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Abstract

Dynamic web sites commonly return information in the form of lists and tables. Al-

though hand crafting an extraction program for a specific template is time-consuming but

straightforward, it is desirable to automatically generate template extraction programs from

examples of lists and tables in html documents. Supervised approaches have been shown to

achieve high accuracy, but they require manual labeling of training examples, which is also

time consuming. Fully unsupervised approaches, which extract rows and columns by detect-

ing regularities in the data, cannot provide sufficient accuracy for practical domains. We

describe a novel technique, Post-supervised Learning, which exploits unsupervised learning

to avoid the need for training examples, while minimally involving the user to achieve high

accuracy. We have developed unsupervised algorithms to extract the number of rows and

adopted a dynamic programming algorithm for extracting columns. Our method achieves

high performance with minimal user input compared to fully supervised techniques.
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1 Introduction

Dynamically generated web pages composed of a list or table are becoming widely used.

The data contained in the list or table is typically extracted from a database on the basis

of a user query, as shown in Figure 1. The process is geared towards a human user who

employs a web browser to interact with a web site, which is the interface to a database. The

process of form filling (to input the query) and viewing the resulting lists or tables is time

consuming, and it would be desirable to automate it, especially when this process has to be

repeated many times, either to track information over time, or to obtain data for a large

number of different queries. If the web site does not change, then it is fairly straightforward

to customize an information extraction program to the template of a particular web site.

However, in case a large number of different sites needs to be queried or the format of the

web page changes, the amount of programming effort required would be prohibitive, and the

ability to automatically adapt the template extraction code would be essential.

The World Wide Web has been dominated for a decade by HTML based on a browsing

paradigm [6], which is designed for good look-and-feel and easy reading by a human using a

Web browser, instead of facilitating the extraction of information by a program. It is there-

fore difficult to extract information by HTML parsing. Until more structured representations

replace, most web clients rely on existing information extraction techniques, typically Web

Wrappers [12].

A wrapper is a program that enables a Web source to be queried as if it were a database

[9, 8]. Extraction rules used by the wrapper to identify the beginning and end of the data

field to be extracted, form an important part of the wrapper. Quick and efficient generation

of extraction rules, so called Wrapper Induction, has been an active area of research in recent

years [12, 11]. The first wrapper induction system, WIEN [10] is a supervised learning agent,

i.e. it requires manually labelled examples with output information, to learn patterns.

A recent wrapper induction algorithm, STALKER, generates high accuracy extraction

rules that accept all positive and reject all negative user-labelled training examples [16],

and extracts data that complies with these rules with about 80% accuracy on test examples.

STALKER uses wildcards and disjunctive rules and therefore has the ability to wrap a larger
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Figure 1: An example of a dynamic web site, www.Travelocity.com[19]. Web clients can
submit queries via the web form shown in Figure (a) to the server; figure (b) illustrates the
response page including a list of search results.
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variety of sources [16] than previous systems, but it still requires manually labelled examples.

To overcome the shortcomings of supervised learning, attention is shifting towards unsu-

pervised learning [12], which needs no manually labelled input. That work proposes a suite

of unsupervised learning algorithms, which induce the structure of lists by exploiting the

regularities both in the format of the pages and the data contained in them. Some general

assumptions are made about the structures of lists and tables with a following four-step

approach.

1. Separators are used to partition the web page. The page template is then extracted

and the list or table is identified from a set of similar pages.

2. An unsupervised classification algorithm is used to automatically group the web page

contents into classes based on separators.

3. Syntactic data patterns, which describe the common start and end of classes [13], are

learned by a pattern learning algorithm. It is assumed that data having the same

pattern belong to the same column.

4. A grammar induction algorithm is used to build the finite state automaton of the web

page. States that represent the same data contents are then merged, and cycles are

generated. The longest cycles that correspond to rows are selected [12]

That system was tested on 14 typical examples[12] with about 70% accuracy. It is

undoubtedly a significant effort, but the accuracy still needs further improvement. Moreover,

it requires several similar web pages to generate the page template in the first step; the

general algorithms used, such as DataPro [13] for learning data pattern and AutoClass for

unsupervised classification [2, 7], are computationally intensive, a serious problem in Web

applications.

