
I

Transforming Visual Programs
into Java and Vice Versa

by

Lei Dong

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

May 2002

© Copyright by Lei Dong, 2002
Dalhousie University

ii

DALHOUSIE UNIVERSITY
FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled

_______Transforming Visual Programs into Java and Vice Versa______ by

__________________Lei Dong___________________________________ in

partial fulfillment of the requirements for the degree of Master of

________Computer Science________________.

Dated: __________________________

Supervisor: _________________________________

Readers: _________________________________

iii

DALHOUSIE UNIVERSITY

DATE: ________________________

AUTHOR: __

TITLE: __

__

DEPARTMENT OR SCHOOL: ______________________________________

DEGREE: __________ CONVOCATION: _________ YEAR: ______

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon
the request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than the brief excerpts
requiring only proper acknowledgement in scholarly writing), and that all such
use is clearly acknowledged.

iv

Table of Contents

Table of Contents - iv

Table of Figures - ix

List of Abbreviations - xi

Acknowledgments - xii

1. Introduction - 1

2. Visual Languages and Software Engineering - 4

2.1. The evolution of programming languages - - - - - - - - - - - - - - - - - - 4

2.2. Introduction to Visual Programming Languages(VPLs)- - - - - - - - - 5

2.3. Some visual programming languages - 7

2.4. Advantages of visual languages - 11

2.5. General tools for software engineers - 13

2.6. Visual software development tools for Java - - - - - - - - - - - - - - - - - 15

3. A formalisation of JGraph - 19

3.1. Introduction - 19

3.2. Formal definition of JGraph - 19

3.2.1. Package - 20

3.2.2. Class and Interface - 20

3.2.3. Method and constructor. - 23

v

3.2.4. Operations - 27

3.2.5. Cases - 32

3.3. Conclusion - 37

4. Translating JGraph to Java - 38

4.1. Introduction - 38

4.2. Translation to Java - 39

4.2.1. Package- 40

4.2.2. Class and Interface - 41

4.2.2.1. Examples - 42

4.2.3. Method. - 44

4.2.3.1. Example- 46

4.2.4. Cases. - 51

4.2.4.1. Example. - 54

4.2.4.2. Example - 56

4.2.5. Operations- 58

4.2.5.1. Examples of translating operations - - - - - - - - - - - - 60

4.2.6. Controls - 65

4.2.6.1. Examples of translating controls- - - - - - - - - - - - - - 65

4.2.7. A general example - 66

vi

5. Importing Java into JGraph - 70

5.1. Introduction - 70

5.2. Class files - 70

5.3. Class - 71

5.4. Inheritance - 73

5.5. Attributes - 74

5.6. Preprocessing - 74

5.6.1. Simplifying control structures - 75

5.6.2. Multiple declarations - 75

5.6.3. Embedded sequences of statements. - - - - - - - - - - - - - - - - 76

5.6.4. Method returns- 77

5.6.5. Unary increment and decrement operators - - - - - - - - - - - 79

5.6.6. The operators +=, -=, /=, *=- 79

5.6.7. Condition of while loops and conditional statements - - - - 79

5.6.8. Embedded assignments - 80

5.6.9. Missing else - 83

5.6.10. Exceptions - 84

5.6.11. Isolating variables. - 87

5.6.12. Removing multiple assignments - - - - - - - - - - - - - - - - - - 92

vii

5.6.13. Variable to variable assignments - - - - - - - - - - - - - - - - - - 94

5.7. Methods and Constructors- 95

5.8. Expressions - 96

5.8.1. Expressions which are not assignments - - - - - - - - - - - - - - 97

5.8.2. Assignment expressions - 101

5.8.3. Bodies of methods and control structures - - - - - - - - - - - - 103

5.8.4. Method- 104

5.9. Control structures- 108

5.9.1. If statements - 108

5.9.2. While statements - 110

5.9.3. Try-catch structure - 111

5.10. A comprehensive example- 112

5.11. Conclusion - 115

6. Conclusions and Future Work - 116

6.1. Introduction - 116

6.2. Comparison of Java and JGraph - 117

6.3. Characteristics of Java generated from JGraph and vice versa. - - - - - 119

6.4. Assessment of the translations - 120

6.5. Future work- 123

viii

References - 124

APPENDIX A - 127

ix

Table of Figures

Figure 2-1: Von Neumann computer- 4

Figure 2-2: A Prograph quicksort method. - 8

Figure 2-3: A sample program of LabVIEW - 9

Figure 2-4: A sample Forms/3 program.- 10

Figure 2-5: A program of KidSim - 11

Figure 2-6: A sample Visual Age program- 16

Figure 2-7: Java studio main window - 17

Figure 3-1: A JGraph package containing two classes and four interfaces - - - - - 22

