are greater than 1. We find these
results to be significant and encouraging. One of their consequences is: if we
use any of these dissimilarity functions for classifying genome isolates (using the
Corpus 1), each HIV-1 isolate will be correctly classified into the group HIV-1.
The isolates are correctly classified when n-gram profiles of length 4 or higher
up to 10 are used.

Having made a selection of the best candidates for dissimilarity functions,
in the next experiment, we will use them for the genome classification problem.

5 Genome Sequence Classification: Experimen-
tal Results

Experiment 4 Take two thirds genome sequences (isolates) from HIV-1 as a
corpus Prry/.1- Take two thirds genome sequences (isolates) from HIV-2 as a

13



ratio of dissimilarities

1

0

Qd4,{o) HIV-2HIV-1\g) ——
Q(d4.{g]. SHIV.HIV-1\{g}) -----

Figure 6: Results for Experiment 1 by using dissimilarity function d4 presented

via ratio of dissimilarities

8

7

6

ratio of dissimilarities

0

0

Figure 7: Minimal and maximal values for Q(d4, {9}, HIV-2,HIV-1\ {¢})

corpus Prrry.o- Take two thirds genome sequences (isolates) from SHIV as a

corpus PgHTY-

Take a genome sequence (isolate) from HIV-1 \Pgry.q or from HIV-2
\Prrvy.o, or from SHIV \Pgpry. Classify the test genome sequences using
the kNN method, that is: compute the values d({g}, Prrrv-1), d{9}, Prrv-2)
and d({g}, Pgpry); and classify the sequence g into one of the three classes
according to the rules:

e g belongs to HIV-1, if d({g}, Pgry.-1) is the smallest value

e g belongs to HIV-2, if d({g}, Pgry.0) is the smallest value

e g belongs to SHIV, if d({g}, Pggry) is the smallest value.

14



min{Q(da {g) SHIVHIV-1\ig)) ) ——
max{Q(d4.{g}.SHIV.HIV-1\{g}) } -----

0 2 4 6 8 10
n-gram

Figure 8: Minimal and maximal values for Q(d4, {g}, SHIV,HIV-1\ {g})

Q(d4,{g)
in{min{Q(do (g}
410, gg IV-2,HIV-

: L L L
0 2 4 6 8 10
n-gram

Figure 9: Results for Experiment 3

The guess is correct if g indeed belongs to the returned set of genome se-
quences and wrong otherwise.

The plausible outcome is: for all genome sequences from HIV-1 \Pgv/.1,
HIV-2 \Pgry-9 or from SHIV \Pgrry, all (or almost all) guesses given by a
dissimilarity function d is correct.

We performed Experiment 4 for all functions given in Section 3. Table 1
shows the results for the functions selected as good candidates for dissimilarity
functions in §4.3, while Table 2 shows the results for the remaining functions.

As we can see, almost all functions given in Table 1 gave excellent perfor-
mances. Almost each of them, for n > 5 gave (maximal) success rate 99.6%. It
is interesting to note that none of the functions reached 100% success rate for
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| n-gram | ds | dy | dio | dia | dis | dig | di7 | dig | dig |
1 97,0970 97,0[97,4]97,0] 21,3 56,2 [ 20,4 | 86,4
98,7 | 98,7 | 98,7 | 98,3 [ 98,7 | 91,9 | 96,6 | 91,4 | 84,3
99,1 [ 99,1 199,11991]99,1]983] 99,1/ 98,7 | 80,0
99,1 [ 99,1 [ 99,1 [ 99,6 | 99,1 | 99,6 | 99,6 | 98,7 | 49,8
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 38,7
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 94,0
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,1
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99.6 | 99,6 | 99,6 | 99,6
99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6 | 99,6

OO0 | O U Ix| W N

[y
[en}

Table 1: Results for Experiment 4 for functions d4, dy, dio, di14, dis, dig, di7,
dis, dig

|n—gram|d1|d2|d3 | d5 | d6 | d7 | ds |d11|d12|d13|

1 30 5,1 4,7 | 57,0 | 634 ] 57,0 | 634 3,0 | 5,1 | 16,2
2 51| 5,1 55 | 630|634 ] 63,0 | 634 | 5,1 | 5,1 | 26,0
3 51| 5,1] 94 | 62,6 | 63,4 | 63,0 | 634 | 51 | 5,1 | 9,8
1 51| 5,1 11,1 | 65,1 | 65,1 | 65,1 | 67,7 | 5,1 | 5,1 | 11,1
5 55 | 5,5 | 10,6 | 66,4 | 71,9 | 67,2 | 81,3 | 5,5 | 5,5 | 11,1
6 47 |43 ] 10,6 | 12,3 | 60,4 | 56,2 | 84,3 | 4,7 | 4,3 | 10,6
7 1,7 1,71106]| 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 10,6
8 71,7102 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 10,2
9 71,7102 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 10,2
10 [1,7]1,71106]| 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 1,7 | 10,2