Our work aims to improve the performance of information extraction from lists and

tables in the web page. Because high-performance unsupervised learning is rather ambitious,

the authors have developed a Post-supervised learning technique, which employs a suite of

unsupervised learning algorithms and minimal user interaction on the results. Our system

focuses on:
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• achieving approximately 100 percent accuracy

• avoiding user labeled training examples

• minimizing the involvement of the user

• improving list/table identification techniques

• the design for non-programmer users

Figure 2 illustrates the whole system at high level.
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Figure 2: High level flowchart of the system

2 Identifying Rows

The goal of information extraction is to convert displayed information in the dynamic web

page back into structured database format. A standard assumption adopted by the authors

is that a dynamic web page including lists and tables is generated by a template, which

describes the format of each data field and the visual layout of the whole page[12]. The

server-side program fills the template with results of a database query submitted by a Web

client (browser). Thus, template extraction is a necessary step in this process.

To extract the template, a basic step is identifying common data among a set of dynamic

web pages from the same source. Several similar web pages that are usually generated by

the same server-side program are required to extract common information among them, in

the form of a Page Template [12].
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Definition 2.1 (Page template) A set of strings that the web server uses to automatically

generate pages and fill them with the results of database query.

Since the objective of this work is to identify the main list or table in the web page, data

that does not belong to the list or table should be ignored. The focus should be on the

template that generates the rows of the list or table, the Row Template. It is assumed that

each row in the list or table is generated by a Row Template, which is the main part of the

page template.

Definition 2.2 (Row template) A set of strings that the web server uses to automatically

generate rows of lists or tables in the web page.

Locating the beginning and the end of each row is a necessary step before identifying the

row template. The definition of row template suggests that the number of times that some

data are repeated in the web page is equal to the number of rows. The row identification

procedure is illustrated in Figure 3.
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Figure 3: High-level flow chart of the row identification procedure

2.1 Tokenizing

To track repeating data, we split the content of a web page into individual text chunks. This

procedure is called tokenizing. The first step in the process is to define special strings that

are likely to be found on the boundaries of tokens.
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Definition 2.3 (Separator) Symbols that separate the web page into individual data fields

are called separators.

Since the data fields we are interested in extracting are visually displayed on the web page,

it is intuitive that HTML tags should be treated separately from other data, and punctuation

characters are often used to separate data fields. Therefore, a separator is defined as one or

more consecutive HTML tags, or any punctuation character excluding the set ”,.(-)’%” and

SPACE, which was selected empirically. Sometimes a dash, ”-”, is a good separator, but for

many frequently encountered data types, such as phone numbers and zip codes, dash is part

of data and not a separator [12]. Likewise, a sequence of words that is visually displayed

on the web page, e.g., ”3009 NO 2 HIGHWAY, Waverley, NS”, should not be separated, so

SPACE and comma(,) are not regarded as separators.

Definition 2.4 (Token) A token is a sequence of characters between separators1 in the web

page.

Each token is assigned an index in the web page starting from 0.

Example 1. A sequence of characters:

< b > INN ON THE LAKE < /b >< /a >< /td >< td align = right > ...

is separated into six tokens with indices:

0 :< b >

1 : INN ON THE LAKE

2 :< /b >

3 :< /a >

4 :< /td >

5 :< td align = right >

Definition 2.5 (Token Sequence) A Token Sequence is a sequence of consecutive tokens

in the web page. The length of a token sequence is the number of tokens it consists of.

1The token includes the separator right after it except for ”<”, which is included into the token behind

it
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In example 1, “< b > INN ON THE LAKE < /b >< /a >< /td >< td align =

right >” is called a token sequence.

The assumption, on which the definition of row template is based, can be restated using

the above definitions as:

Assumption 1 All rows contain some common token sequences.

Example 2. A web page includes two rows like

... < b > AIRPORT HOTEL HALIFAX < /b >< /a >< /td >< td align =

right ...

... < b > INN ON THE LAKE < /b >< /a >< /td >< td align = right ...

Two common token sequences, < b > and < /b >< /a >< /td >< td align = right,

may be parts of the row template.

2.2 Creating Finite State Automata

.

A grammar induction algorithm [12, 1] is applied to find the repeated data that may

correspond to rows. The entire sequence of tokens in the web page is viewed as a string in

a language generated by a regular grammar, and the goal is to:

• Construct a Finite State Automaton (FSA) that implements the regular grammar

generating the web page.

• Minimize the FSA.

• Learn and use the FSA to recognize the rows.

First a FSA M = (K, Σ, ∆, s, f) of the web page is defined, where:

Σ is an alphabet. Every token in the web page is a symbol of the alphabet.

K is a finite set of states. Each state is between two consecutive tokens.

s ∈ K is the initial state at the beginning of the web page.

f ⊆ K is the final state at the end of the web page.
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∆, the transition relation, is a subset of K × (Σ ∪ {e})×K [14].

For instance, Figure 4 shows the state diagram of the automaton of Example 2. The

minimization procedure consists of state-merging and removal of superfluous transitions.