Figure 3-2: A JGraph method - 25

Figure 3-3: Cases of a local operation - 35

Figure 3-3: Cases of a local operation - 35

Figure 3-4: A constructor case - 36

x

Figure 4-1: MyClass and associated items- 43

Figure 4-2: A JGraph method - 47

Figure 4-3: The three cases of Local - 55

Figure 4-4: Constructor case - 57

xi

List of Abbreviations

GUI Graphical User Interface

IDE Integrated Development Environment

JVM Java Virtual Machines

VPE Visual Programming Language

VPL Visual Programming Language

TPL Textual Programming Language

xii

Acknowledgments

I can hardly find proper words to express appreciation to my supervisor Dr. Phil. Cox

for his guidance and all his time spent on reviewing and commenting my thesis. From

figuring out problems to advising even very slight style issue in the document, he has

shown to much patience to me. I have learned a lot of things from him not only for my

thesis research, but for my personal development in the future also.

I would like to thank Dr. T. Smedley and Dr. R. Giles for their willingness to be mem-

bers in my examining committee and their time on reviewing my thesis. I sincerely

appreciate their time, interest, and suggestions.

The financial support from the Faculty of Computer Science, Dalhousie University is

gratefully acknowledged.

Also, I’d like say thanks to my wife Rui Zhang. In the whole period of my study and

from the very beginning, she is always there to support me. Love is a very important

factor that my thesis could be finished successfully.

1

1

 Introduction

In the early history of computers, the emphasis was on computation; that is, on the ability of these

new machines to quickly and with minimal human intervention, solve problems of magnitudes

greater than those that could be solved by people. Communication was simple and character-based.

Even though the technology for communicating with computers has advanced beyond paper tape and

punch cards, this character-based heritage is still with us today. An example is provided by the Unix

operating system. Although UNIX is strong and powerful, it is hard for a user to communicate with

because commands must be input via typed text. A major milestone in the history of computers was

the introduction of personal computers (PCs), The reason the introduction of PCs was significant was

that for the first time computers were cheap, did not need a special environment, and required much

less specialized expertise to operate. This meant that they got into the hands of many more people.

This is what drove the demand for improvements to make them more oriented to users than com-

puter specialists.

It is now almost twenty years since low-cost, high-quality computer graphics became available, pro-

viding the means for users to interact with computers in ways other than by typing lines of text. This

innovation has led to major advances in communication between computers and users by making it

possible for users to accomplish tasks by directly manipulating items on the screen. For example, in a

graphical operating system, the user can delete a file by dragging it to a trash can, or navigate the

directory structure by opening windows on to lower level directories. Spreadsheets allow data to be

laid out in a grid like a paper ledger, and formulae to be built by clicking on cells in the grid.

2

Although visual representations now play a significant role in software applications for users, indus-

trial software development still relies to a very great extent on textual programming. Software devel-

opers received no benefits from graphics initially,and even now, twenty years after this phase of

computing began, the use of visualization in software design and development still lags far behind its

use in end-user applications. As we will discuss in more detail in Chapter 2, the design of computer

hardware is inherently sequential, meaning that programs are linear sequences of instructions. As a

result, programming languages are based on linear communication, that is, text. Algorithms, however,

have structures which are not necessarily one-dimensional, and might therefore be more understand-

able if they were expressed pictorially.

When high quality graphics hardware and operating systems became available, applications began to

appear with graphic user interfaces, making them much easier to use. Researchers, who realized the

potential of graphics for software development, began to investigate the idea of visual programming

languages (VPL), that is, languages that express algorithms in pictures rather than text. Also, software

tool makers saw the potential of graphics for other aspects of software development, and began to pro-

duce various tools taking advantage of visual representations. As a result, there are visual formalisms

for modelling software structures such as the Unified Modelling Language (UML) and Computer-

Aided Software Engineering (CASE) tools employing visual representation such as UML to facilitate

specification. In the marketplace, there are various GUI builders for directly constructing interfaces.

Integrated Development Environments (IDE) usually consist of an application framework built on a

textual programming language, together with a visual GUI builder, and windows and panels contain-

ing scrolling lists and other kinds of controls, providing views of various aspects of a project, such as

class hierarchies. Examples include Visual C++ and Codewarrior.

