
Natural Language Processing
CSCI 4152/6509 — Lecture 17
HMM as Bayesian Network

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 31-Oct-2022
Location: Rowe 1011
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Previous Lecture

HMM POS example

HMM Computational tasks

HMM Brute-force approach

HMM Inference: Viterbi algorithm
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Viterbi Algorithm Example (Repeated)

T1 (W1 = flies) T2 (W2 = *) T3 (W3 = like) T4 (W4 = flies)
P(T1)P(W1|T1) p · P(T2|T1)P(W2|T2) p · P(T3|T2)P(W3|T3) p · P(T4|T3)P(W4|T4)

D 0× 0 = 0 DD: 0× 0× 1
3

= 0 DD: 0× 0× 0 = 0 DD: 0× 0× 0 = 0

ND: 1
9
× 0× 1

3
= 0 ND: 1

90
× 0× = 0 ND: 0× 0× 0 = 0

PD: 0 PD: 1
50
× 1

2
× 0 = 0 PD: 1

225
× 0.5× 0 = 0

VD: 0 VD: 1
90
× 0× 0 = 0 VD: 0× 0× 0 = 0

max: 0 max: 0 max: 0

N 0.5× 2
9

= 1
9

DN: 0× 1 . . . = 0 DN: 0× 1× 0 = 0 DN: 0× 1× 2
9

= 0

NN: 1
9
× 0 . . . = 0 NN: 1

90
× 0 . . . = 0 NN: 0× 0× 2

9
= 0

PN: 0× . . . = 0 PN: 1
50

×0.5×0 = 0 PN: 1
225

×0.5× 2
9

= 1
2025

VN: 0.2×0.5× 1
9

= 1
90

VN: 1
90
× 0.5× 0 = 0 VN: 0× 0.5× 2

9
= 0

max: 1
90

max: 0 max: 1
2025

P 0× 0 = 0 DP: 0× . . . = 0 DP: 0× 0× 0.8 = 0 DP: 0× 0× 0 = 0

NP: 1
9
×0.5×0.2 = 1

90
NP: 1

90
× 0.5× 0.8 = 1

225
NP: 0× 0.5× 0 = 0

PP: 0× . . . = 0 PP: 1
50
× 0× 0.8 = 0 PP: 1

225
× 0× 0 = 0

VP: 0.2×0.5×0.2 = 1
50

VP: 1
90

×0.5×0.8 = 1
225

VP: 0× 0.5× 0 = 0

max: 1
50

max: 1
225

max: 0

V 0.5× 0.4 = 0.2 DV: 0× . . . = 0 DV: 0× 0× 0 = 0 DV: 0× 0× 0.4 = 0

NV: 1
9
×0.5×0.2 = 1

90
NV: 1

90
× 0.5× 0 = 0 NV: 0× 0.5× 0.4 = 0

PV: 0× . . . = 0 PV: 1
50
× 0× 0 = 0 PV: 1

225
× 0× 0.4 = 0

VV: 0.2× 0 . . . = 0 VV: 1
90
× 0× 0 = 0 VV: 0× 0× 0.4 = 0

max: 1
90

max: 0 max: 0
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HMM as Bayesian Network

Viterbi algorithm is an efficient way to solve a
special problem:

I completion with known observables and
unknown hidden nodes of an HMM

General approach:
I Treat HMM as Bayesian Network
I Apply Product-Sum (i.e., “Message-passing”)

algorithm for efficient inference
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Bayesian Network Model

Also known as: Belief Networks, or Bayesian Belief
Networks
A directed acyclic graph (DAG)

I Each node representing a random variable
I Edges representing causality (probabilistic

meaning)

Conditional Probability Table (CPT) for each node

Bayesian Network assumption:

P( full configuration ) =
n∏
i=1

P(Vi|Vπ(i))
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Bayesian Network Example

Alarm

Burglary Earthquake

JohnCalls MaryCalls
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Bayesian Network Assumption

• Bayesian Network Assumption for previous example:

P(B,E,A, J,M) = P(B)P(E)P(A|B,E)P(J |A)P(M |A)

• Probability of a complete configuration is a product of
conditional probabilities
• Each node corresponds to one conditional probability:
P(B), P(E), P(A|B,E), P(J |A), P(M |A)
• CPTs (Conditional Probability Tables are model
parameters)
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Conditional Probability Tables

B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99
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Computational Tasks

Evaluation:

P(V1=x1, ..., Vn=xn) =
n∏
i=1

P(Vi=xi|Vπ(i)=xπ(i))

Simulation

Learning from complete observations

Inference in Bayesian Networks
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Inference Example using Brute Force

P(B = T |J = T ) =
P(B = T, J = T )

P(J = T )

P(B = T, J = T ) =
∑
E,A,M

P(B = T,E,A, J = T,M)

=
∑
E,A,M

P(B = T )P(E)P(A|B = T,E)

P(J = T |A)P(M |A)
≈ 8.49017 · 10−4
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(continued)

P(J = T ) = P(B = T, J = T ) + P(B = F, J = T )

P(J = T ) = P(B = T, J = T ) + P(B = F, J = T ) ≈

8.49017 · 10−4 + 5.12899587 · 10−2 = 0.0521389757

P(B = T |J = T ) =
P(B = T, J = T )

P(J = T )
≈

8.49017 · 10−4

0.0521389757
≈ 0.0162837299467699.
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General Inference in Bayesian Networks

In some Bayesian Networks inference is always
expensive; e.g., joint distribution has a very large
number of parameters

Can we be more efficient if number of parent nodes
is limited?

Näıve Bayes or HMM has a limit of parents to 1

If we limit number of parents to 2, this may already
lead to an NP-hard inference problem

Proof: a reduction from Circuit Satisfiability problem
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Sum-Product Algorithms for Bayesian Networks

Basic idea: optimizing sum-product calculation using
graph structure
Described in “Factor graphs and the Sum-Product
Algorithm” by Kschishang, Frey, and Loeliger in 2000
Algorithm overview:

1 Construction of a factor graph
2 Message-passing algorithms

Construction of the factor graph

Principles of message passing
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Factor Graph

Introduce factor nodes:

V

V2V1 Vp

V

V2V1 Vp. . . . . .

f

Factor graph captures the structure of computation
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Factor Graph Example

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2
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Principles of Message Passing

A message summarizes computation in the
corresponding part of graph

Messages are vectors of real numbers

Each node passes to each neighbour node a message
exactly once

To pass a message to a neighbour node, a node needs
to receive messages from all other neighbour nodes

Important property: a tree-structured Bayesian
Network leads to a tree factor graph
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Message Passing Ex.: Order of Computation

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2
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