<b> INN ON THE LAKE </b>

AIRPORT HOTEL
HALIFAX

</a> </td> <td align=right

<b></b></a></td><td align=right

Figure 4: State diagram of automaton of Example 2

Two states, i and j, are merged if their incoming transitions, δk,i(a) and δl,j(a), correspond

to the same symbol a, and at least one of the outgoing transitions, δi,m(b) and δj,n(b), from

each state correspond to the same symbol b. Figure 5 illustrates the automaton of Example

2 after state-merging.

Definition 2.6 A cycle is a set of consecutive transitions that starts and ends at the same

state. A cycle corresponds to a candidate row.

Definition 2.7 Length of cycle is the number of tokens along the cycle.

Definition 2.8 Cycle set is a set of cycles that include at least one common state. It

corresponds to the candidate list or table.

Definition 2.9 Overlapping parts are parts of cycles in the cycle set overlapping with

each other due to state-merging. They correspond to the common token sequences of candi-

date rows.

For a real web page, the automaton is much more complicated than the above example

since any repeating tokens will generate cycles, resulting in a large number of cycle sets

generated. In order to process all these cycle sets and extract the one that corresponds

to the correct rows of the list or table, further processing is required. In the rest of this

section, several filters of weak cycle sets are described that greatly enhance the performance

of the system. Weak cycle sets are loosely defined as cycle sets that are not very likely to

correspond to a row.
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</b>
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</b>
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AIRPORT HOTEL HALIFAX
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Figure 5: State diagram of state-merged automaton of Example 2. (a) The automaton with
only one pair of states merged. (b) The final automaton after full merging. Thicker lines
represent overlapping parts of the cycle set.

2.3 Filtering on the basis of variance of cycle lengths in cycle set

The first assumption made is that rows of the same list or table should have similar numbers

of tokens. This is a reasonable assumption that applies well to sites generating tables of rows

providing the same information about a list of items (for example names, addresses, contact

information and pricing of a list of hotels in a city).

Assumption 2 The number of tokens in a row is close to those of other rows within the

same list or table.

Based on this assumption, a set of cycles should be removed if the lengths of the individual

cycles differ greatly from each other. Deviation analysis of a distribution [5] is a general

method in statistics to calculate the dispersion degree of a set of data, by normalizing the

standard deviation of the data set by its expected value. The coefficient of variation, Disp(S)

[17] of a cycle set S is thus defined by the following equation, based on the set L of lengths

of cycles in S and assuming that lengths of rows in the list or table are normally distributed.

Disp(S) = σ(L)/E(L) (2.1)

where σ(L) represents the standard deviation of L and E(L) means the expectation of L.

In this work, the acceptable dispersion degree is limited to 1, a rather loose limitation.

Any cycle set with dispersion degree larger than 1 will be filtered out.
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2.4 Filtering based on the length of overlapping cycle parts in

cycle sets

Since each cycle in the automaton corresponds to a row, the task of identifying rows requires

a procedure of evaluating and distinguishing cycle sets that may correctly represent the

table. A possible way is to choose the cycle set with the longest cycles [12]. However,

our observations show that the longest cycle criterion is not necessary correct, since some

trivial data may generate a long cycle. For instance, some web pages have similar data at the

beginning and end, like header and footer. Thus, the longest cycles do not always correspond

to rows. Compared to the automaton created by real rows, this kind of weak cycle has the

following features:

• Smaller number of cycles in the cycle set, and/or

• Shorter overlapping parts of cycles in the cycle set.

Therefore, to minimize the effect of such cycles, it may be preferable to focus on the

number of cycles, and the length of overlapping parts, instead of the total length of cycles in

each cycle set. Following this intuition, cycle sets are clustered according to the their number

of cycles N into groups , and the sum of lengths L(N) of overlapping cycle parts, i.e.

the number of repeated tokens, in each group is calculated. For example, descriptions

of some cycle sets of the example in Figure 1 are shown in Table 1. They are separated into 2

groups corresponding to the value of N , i.e., 12 and 13. Then we calculate L(N) by summing

up the length len of cycle sets in each group. Thus, L(13) = 2 + 5 + 3 + 9 + 4 + 6 + 3 + 3

and L(12) = 9 + 8 + 7 + ... + 16 + 15 + 14. One or more groups are expected to stand out.

An empirical observation related to the number of repeated tokens is that, for a table

with n rows, the number of tokens repeated n times is fairly close to the number of tokens

repeated n− 1 times, but much greater than the number of tokens repeated n + 1 times.