Academic research has tended to concentrate on visual languages for general-purpose programming,

producing some commercial products, Prograph for example. Commercial work on visual program-

ming has produced VPLs aimed at particular application domains and users, for example LabVIEW

and PhonePro. The domain-specific VPLs have generally been more successful as products, probably

3

because, like spreadsheets and other end-user applications, they make certain kinds of tasks much eas-

ier for certain kinds of users.

The dominance of textual programming has a lot to do with the history and evolution of computers,

and the rich theoretical foundations and standards that have been built around texual languages. So,

although visual programming has received a lot of study, and has been shown to provide some impor-

tant benefits, it faces significant challenges in making inroads into industrial development.

It is only recently that researchers have begun to look closely at how well or how badly visual pro-

gramming languages perform, and why. Studies and practical experience have shown that they have a

lot to offer the professional software developer. By providing a direct visual representation of the

structure of algorithms and allowing the developer to program by directly manipulating this represen-

tation, a visual language relieves the developer of the burden of managing minor syntactic details, and

of parsing textual encodings to extract the algorithm structures. The programmer is therefore free to

concentrate more on the important aspects of the programming problem.

As we have observed above, domain-specific VPLs such as LabVIEW have generally been more suc-

cessful commercially than general-purpose VPLs like Prograph, regardless of the potential benefits of

VPLs for professional developers. Unlike users of domain-specific VPLs, professional developers need

tools that conform to industry standards. Hence, a VPL that conforms to a textual language standard

has a much greater likelihood of acceptance.

4

2

Visual Languages and

 Software Engineering

2.1 The evolution of programming languages

In 1946, von Neumann introduced an architecture for computing machines which still provides the

basis for modern computers. As Figure 2-1 shows below, a von Neumann machine consists of three

parts, the Central Processing Unit (CPU), Memory and Input and Output Devices (I/O devices),

which communicate with each other via communication busses. Memory contains data and programs

consist of sequences of instructions. I/O devices transmit input data and results between machine and

user. The CPU controls all operations, and performs computations by repeatedly executing the fol-

lowing steps: fetch next instruction from memory, decode it, fetch any required data, execute instruc-

tion.

Consequences of this architecture and operation is that execution is sequential, and programs are lin-

ear sequences of instructions. Therefore communication between the user and computer need only be

sequential. Hence, input and output (I/O) devices, such as paper tape, card punches, line printers and

line-oriented terminals, have mostly been designed for sequential communication dealing with strings

Central
Processing

Unit
Memory

Input and
Output
Devices

communication

Figure 2-1: Von Neumann computer

busses

5

of characters. Programming languages have evolved from machine language, through assembly lan-

guage, towards modern programming languages which provide more sophisticated structures for

expressing algorithms, rather than directly reflecting the simple capabilities of the machine. Although

a common thread throughout this language evolution is that programs are linear sequences of charac-

ters, the trend has been to make languages more oriented to humans than computers. Since most

modern high-level programming languages such as C, C++ and Java are text-based, we will use the

term “textual programming language” (TPL) to refer to them.

Early attempts to make programming languages more human-oriented were rather

ad hoc

, introduc-

ing some high-level control structures, but not based on any sound theory. The first was FORTRAN

in the middle of 50s. However, the move towards higher-level languages drove research into the foun-

dations of formal languages, grammars, automata, parsing, compiling and so forth. Consequently,

TPLs have strong theoretical foundations. So there is a rich body of knowledge surrounding textual

programming languages. As computing moved from a research and scientific activity to a mainstream

commercial activity, programming evolved into an engineering process, requiring standardized pro-

cesses and tools. As a result certain languages have become standards (e.g. C, C++ and Java) and there

is a great investment in tools and methodologies based on them. So, TPLs are an indispensable part of

the software engineering world.

2.2 Introduction to Visual Programming Languages(VPLs)

As the computer has evolved so has the technology of human-computer communication. A particu-

larly important step was the development of graphic display technology and graphic user-input

devices such as the mouse and light pen, and the possibilities these opened up, especially when they

became widely available in the early 80s. Also, improvements in processor power made it possible for

computers to support complex graphical interfaces.

As mentioned in Chapter 1, this evolution of human-computer interface technology brought many

benefits to users, thereby increasing the demand for applications. Software developers, however, were

6

still stuck with their traditional tools. Although visual tools have been introduced into some aspects of

the development process they are usually aimed at tasks other than programming, such as GUI

design, modelling or specification. Visual specification of algorithms has not been generally accepted.