Table 2: Results for Experiment 4 for functions di, ds, d3, ds, dg, d7, dg, di1,
di2, di3

any n. In almost all cases for which the success rate 99.6% was reached, the very
same isolate was wrongly classified: the isolate AF465242.1. Simion-Human im-
munodeficiency virus isolate 1B3 was guessed to belong to HIV-1. It would be
worthwhile to analyze this anomaly using some deeper biological knowledge.

Table 2 shows results for the remaining dissimilarity functions. All of them,
including d;, from [13] gave very poor results.

Notice, from the given tables, that bigger n does not necessarily mean better
success rate. Namely, sometimes smaller n-grams can carry information that is
outwith reach for larger n-grams. To obtain a higher level of confidence, one
can perform multiple tests (for several values for n) while classifying a genome
sequence.

An interesting observation is that the classification accuracy for functions
ds, ds, d7, and dg in Table 2 is relatively good for n € {1,...,6} and then
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it suddenly drops to 1.7. All of these functions use only n-grams common to
two profiles, that is only such n-grams n for which fi(n)f2(n) # 0. As the n-
grams grow longer, they become more sparse and unique for a particular profile.
Thus, the number n-grams used in summation becomes so small that it become
impossible to successfully detect the genome class.

As our final choice for dissimilarity function, we used d4 for the rest of the
experiments reported in this paper.

6 Hierarchical Clustering Problem

With positive results in genome sequence classification (Section 5), now we ad-
dress a related, but more complex problem: hierarchical clustering of genome
sequences. Our goal is to define an algorithm that can provide fully unsuper-
vised hierarchical clustering of genome sequences. This clustering method would
be based on pure statistical n-gram information, without using any additional
domain knowledge, and it would rely on dissimilarity functions described in the
previous text.

We introduce two clustering methods. Both, as a result, give a classification
tree, usually called genome tree. 8 A genome tree as an unordered binary tree
with genome sequences attached to its leafs. Each leaf has a genome sequence
attached to it. Each node of genome tree that is not leaf, we annotate with a
numerical value that characterize dissimilarity between successor nodes in left
and right subtree, and hence, can be used in determining whether these two
subtrees belong to the same output group or not.

Clustering Method 1 At the beginning, the genome tree is empty. The set of
mput genome Sequences is given as an array.

The genome tree T is being built in an incremental manner in the following
way (let us denote the current genome sequence by g):

o if T is empty, then the root of T is constructed and, g is attached to it;

o if the root of T is, in the same time, leaf I, then two its successors are
constructed; 1 is attached to the left one (and not to the root anymore)
and g is attached to the right one;

e if the root has to subtrees T; and 7T, then let

M= ma d(91,
B, 491,92)

M; = max d(g,
1 = max (91,9)

M> = max d(g2,
2 92€T2 (92 g)

8E.g. http://hc.ims.u-tokyo.ac.jp/JSBi/journal/GIW03/GIW03P005/GIW03P005.html
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—if My > M and Ms > M, then g will establish o new group: a new
node is constructed with two successors. The old tree T is attached
to the left one, while g is attached to the right one. The constructed
tree is now the new tree T .

— otherwise, if My < M, then g will be inserted to T1 (recursively,
using this same algorithm) and if My > My, then g will be inserted
to T (recursively, using this same algorithm).

When the building of the tree 7T is finished, we can look for genome groups.

For different orderings of isolates processed, one can get different genome
trees and different genome groups.

Within the above algorithm, we can always, for each node and its subtrees 71
and T keep up-to-date the value M = maxgy, c7;,g,c7; d(91,92). Note that this
value M for one node is always less then these values for any of its successors.
Thus, for any given threshold value V', we get one genome clustering: all genomes
that have one predecessor with M < V belong to the same group. In this way,
clustering can be fine tuned via the threshold value V. Note that, an appropriate
threshold value can depend on the ordering of isolates being processed.