To quantify the above observation as a criterion, a group with cycle sets containing N

repeated cycles is very likely to correspond to the correct number of rows if the following

condition is satisfied.
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N ind len N ind len
13 690 2 13 880 4
13 866 5 13 992 6
13 868 3 13 995 3

12 999 9 12 1005 3
12 1000 8 12 1018 2
12 1001 7 12 1022 16
12 1002 6 12 1023 15
12 1003 5 12 1024 14

Table 1: Examples of Cycle sets with N equal to 12 and 13 of the example in Figure 1. Each
row represents one cycle set. N is the the number of repeated cycles in the cycle set. ind is
the index of the first token of the cycle set, which indicates the location of the cycle set in
the web page. len is the length of overlapping parts of the cycle set.

L(N − 1)/L(N) << L(N)/L(N + 1) (2.2)

Our system chooses the top 10 groups, ranked by decreasing value of L(N)/L(N + 1).

This effectively means choosing ten candidate values for the number of rows in the table.

As an example, consider the Travelocity web page [19] with 12 rows shown in Figure

1. Figure 6 shows L(N) for groups of cycle sets with varying N . We observe that the

group with smaller number of repeated cycles N usually has larger sum of length of their

overlapping parts. However, when looking into the sum of lengths corresponding to the

group with 12 repeated cycles, 495, we noticed that it is comparably close to that of the

group with 11 repeated cycles, 798, but much larger than 90, the sum of lengths of the group

with 13 repeated cycles. Figure 7 shows the Ratio L(N)/L(N + 1) as a function of N . The

group with 12 repeated cycles clearly stands out. Similar patterns are observed in several

other web sites. Figure 8 shows the graph corresponding to a web page with 10 rows from

www.whitepapers.com [20].

2.5 Filtering based on the total number of Tokens in cycle set

The last filtering stage is based on the assumption that, out of the candidate cycle sets,

the ones more likely to correspond to the correct number of rows are those that contain the
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highest number of tokens.

Assumption 3 The more tokens a candidate list or table has, the more likely it is to be the

correct one.

On the basis of this assumption, the top 5 groups of cluster sets, ranked by number of

tokens they contain, are chosen as the finalists in the process of identifying the number of

rows in the list or table.

2.6 Determining the best candidate number of rows

There are two options for identifying the best candidate number of rows. One option is

to use a totally unsupervised method that makes the final decision automatically. From

observations of tens of web pages, it is concluded that the best group generally has the

following features:

• Large number of tokens

• Low dispersion degree

• High ratio L(N)/L(N + 1)

• High total length of overlapping parts of cycles, i.e., large number of common tokens

Based on these observations, a utility function could be designed to make the final decision

on the correct number of rows.

The other option is to involve the user, by asking him/her to select the correct number

of rows from among, for example, the top five candidates. Currently we choose this method,

which we call “post-supervised” learning, and leave the design of a fully unsupervised ap-

proach as future work.

The final group chosen represents the number of rows, and each cycle set in the group

corresponds to a candidate table or list. The system further selects the cycle set with the

largest number of tokens. The list or table can then be separated into rows according to the

cycles in this cycle set.
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Data field Template part Data field Template part Data field

A B E D F

C B F D A

F B A D H

Table 2: A simplified example of a table in the page. Each character represents a token

sequence. B and D are parts of row template, and other characters are data fields.

3 Inducing Row Template and Identifying Columns

Since all rows in the list and table are properly separated, it is possible to induce a row

template from them. The idea behind this is to search for all sequences of tokens that

appear in each row.

3.1 Inducing Row Template

In [12], search for a row template starts with the first token on the page and grows a sequence

by appending tokens to it, subject to the condition that the sequence appears on every page;

then the process continues to create a new sequence from the next unmatched token. Thus

a token sequence is composed of a set of consecutive tokens on a web page. Each induced

token sequence becomes part of the page template. In our experiments, we observed that

such an algorithm may fail in some cases. Table 2 is a simplified example of a table with 2

rows. Using the algorithm in [12], only A is recognized as part of the template. The columns

are separated as shown in Table 3, which is less likely a table in an actual web page since:

• Data fields in the same column are usually close to each other in length, or number of

tokens.

• Data fields in the same column are usually close to each other in the relative positions

to their own rows. The details are explained later in this section.

From our experiments, we observe that, to separate the columns correctly, a row template

should contain as many token sequences as possible, i.e., the Longest Common Subsequence

[4] among rows.
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Data field Template part Data field

- A BEDF

CBFD A -

FB A DH

Table 3: Extraction results of Table 2 by Lerman’s system

Consider sequences of tokens, X = {x(1), x(2), ..., x(m)}, Y = {y(1), y(2), ..., y(n)}, Z =

{z(1), z(2), ..., z(k)}. The following definitions formalize subsequences and related concepts.