The term “visual programming” is used by different authors in different ways. Some definitions are as

follows:

Visual programming is programming in which more than one dimension is used to convey semantics. Each

potentially significant multi-dimensional object or relationship is a token (just as in traditional textual pro-

gramming languages each word is a token) and the collection of one or more such tokens is a visual expres-

sion such as diagrams, free-hand sketches, icons and so on. When a programming language’s (semantically-

significant) syntax includes visual expressions, the programming language is a visual programming language

(VPL).

 M. M. Burnett [5]

Visual Programming refers to any system that allows the user to specify a program in two-(or more)-dimen-

sional fashion. Conventional textual languages are not considered two dimensional since the compilers or

interpreters process them as long, one-dimensional streams.

B. A. Myers [15]

A visual language manipulates visual information or supports visual interaction, or allows programming

with visual expressions. The latter is taken to be the definition of a visual programming language. Visual

programming languages may be further classified according to the type and extent of visual expression used,

into icon-based languages, form-based languages and diagram languages. Visual programming environ-

ments provide graphical or iconic elements which can be manipulated by the user in an interactive way

according to some specific spatial grammar for program construction.

E. J. Golin and S. P. Reiss [7]

Visually transformed languages are inherently non-visual languages but have superimposed visual represen-

tations. Naturally visual languages have an inherent visual expression for which there is no obvious textual

equivalent.

M. M. Burnett [5]

7

Visual programming is commonly defined as the use of visual expressions (such as graphics, drawings, ani-

mation or icons) in the process of programming. These visual expressions may be used in programming envi-

ronments as graphical interfaces for textual programming languages; they may be used to form the syntax of

new visual programming languages leading to new paradigms such as programming by demonstration; or

they may be used in graphical presentations of the behavior or structure of a program.

 D. W. McIntyre and

E. P. Glinert [13]

A visual language is one in which pictorial, iconic, graphical syntax (as opposed to a textual syntax) is used

as the primary (not just a graphical skeleton with textual flesh) means to express the logic (not just window

layout) of the program being written.

K.J. Schmucker [23]

From the definitions above we conclude that VPLs are characterised as follows:

•There must be inherently visual expressions associated with (semantically-significant) syntax.

•The visual expressions can be manipulated by the user interactively for the process of

programming.

Unlike visual programming environments in which a program is still specified in a textual language,

VPLs are used to create programs via visual expressions. VPLs are not necessarily devoid of text, how-

ever, but may use it as comments, for labels of graphical objects and so forth.

2.3 Some visual programming languages

In this section, in order to give the reader a general picture of what VPLs are and how they do their

job, we give a brief description of some in this section, both general-purpose and domain-specific.

Prograph

 is an object-oriented visual programming language aimed for professional programmers,

which adopts data flow structure [9]. Data flow is one of the more popular computing models for

visual languages[12]. A method in Prograph consists of a sequence of cases, each of which is a data

flow diagram. Cases are executed in order until one executes to completion. For example, Figure 2-2

shows the two cases of a method quicksort, that implements the quicksort algorithm. The first case

tests to see if the incoming list is empty, and if so, outputs it as the sorted list. Otherwise control

8

transfers to the second case, which implements the recursive case of the algorithm. In Prograph, list is

a built-in primitive type. The operation named > in the example has a specially annotated input indi-

cating that a list is expected, and that the operation will be applied to each element of it.

LabVIEW

, another visual data flow language, is distributed by National Instruments primarily to pro-

vide a programming interface to measurement and control devices [29]. It is intended for users in

engineering and science.

LabVIEW, like Prograph, uses spatial containment to indicate control structures such as loops and

conditionals. Data flows from left to right in LabVIEW diagrams. Figure 2-3 below is a LabVIEW

program that computes the factorial of an integer. The icons at the upper left provides the input inte-

ger, while constant 1 below it is the initial value of the factorial. The rectangle in the centre is an iter-

ation. The The icon labelled i in it denotes the iteration count, the icon labelled N indicates the

number of iterations to be performed, and the matching icons with the down and up arrows on the

left and right borders of the iteration denote a looped variable.

Figure 2-2: A Prograph quicksort method.

(a) (b)

9

Forms/3

is a VPL based on a generalisation of the spreadsheet paradigm. A Forms/3 program con-

sists of forms which contain cells, the contents of which are specified by a formulae. A formula is

defined for each cell by a flexible combination of pointing, typing and gesturing. Figure 2-4, taken

from [26], shows a sample Forms/3 program program that calculates the n

th

 element of Fibonacci

sequence, which is the sum of the (n-1)

st

 and (n-2)

nd

 Fibonacci numbers. The program consists of

three windows. Window FIB is the model for the other two windows FIB01 and FIB02, which are

called instances of FIB, which inherit their model’s cell and formulae unless the user explicitly pro-

vides different input. Any change to the model is propagated to its instances. When, as in this exam-

ple, a cell formula in the model form references a cell in an instance of the model, the pattern of

references is recognised by the system and generalised to create recursion. Forms/3 is a general pur-

pose declarative language. The only implementation is a research prototype.