Notice that this clustering method is, in spirit, related to another sort of
dissimilarity measures between two corpora P; and P (which we do not address
in this paper, but may be the subject of our future research):

d(P1,P2) = d(g1,

( ! 2) gle'gll?;;epz (gl 92)

Clustering Method 2 The second clustering method is similar to the first
method. The only difference is the way in which the values M, My and My are
calculated. These values are calculated in the following way

M =d(T1,Tz)
My =d(Th,g)
M2 :d(7-279)

where by T we mean the set of all genomes attached to leafs of T .

A tree T generated using the second method does not necessarily fulfill the
condition that the value M for one node is always less then these values for any
of its successors.

Experiment 5 Use the clustering methods 1 and 2 (for particular dissimilarity
function d and particular value n) and apply them to the Corpus 1.

The plausible outcome is that the groups HIV-1, HIV-2 and SHIV will be
detected and separated.

We performed Experiment 5 for the dissimilarity function d4 and for n= 10.
Results for clustering method 1 are shown in Figure 10. The threshold value
1.735 gives very good clustering with very few incorrectly classified isolates:
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isolates of HIV-1 are classified into three groups — of 391 (with one additional
SHIV isolate), 22 and 32 elements, isolates of HIV-2 into one group (of 17
elements) and one of them into the group of 7 SHIV isolates. A deeper biological
analysis is required for explaining why the HIV-1 isolates are separated into
three groups and what makes distinction between them; why one SHIV isolate
was classified along with HIV-1 isolates and why one HIV-2 (V27200.1 Human-
immunodeficiency virus type 2 EHO) was classified along with SHIV isolates.
The node N3 imposes introducing of two subgroups in the node N (because
M in Nj is greater than the threshold value) and hence distinguishing the node
Ny, despite the fact that the value M in Ny is less than the threshold value.
For lower threshold values, one could get more fine-grained clustering.

Ni (M = 1.934)

Na (M = 1.900) N5 (M = 1.804)

Figure 10: Results for Experiment 5 for threshold value 1.735 and for Method
1, for n=10 and for dissimilarity function dy

Notice that in the classification problem, we had almost 100% success rate,
while in the presented clustering method there were some wrong classification
decisions. The main reasons for them are:

e in the clustering problem, HIV-2 and SHIV isolates are processed along
with HIV-1 isolates;

e corpora are not the same as in the classification experiments; in the clus-
tering problem, corpora are being built incrementally;

e in the clustering problem, pair-wise metrics is used, and not the one used
in the classification problem.
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The results from Experiment 5 for the dissimilarity function ds and for
n= 10 and for clustering method 2 are shown in Figure 11. As already noted,
a tree T generated using the second clustering method does not necessarily
fulfill the condition value M for one node is always less then these values for
any of its successors. That is why we cannot make fine grained partition based
on suitably selected threshold values (which is one of the weaknesses of this
method). However, for suitably selected nodes (their values M can still help in
that) one can get a tree as one given in Figure 11. It can be noted that the tree
produced by clustering method 2 (Figure 11) is better than the tree produce my
method 1 (Figure 10) in the sense that it matches better the known class labels of
the genomes, even though the number of produced leaf clusters is smaller. This
can be expressed more explicitly by the majority class accuracy. Namely, if we
label each cluster with the majority class genome, we see that the tree produced
by method 1 creates two misclassifications, while the tree produced by method 2
has only one misclassification, giving accuracies of 0.9958 and 0.9979.

Figure 11: Results for Experiment 5 for Method 2, for n=10 and for dissimilarity
function d,

7 Related Work

This work follows some of the ideas from [13]. That paper reports on using
n-grams for authorship attribution, i.e., for identifying the author of an anony-
mous text, or text whose authorship is in doubt. In that work, there is proposed
a novel method for computer-assisted authorship attribution based on character
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level n-gram author profiles, which is motivated by an almost forgotten, pioneer-
ing method in 1976 [3]. We follow ideas from [13], but apply them to another
domain and also change the dissimilarity functions used.