Definition 3.1 (Subsequence) Assuming sequence Z is a subsequence of X if there exists

a strictly increasing sequence {i1, i2, ..., ik} of indices of X such that for all j = 1, 2, ..., k,

there is a x(ij) = z(j).

Definition 3.2 (Common Subsequence) Sequence Z is a common subsequence of X and

Y if Z is a subsequence of both X and Y, and Z is the Longest Common Subsequence

(LCS) if it is the maximum-length common subsequence of X and Y [4].

To solve the LCS problem, a dynamic programming algorithm from [4] can be used.

Denote by Xj the prefix {x(1), x(2), ..., x(j)} of X. If Z is a LCS of X and Y, the following

conditions are true:

• If x(m) = y(n) then z(k) = x(m), Zk−1 is a LCS of Xm−1 and Yn−1.

• If x(m), y(n) are different and z(k) is not equal to x(m) then Z is a LCS of Xm−1 and

Y .

• If x(m) and y(n) are different and z(k) is not equal to y(n) then Z if a LCS of X and

Yn−1.

A recursive algorithm can be constructed from the above three possibilities and eventually

reach a LCS of two data sequences. The algorithm to calculate the LCS of n rows is shown

in Figure 9.
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input: S(n) = set of data sequences corresponding to n rows

output: LCS = the LCS of n rows

Begin

LCS = getLCS(S(0), S(1))

for i= S(2) to S(n-1)

LCS = getLCS(LCS, S(i))

end

Figure 9: The algorithm to calculate the Longest Common Subsequence (LCS) of n rows

3.2 Identifying columns

In order to identify columns, data fields that are not part of the row template need to be

extracted. The following features help extract the data fields from the web page:

• Any data field of a column is between two token sequences of the row template.

• Data fields are the actually displayed data on the page.

It is reasonable to assume that most of the data actually displayed consists of everything

except HTML tags and control symbols, such as ”&nbsp;” and ”&#160;”. Accordingly, data

fields can be extracted by following steps:

1. Pick up all tokens between two consecutive token sequences in all rows and mark as a

column.

2. Extract all columns by step 1 and set up as a table.

3. Refine each data field in the table by leaving actually displayed data only.

After identifying columns, the whole list or table in the web page is obtained. For

instance, the LCS generated from Example 2 is composed of two token sequences: < b >

and < /b >< /a >< /td >< tdalign = right >. Data fields separated by the LCS and

actually displayed data are listed in table 4.
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Data field

AIRPORT HOTEL HALIFAX

INN ON THE LAKE

Table 4: Table extracted from Example 2

4 Matching a Web Page against a Set of Row Tem-

plates

Once the row template has been established, it can be used to automatically extract the data

fields from the web pages. The number of times the row template is repeated in the page is

equal to the number of rows. The problem discussed in this section is how to match a new

web page against a set of previously extracted templates. Normally the matching template

has the following features:

• Almost all its tokens repeatedly appear in the page with the same order.

• The relative positions of its tokens (representing by token indexes) are close to those

of the matched tokens in the page.

Given a new web page, the set of previously extracted row templates can be ranked on

the basis of Similarity to the web page. Similarity is calculated by calculating the Longest

Common Subsequence (LCS)) of the row template and each repeated cycle of tokens of the

row template in the web page. The ratio of token numbers of the LCS and the row template

is also calculated. Similarity between a row template and a web page is defined as the average

of all ratios calculated for the template and the web page. The best matching template is

the one with the largest Similarity. The Similarity algorithm is shown in Figure 10.

Based on experiments with the web sites listed in Appendix B, it has been observed

that the matching template is usually much more distinguished in both the number and

relative position of common tokens than all others. The template with more than 70%

tokens matched in the new page will be accepted in our system, since in experiments, most

web pages generated at least 70% common tokens with the template that generated them. If

no row template has similarity more than 0.7, then no template matches the new page. An
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input:

P = the web page

T = a row template

output:

Similarity

begin

C(n) = a set of repeated cycle in P, each of which

includes tokens of the row template

Similarity := 0

for c= C(1) to C(n)

L = the LCS of c and T

Similarity := Similarity +

numberOfTokens(L) / numberOfTokens(T)

end for

Similarity := Similarity / n

end

Figure 10: Calculation of Similarity of a web page with a row template
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obvious disadvantage of this method is that its computational cost is linear in the number

of previously extracted templates. Optimization of the process is a topic for future research.