Figure 2-3: A sample program of LabVIEW

10

KidSim

is a rule-based VPL for children in which the programmer creates graphical simulations and

games by building picture transformation rules. Figure 2-5 depicts a "wall climber" program. The

main window on the left is where the simulation occurrs. The rules are listed in Mascot 1 window.

Each rule consists of a graphical precondition on the left of the arrow and a graphical postcondition

on the right. In the figure, the wall climber has just applied rule 2. The next applicable rule will be 1.

KidSim is not a tool for general-purpose programming, but is aimed at making the programming of

animated graphical simulations accessible to children.

Figure 2-4: A sample Forms/3 program.

11

From the above samples we can see that, like textual languages, VPLs are based on a variety of differ-

ent programming models, have different target users, and may be general-purpose or aimed at solving

programming problems in specific application domains.

2.4 Advantages of visual languages

There is evidence that visual representations can improve the human-machine interface because they

enhance human cognitive abilities. As a principle, if information is made explicit and presented in a

consistent and organized way, people can perform better at many tasks, including programming. In

[28] Whitley concludes that “compared to textual notations, visual notations can provide better orga-

nization and can make information explicit. Moreover, properly-used visuals result in quantifiable

performance benefits. Several studies show visuals outperforming text in either time or correctness,

sometimes both”.

Whitley notes that visual representations are beneficial not only for objects that have concrete

counter-parts in the real world, but also for “nonspatial” concepts, for which visual representations

provide organization and make information explicit. Whitley discusses studies which show that the

benefit of visual representations grows as the size and the complexity of a program grows, and con-

cludes that VPLs could be useful in traditional programming where the problems are usually larger

Figure 2-5: A program of KidSim

12

than the problems used in controlled experiments. Some studies show that graphics can sometimes

outperform text even for smaller problems. Hence, VPLs may play an important role in end-user pro-

gramming where problems may be smaller than those encountered by professional programmers.

In a more recent study, Whitley and Blackwell conducted a survey of LabVIEW programmers with

the aim of determining the effectiveness of the visual aspects of LabVIEW [29]. They discovered that

“respondents rated the value of LabVIEW’s visual language significantly higher than the value of all

other LabVIEW features rated in this survey.”

Such studies provide us with valuable data about the usefulness and usability of existing visual pro-

gramming languages and environments: however, it is also important to have some means to assess a

VPL in order to predict its effectiveness, or to guide VPL designers. In [11] Green and Petre introduce

the cognitive dimensions framework as a “broad brush evaluation technique for interactive devices

and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cog-

nitive-relevant aspects of structure, and shows how they can be traded off against each other.”

Although the cognitive dimensions apply as much to textual programming languages and environ-

ments as to visual ones, it seems that visual languages have the potential to perform better than textual

ones in some of these dimensions. In the following we will restrict our attention to those, and encour-

age the reader to consult [11] for the complete list.

Closeness of Mapping

 refers to the degree to which a language directly represents objects and actions in

the problem domain. Visual languages have an inherent advantage over textual ones in this dimension

since they can directly represent domain objects and relationships, while textual ones must use some

special syntax to code them.

Visibility

 refers to whether the required material can readily be made visible, whether it can be

accessed in order to be made visible, or whether it can readily be identified in order to be accessed.

VPLs may provide greater opportunities for accessing and displaying information than TPLs since,

like a city map, their diagrams give the observer a picture of where to look for needed information.

13

Secondary notation

 Many programming languages allow extra informationto be added to programs

unrelated to the formal syntax, such as indenting, commenting, choice of names and so forth. These

notations make no contributions to the logic ofthe algorithm, but help readers of the program to

understand it. Since VPLs are pictorial, they provide opportunities for useful annotations using picto-

rial devices which would be difficult to incorporate in textual programs.

Role-expressiveness

 refers to the extent to which the representation of program elements suggests their

function. In this dimension, VPLs have an inherent advantage over TPLs. In TPLs, the common way

to suggest functions of program elements is to use appropriate names, such as "while" to denote loop.

However, in VPLs, different elements could be represented with visual representations in different

shapes, different colours, or different dimensions so that their functions are obvious.