The text classification problem is also addressed using n-grams in [6], and,
so-called, the out-of-place measure is used as a dissimilarity function. Very
good results are reported for application of this technique to the classification
of text from the usenet newsgroups articles. In the out-of-place measure, the
frequencies in two corpora are sorted and for each n-gram the position in the
sorted list is determined; then for each n-gram the absolute value of difference
of these positions is calculated and then summed for all n-grams. Although
the work presented in [6] is similar in spirit to the work presented here, the key
difference is the different style of dissimilarity function. In future work, it would
be interesting to compare these two styles of dissimilarity functions.

In [11] n-grams are used for studying languages distribution of members of
“vocabulary” (e.g., standard 20 amino acids). The paper reports on the finding
that some n-grams occur frequently in some organisms while occur rarely in
others. Following this observation, a simple Markovian unigram model from
the proteins of Aeropyrum pernix was trained. When training and test set were
from the same organism, a perplexity (a variation on cross-entropy) enabled au-
tomatically distinguishing between organisms with even the simplest language
model. While in [11] distributions of n-grams are considered, in the work pre-
sented here we reduce the difference of two genomes to a single number, which
serves as a dissimilarity measure.

Concerning the clustering algorithms based on n-grams, we are not aware of
such algorithms, and we believe that the algorithms presented here are the first
of that kind.

8 Future Work

For our future work, we are planning to further develop techniques presented
in this paper: to further investigate and improve the presented dissimilarity
functions and the classification and clustering methods. Also, we are planning
to apply the technique to other corpora and domains (not only in bioinfor-
matics). We have already performed preliminary experiments on three genus
of viruses: Tobamovirus (15 complete genomes), Alphavirus® (15) and Sobe-
movirus (9).!° We took half of each of them as training corpus and then ran
the classification process for the remaining half. The results, for n=1,...,10
were again excellent (they are given in Table 3). These results show that the
technique proposed here can be successfully applied also to the cases where
we have grouping/classification of different species. Tobamovirus, Alphavirus
and Sobemovirus are three groups of viruses which belong to group “ssRNA
positive-strand viruses, no DNA stage” There are also other families/genus of
viruses which belong to this group like Astroviridae, Baranviridae, Benyvirus

9belongs to family Togaviridae
10 A vailable from: http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/ssRNAO1.html.
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etc. We could perform our technique to guess in which group(family, subfamily,
genus) some species belongs. The number of group (family, subfamily, genus) is
not necessary to be three, it can be two, four, five or more. Using out technique
it would be, also, possible to cluster many different species in groups which can
correspond to their “official” group (class, family, subfamily, genus ...)

Figure 12 shows results of clustering of the viruses using the clustering meth-
ods 1 and 2, making only very few wrong classifying decisions (according to the
starting, “official” classification). In the first tree, in all nodes that were not
distinguished, values M are less than 1.96. However, it is not the case with the
second genome tree.

n| 1 [ 2 [ 3 [ 4] 5 | 6 [ 7 [ 8 ]9 |

10 |

|
[ [66.7% | 100% | 100% | 100% | 100% | 88,9% | 100% | 100% | 100% |

100% |

Table 3: Classification results for Tobamovirus, Alphavirus and Sobemovirus

Ny (M= 1.991)

14 x Alpha.
1 X Sobemo.

8 X Sobemo.
1x Alpha.

15 x Tobamo.

15 x Tobamo. 9 X Sobemo.

Figure 12: Clustering results for Tobamovirus, Alphavirus and Sobemovirus
for threshold value 1.965 (for Methods 1 and 2, for n=10 and for dissimilarity
function dy)

9 Conclusions

In this paper we addressed the problems of automatic isolate classification, and
clustering and unsupervised genome tree generation. For both of these problems
we use techniques based on n-grams. For the classification problem, we follow
some ideas from [13], while we changed the key ingredient of the technique
— the dissimilarity function. For the clustering problem we presented two
original algorithms and (to the best of our knowledge) the first two of the
kind. We tested the techniques on the corpus of 463 HIV isolates and 8 SHIV
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isolates with complete genomes. Results obtained experimentally are very good:
for suitably selected dissimilarity function, accuracy rate for the classification
problem was 99.6%. For the clustering problem, both methods gave very good
results for suitable selected dissimilarity function and suitable chosen threshold
value. The presented experimental results suggest that the proposed techniques
can be successfully used.

Our future plans include improving and testing the techniques on other
corpora (one such preliminary test is presented in Section 8). We believe that
the proposed technique can be used in many practical applications in biological
and medical research and practice.
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