The repeated cycles generated by the chosen row template may interfere with each other

by involving the same part of the page. Some of these are removed based on relative positions

of tokens in the page and those in the row template. The relative position can be evaluated

by offset.

Formula 1 The offset of a token in a row to a matched token in row template is calculated

by:

offset = |(In − In0)− (It − It0)| / Lt (4.3)

In: The index in the row of the token, whose offset is to be calculated.

In0: The index in the row of the first token in the row template.

It: The index in the row template of the token whose offset is to be calculated.

It0: the index of the first token in the row template.

Lt: The number of tokens in the row template.

Example 3.

Consider Example 2 in Section 2.1, and the indices assigned to the tokens. Assume the

following is part of a row in the new page:

... < b > MOTEL 6 PADUCAH < /b >< /td >< td align = right ...

The indexes assigned to tokens are:

70 :< b >

71 : MOTEL 6 PADUCAH

72 :< /b >

73 :< /td >

74 :< td align = right
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The offset of < /td > in the new page to the matched token in the row template is:

|(73− 70)− (4− 0)|/6 ≈ 0.167. The offset of a row in the new page to the row template is

the sum of all token offsets in the row to the row template. For the above example, the row

offset is 0.333.

A template library is generated where all extracted templates, as well as indexes of all

tokens for tracking relative token positions, are stored. Given a new web page, the template

matching algorithm described above is used to identify a template matching the web page,

if available. The overall algorithm works in the following way.

1. For each row template in the template library, its similarity the web page is

calculated.

2. The template with the largest similarity (provided it is above 0.7) is chosen

and the FSA with repeated cycles corresponding to the chosen template is

created.

3. Two cycles may interfere with each other by involving the same part of the

page. Hence, the one with the larger offset value is removed.

4. If no template matches the new web page, post-supervised learning is used to

identify rows and columns and extract the new template.

Appendix A shows details of the template matching algorithm.

5 Implementation and Performance

5.1 Cooperation with Web robot system

The system described in this paper works in combination with a web robot [15], which obtains

web pages including lists or tables. This web automatically queries dynamic web sites on

the basis of a script, thus freeing the user from the repetitive form filling and reading of

the returned lists and tables associated with activities such as making a car rental or airline

flight or hotel reservation. In other words, the web robot system is capable of crawling secure

dynamic web sites. Hence, our web robot [15], is able to:
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1. Locate target web sites.

2. Establish network communication.

3. Log into the site, if required.

4. Obtain some environmental variables if necessary.

5. Locate the web pages with inquiry forms.

6. Fill and submit the forms.

7. Obtain and store the return web pages for information extraction.

The web robot works as follows:

1. User inputs the address of the web site and links to destination web pages.

2. Robot establishes HTTP or HTTPS (HTTP over Secure Socket Layer) connection.

3. It handles cookies and environmental variables to communicate with server side scripts

and log in, if required.

4. It automatically fills and submits the HTML form on the basis of a script containing

the required information.

5. It stores response pages from the server for information extraction.

The combination of the information extraction program and the web robot of [15] have

been combined as shown in Figure 11. The information extraction system described here

receives input from the web robot and outputs the list or table.

Establish HTTP
connection

Get through
SSL/HTTPS

find the web page
including form

fill and submit
the form

get response page
from the server

Table/list information
extraction

web page

Web Robot System Our system

Figure 11: Combined system
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Hotel name Rate Address Distance
AIRPORT HOTEL
HALIFAX