Hidden dependencies

 are logically significant relationships between program components which are

not directly visible. VPLs have an advantage over TPLs in this dimension. In TPLs, transferring a

value from its source to its destinations is accomplished by variables. Because these dependencies can

be observed only by finding the various occurrences of a variable, they are not explicit. In VPLs, how-

ever, it is possible to make dependencies explicit by using by lines, directed graphs and so on. For

example, in data flow a line is used to connect the source of a value and its destination.

From the above discussion, it is clear that, although textual programming languages provide the foun-

dation for modern software development, they are not necessarily always the best choice. Visual pro-

gramming languages can contribute much to the efficiency and effectiveness of programmers, so it is

important to develop visual tools to enhance the software development process.

2.5 General tools for software engineers

In software engineering, the tools and methodologies used by software developers range from very

high level ones for capturing the overall structure of a software system, to programming languages for

coding algorithms. In this section, we will give a brief discussion with examples about those tools.

14

At the top level, there are various software design methodologies. Booch's object-oriented design

methodology uses various kinds of diagrams to capture the structure of an object-oriented system [4].

The Unified Modelling Language (UML) [22] provides various kinds of diagrams which have only a

partially defined semantics, and are used for expressing the components of a software system, the

interactions between components, and the interactions between the system and its users. Entity-rela-

tionship diagrams deal with data structuring and data base specification. Tools which implement these

methodologies are usually called Computer Aided Software Engineering (CASE) tools. CASE tools

are mainly used as documentation tools, but some can also generate code. For example, Visual Case is

a CASE tool that implements UML [3], and DeZign is a CASE tool for developing databases.

Component technology is sometimes used to provide an intermediate level of organisation between

high-level specification and actual coding. Components are "black boxes" that encapsulate data and

associated functionality, and communicate by sending messages to each other. A component can be

shared and reused by different applications, different platforms or even different machines over a net-

work. Some component-technology standards allow components implemented in different languages

on different systems to communicate, for example the Common Object Request Broker Architecture

(CORBA) [24]. Examples of component technologies are Microsoft's Component Object Model

(COM)[21], JavaBeans[27] and IBM's System Object Model (SOM)[8].

At the implementation level, the software developer uses a programming language, usually imple-

mented in an Integrated Develoment Environment (IDE). An IDE usually provides an application

framework, a class hierarchy that supplies much of the standard functionality of a modern GUI-

driven application. An IDE usually also includes a GUI builder for constructing interfaces by direct

manipulation, a debugger, and tools that provide various visualisations of a software project. There are

many IDEs available in the marketplace such as Microsoft Visual Studio [16], Borland Delphi [18]

and C++ builder [17], and Metrowerks CodeWarrior [19].

The development of industrial software is a labour-intensive activity, so it is important that the tools

used are stable and well supported, and that similar tools are available from several vendors. This

15

implies that development tools, which may be developed by different companies, conform to some

standards. In particular, industrial software developers tend to use standard programming languages,

supported by many different tools vendors, and widely used by many developers who form an infor-

mal support network.

Java is the latest evolution of the C language, which has long been a standard for industrial software

development. This parentage gives Java an automatic advantage in terms of being accepted as a soft-

ware development standard. In addition, unlike any other language in the past, Java has been adopted

by many influential companies.

Aside from these strategic advantages, Java also has various technical characteristics that contribute to

its popularity. For example, Java is object-oriented, supports multi-threading, has the capability to

handle exceptions, dynamic memory management, a dynamic type casting system, extensive static

type checking and simpler syntax than other object-oriented languages such as C++.

2.6 Visual software development tools for Java

There are quite a few Java-based tools that use visualizations of some aspects of the software develop-

ment process. In this section, we will present some examples.

Visual Age [6] for Java is an IDE produced by IBM. The core programming language is Java, how-

ever, various kinds of visualisation are provided. First, windows and panels with scrolling lists and

other controls are used to display packages, class hierarchies, code versions and so forth. Second, the

JavaBeans component model is used as a basis for a restricted for of visual programming in which

graphical representations of components are connected by different kinds of lines, indicating the pass-

ing of messages between components. This message-passing model in Visual Age is most suited to

GUI programming, as illustrated in Figure 2-6. This diagram shows how to build a GUI and set up

connections between different GUI components, directed lines indicating the flow of messages

between components. By making these connections, the programmer codes behaviour into the GUI.

For examples, the line from the Add button to ToDoList together with the side connection from

16

ToDoItem indicate that when the Add button is pressed, the value in ToDoItem will be added to the

list of items in ToDoList.

Java Studio is a visual programming environment developed by Sun but no longer marketed. In the

design window of Java Studio, an example of which is shown in Figure 2-7 below, the programmer

constucts diagrams consisting of nodes representing Java Beans, connected by wires indicating the

passage of messages between nodes. A user interface corresponding to a diagram is built in an associ-

ated GUI window (not shown), which displays the graphical representations of those beans in the

design window that implement GUI items. Like Visual Age, Java Studio is a component-based visual

programming tool that employs message flow.

Figure 2-6: A sample Visual Age program

17

The three systems described above provide limited visual programming capabilities based on compo-

nents. There are other tools for Java that provide some visualisation, GUI design for example. A typi-

cal example is Visual J++ [16], a component of Microsoft Visual Studio, which in addition to visual

GUI-building, provides tools for organising and managing a development project similar to those in

Visual Age [6], described above. CodeWarrior is another example of an IDE for Java with similar

capabilities [19].

2.7 JGraph

As discussed above, there are many Java-based software development tools that use visualisations to

some extent. Some use visual representations for high-level system modelling. Others provide visual

GUI editing facilities. None, however, provides complete visualisations of algorithms, and allows the

developer to program algorithms by building such visualisations.

JGraph is a general-purpose visual programming language that addresses this shortcoming. A com-

plete description can be found in [20]. As a data flow visual programming language, it borrows

heavily from Prograph, using the same case structure for obtaining conditional execution, multiplexes

for iteration, and controls on operations for controlling execution. From Java, JGraph inherits many

features such as strong typing, identical data types and data structures, similar exception handling,

Figure 2-7: Java studio main window

18

classes, interfaces and contructors, and identical levels of access (public, private etc) to classes

attributes and methods.

Since JGraph is compatible with Java in the ways discussed in the above paragraph, it has the potential

to bring the advantages of visual programming at the algorithm level to the world of industrial soft-

ware development. However, since JGraph will certainly not replace Java, in order for it to be accept-

able, tools to integrate it with Java development will be required. In particular, it will be important to

allow the programmer to move freely between textual and visual representations of code.

2.8 Content of the following chapters and appendix

As background to the research reported here, we built a prototype JGraph editor which generates Java

from JGraph, and imports Java code, translating it to JGraph. A user’s manual is attached in Appendix

A. Based on these experiments, we have defined two complete translations, and provided a critical

analysis of them with respect to the goal of enabling the software developer to move freely between

textual and visual representations. In Chapter 3, we give the formal definition of JGraph to provide a

basis for defining a translation from JGraph to Java in Chapter 4. In Chapter 5, we define a transla-

tion in the opposite direction. Finally, in Chapter 6, we conclude our work with comparisons between

Java and JGraph, an evaluation of our results, and suggestions for future work that we believe should

be undertaken.

19

3

 A formalisation of JGraph

3.1 Introduction

From this chapter on, we will address the problem of translating JGraph into Java by providing a for-

mal, abstract definition of the JGraph language, relating this definition to the pictorial representation

presented in [20], and showing how each of the abstractly defined JGraph elements corresponds to

Java source. In this chapter, we will give a precise, formal specification of JGraph semantics, then in

the next chaper, we will address the translation process.

In this chapter, We assume the reader is familiar with the JGraph language, the details of which can

be found in [20].

The chapter is organised as follows. First, in section 3.2, we define some useful notation. Then, we

will give the formal definition of JGraph. The chapter concludes with discussion and comments. The

definitions in section 3.2 are fairly terse, so they are illustrated by numerous examples.

3.2 Formal definition of JGraph

Throughout this chapter we will use various notations and conventions as follows. We will use

bold

style to represent components of entities defined as tuples. For example,

Name

 is a component of a

project. We will frequently use the names of components of tuples as functions. For example, a nor-

mal case is defined as a 4-tuple (

Opers

,

Synchros

,

Exception

,

Outputs

), so if X is a normal case, then

Synchros

(X) denotes the second element of the tuple X.

20

We will denote the empty list by (). If X is a list or sequence, we will denote by X[i] the i

th

 element of

X.

In the following,

N

T

 are disjoint sets of strings called

names

and

 simple types

respectively, which con-

form to the naming conventions of Java.

A

type

 is either a simple type or an array type. An array type is a 1-tuple (Elemtype), where Elemtype

is a type.