Rate: CAD 95.00
– CAD 124.00*

60 BELL BLVD, Enfield, NS
B2T1K3

4.7 km /
2.9 mi

INN ON THE LAKE Rate: CAD 95.00
– CAD 130.00*

3009 NO 2 HIGHWAY,Waverley,
NS B0N2S0

12.6 km /
7.8 mi

COUNTRY DART-
MOUTH

Rate: CAD 70.00
– CAD 100.00*

101 YORKSHIRE AVE AT WIND-
MILL, Dartmouth, NS B2Y3Y2

14.2 km /
8.8 mi

RAMADA PLZ DART-
MOUTH HALIFAX

Rate: CAD 99.00
– CAD 220.00*

240 BROWNLOW AVE, Dart-
mouth, NS B3B1X6

20.3 km /
12.6 mi

BURNSIDE HOTEL Rate: CAD 55.00
– CAD 129.00*

739 WINDMILL ROAD, Dart-
mouth, NS B3B1C1

20.5 km /
12.7 mi

BW MIC MAC HOTEL Rate: CAD 75.00
– CAD 99.99*

313 PRINCE ALBERT ROAD,
Dartmouth, NS R2Y1N2

21.6 km /
13.4 mi

FUTURE INNS DART-
MOUTH

Rate: CAD 73.00
– CAD 94.98*

20 HIGHFIELD PARK DRIVE,
Dartmouth, NS B3A4S8

21.8 km /
13.5 mi

COMFORT INN
DARTMOUTH

Rate: CAD 55.00
– CAD 99.00*

456 WINDMILL RD, Dartmouth,
NS B3A1J7

22.0 km /
13.7 mi

HOLIDAY INN HALI-
FAX HARBOURVIEW

Rate: CAD 95.00
– CAD 165.00*

99 WYSE RD, Dartmouth, NS
B3A1L9

23.3 km /
14.5 mi

ECONO LODGE HAL-
IFAX

Rate: CAD 64.00
– CAD 98.00*

560 BEDFORD HWY, Halifax, NS
B3M2L8

23.3 km /
14.5 mi

MARANOVA SUITES Rate: CAD 67.50
– CAD 102.00*

65 KING STREET, Dartmouth, NS
B2Y4C2

23.3 km /
14.5 mi

EXPRESS HALIFAX Rate: CAD 89.00
– CAD 149.00*

133 KEARNEY LAKE ROAD, Hal-
ifax, NS B3M4P3

24.9 km /
15.4 mi

Table 5: Extraction results of the example in Figure 1

The system has been tested on web pages from the 24 web sites listed in Appendix B.

The web sites cover various application areas, such as hotel reservations, book searches, video

rentals, looking for driving directions, searching for people and general search engines. Most

of lists and tables are extracted with 100 percent accuracy, including irregular ones missing

some data fields. Table 5 summarizes the extraction results of the web page shown in Figure

1.

5.2 System performance

Our approach concentrates on learning the row template by identifying common data within

single web page. Compared to the page template used in [12], the row template has the

following advantages:
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• It can work with a smaller number of pages, even a single page, thus overcoming the

potential problem that the number of similar pages available on a particular site at

any given time is often quite limited [3].

• Unlike [12], our approach does not require the effort of manually identifying similar

web pages as training examples.

• The efficiency is improved by ignoring most of the unrelated web page data outside

the lists and tables.

• Rows are identified simultaneously with locating the beginning and end of the row

template. This again significantly reduces the complexity of the whole system.

• The row template makes it much easier to identify columns than the page template of

[12] by focusing on a single row.

A challenge of adopting the technique of row template instead of page template is that

the beginning and end of the row template are much harder to identify because all rows are

within one page. This is not required in [12], since the range of the page template is actually

the beginning and the end of the page. Thus, an algorithm for quickly searching all possible

separations of rows is required in our system. In other words, the implementation of our

system is different from reference [12] in that we identify rows first.

We tested our system on the same web sites as in [12], shown in table 6. The accuracy is

calculated by the percentage of correctly extracted tuples. Lists or tables in most of examples

are correctly extracted. One example, Borders, [18] is not perfectly analyzed, since some

data, that do not belong to the list, is present between every 2 rows as shown in Figure

12. In this case, all data fields in the list are successfully extracted but followed by some

unnecessary data. We estimate this example as 90 percent correctness. For YahooPeople

and Arrow, 5 rows are actually defined in the HTML table, but are displayed as 10 rows

visually. Therefore, if the user chooses 5 instead of 10 rows when the system prompts, the

results are extracted correctly. We treat these two examples as successfully analyzed. Our

system performs with 100% accuracy on the additional 10 sites shown in Appendix B.
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Example Lerman’s system[12] Our system
Airport Correct tuples Correct tuples

Blockbuster No tuples extracted correct tuples
Borders Correct tuples 90%

cuisineNet No tuples extracted Correct tuples
RestaurantRow Correct tuples Correct tuples
YahooPeople Correct tuples Correct tuples
YahooQuote 18/20 tuples correct Correct tuples
WhitePapers Correct tuples Correct tuples
MapQuest Tuples begin in the middle of the rows Correct tuples

Hotel Correct tuples Correct tuples
CitySearch Correct tuples Correct tuples
CarRental Correct tuples Correct tuples

Boston Correct tuples Correct tuples
Arrow No tuples extracted Correct tuples

Average 70% 99%

Table 6: Performance of the system of [12] and our system on the 14 examples of [12].

Figure 12: An example from Borders [18] web site.
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IE System WIEN[16] STALKER[16] Lerman’s[12] Our System
Learning Type Supervised Supervised Unsupervised Unsupervised with

minimal user inter-
action

Training Set labelled labelled Unlabelled Unlabelled
Accuracy 60% 80% 70% 99%
Computer Pro-
cessing Time

- - - from several sec-
onds to 1 minute

Human Process-
ing Time

- - - choosing one from 5
items

Table 7: Overall performance comparison of WIEN, STALKER, Lerman’s and our systems

6 Discussion

A comprehensive performance comparison of the published performance of the systems

WIEN, STALKER and Lerman’s [12] with our system is shown in Table 7. The accura-

cies of WIEN and STALKER are given as reported in [16]. However, our system has only

been tested on the same web sites as Lerman’s [12] since web sites, on which WIEN and

STALKER were tested, were not specified in [16].

As shown in Table 7, our system has the highest accuracy, almost 100 percent. For

practical applications, accuracy is obviously of critical importance.

The processing time and the manual labelling overhead are two other critical factors.

Comparing these Information Extraction systems, WIEN and STALKER need user labeling

of all data fields in several rows for each training example, and therefore they require sig-

nificant human involvement; the system in [12] employs two general unsupervised learning

algorithms, AutoClass and DataPro, which are computationally demanding. On the other

hand, algorithms in our system are simpler compared to the other systems, thus needing

less computer processing time; the implementation of the row template greatly decreases the

amount of user involvement compared to WIEN and STALKER. Furthermore, in this work,

the user is required to make a simple choice among at most 5 options. Since the user decision

is based on visual inspection of a web page, it does not require any particular technical or

programming skills or expertise. User involvement is only required the first time the infor-

mation extraction program is applied to a new site, and whenever there is an update to the
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web site format.

Our system is designed for all kinds of lists and tables in the web page. Broadly speaking,

it is applicable to all data sets with periodical regularity and common features in each period.

We draw the following conclusion about information extraction from our study:

• User labeling of the training data represents the major bottleneck in using wrapper

induction techniques [16]. We demonstrate that user labelling of training examples can

be avoided while achieving high accuracy.

• Although some user interaction is required in our system, it is minimal compared with

fully manual labeling of web pages, as required by the fully supervised information

extraction systems.

• Our information extraction system is trainable by non-programmer users, requiring

only a basic level of computer usage and ability to visually interpret the web pages of

interest.

We plan to continue our work in several directions. First, we will extend the system to

work with all the cases described in section 5.2. Second, an order optimization algorithm,

as we described in Section 4, may be required to improve the efficiency of the template

matching procedure. Third, further research is required to fully automate the determination

of the number of rows.
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A Template Matching Algorithm

The detailed pseudo code of the template matching algorithm is presented below.

input:
P = the new page
T = a set of template

output:
C = a set of repeated cycles in FSA

begin
C = null
for t = firstTemplate(T) to lastTemplate(T)

for p = firstToken(P) to lastToken(P)
totalOffset = 0
if (p = firstToken(t))

pos = indexOf(p)
for p’ = secondToken(t) to lastToken(t)

offset= (indexOf(p’) - indexOf(firstToken(t)) - pos
+ indexOf(p)) / (indexOf(lastToken(t))
- indexOf(firstToken(t)))

if (p’ = tokenAt(P, pos))
totalOffset += |offset|;
numOfSame++;

else pos++;
end if

end for
if (numOfSame / numOfToken(t) > 0.7)

while (tokenAt(P,pos)!= firstToken(t))
pos++

end while
end = tokenAt(P, pos)
append(C, createCycle (p, end, totalOffset))

end if
end if

end for

// adjust interference of cycles
i=0;
while (i< numOfCycle(C))

cycle1 = cycleAt(C, i)
cycle2 = cycleAt(C, i+1)
if (interfered(cycle1, cycle2))

if (totalOffset(cycle1) > totalOffset(cycle2))
remove(C, cycle1)

else remove(C, cycle2)
end if
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else i++
end if

end while

if (C corresponds to correct table)
return C

end if
end for
return null

end
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B List of Web Sites

The full list of web sites used in our experiments is the following.

• Web sites used in [12].

– www.airport.com

– www.blockbuster.com

– www.borders.com

– www.cuisinenet.com

– www.restaurantrow.com

– www.yahoopeople.com

– www.yahooquote.com

– www.whitepapers.com

– www.mapquest.com

– www.hotel.com

– www.citysearch.com

– www.carrental.com

– www.boston.com

– www.arrow.com

• Additional web sites on which our algorithm was tested and had 100% success.

– www.travelocity.com

– www.travelnow.com

– www.hotelreservation.com

– www.budapesthotels.com

– www.expedia.com

– www.khrc.com

– www.venere.com

– www.webtourist.com

– www.google.com

– www.easyreservation.com
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