In the following, we assume the existence of a set ℜ, the elements of which are called nodes, a 1-1

function name from ℜ to N and a function type from ℜ to T. Two lists of nodes N1, N2 are said to

match iff |N1| = |N2| and type(N1[i]) = type(N2[i]) for each i (1 ≤ i ≤ |N1|).

If X is a set of modifiers and Y is a Java construct, we will say that X is legal for a Java Y if Java permits

all the modifiers in X to be simultaneously applied to the Java construct Y. For example, {“abstract”,

“final”} is not legal for a Java method but {“abstract”, “protected”} is legal for a Java method.

3.2.1 Package

In JGraph, a package is a pair (Name, Classes) where Name is a name indicating the package name,

Classes is a set, each element of which is a class or an interface.

3.2.2 Class and Interface

A JGraph class is an 8-tuple (Imports, Modifiers, Name, Superclass, Interfaces, Attributes, Methods,

Constructors) where:

• Imports is a set of strings, each indicating a package imported by the class. The set is

empty if no packages are imported.

• Modifiers is a subset of {“public”, “abstract”, “final”} legal for a Java class.

• Name is a type that is the name of the class.

• Superclass is a type which is the name of a class.

• Interfaces is a set of types each of which is the name of an interface.

21
• Attributes is a set of attributes.

• Methods is a set of methods.

• Constructors is a set of constructors.

An attribute is a triple (Modifiers, Node, Value). where:

• Modifiers is a subset of {“public”, “protected”, “private”, “final”, “static”, “transient”,

“volatile”} legal for a Java class variable.

• Node is a node.

• Value is a string or null.

A JGraph interface is a 6-tuple (Imports, Modifiers, Name, Superclass, Attributes, Methods) where:

• Imports is a set of strings, each indicating a package imported by the class. The set is

empty if no packages are imported.

• Modifiers is a subset of {“public”, “abstract”} legal for a Java interface.

• Name is a type that is the name of the interface.

• Superclass is a type which is the name of an interface.

• Attributes is a set of attributes.

• Methods is a set of methods such that ∀M ∈ Methods, “abstract” ∈ Modifier(M)

3.2.2.1 Example

This example illustrates the above definitions by considering a package called MyPackage and some

classes and interfaces in it, showing how the formal definition corresponds with the visual representa-

tion. Formally, this package is the pair

(“MyPackage”, {C, I1, I2, I })

where C is a class and I1 , I2 and I are interfaces. The structures for C and I are as follows

C = ({“java.*”, “javax.*”}, {“public”}, “MyClass”, “SuperClass”, {“Interface1”, “Interface2”},

{({“public”}, “int”, “i”, “0”), ({“public”}, “boolean”, “boo”, “true”)}, {M1, M2},{})

22
I = ({“java.*”, “javax.*”}, {“public”}, “MyInterface”, “SuperInterface”, ({“public”}, “int”, “i”, “10”),

 ({“public”}, “String”, “str”, “Hello”)}, {M3, M4},{})

where M1, M2 M3 and M4 are methods, the representation for which is defined in the next section.

Figure 3-1 shows the JGraph windows that graphically represent some parts of these structures.

Figure 3-1: A JGraph package containing two classes and four interfaces

(b)

(d)

(a)

(c)

23
Figure 3-1 (a) shows the project window depicting the list of packages in the project. In particular, it

includes an icon for MyPackage, and icons of the classes and interfaces in it. Figure 3-1 (b) is a class

window presenting all the classes and interfaces of the particular package MyPackage and the inherit-

ance relationships between them. Note that since an alias is not a class or interface, SuperClass does

not occur in MyPackage in Figure 3-1 (a). However, the class that SuperClass refers to must be in one

of the packages that MyClass imports, as shown in Figure 3-1(c). Figure 3-1(c) shows the list of

imported packages of the class MyClass. Figure 3-1(d) illustrates the attributes of MyClass.

The figures in this example and those that follow were generated using our JGraph prototype. The

reader should refer to the User Manual in Appendix A for the meaning of the various controls that are

attached to the windows shown in these pictures.

3.2.3 Method and constructor.

If K is a class, a method of K is an 12-tuple (Modifiers, Exception, Name, Inputs, Roots, Normal-

Cases, CatchCases, FinallyCase, Flag, Index, Uplimit,Terminate) where:

• Modifiers is a subset of {“public”, “protected”, “private”, “abstract”, “final”, “native”,

“static”, “synchronized”} legal for a Java method.

• Exception is a set of nodes.

• Name is a name.

• Inputs is a list of nodes distinct from each other, and from any node external to the

method. See definition of external below.

• Roots is a list of nodes distinct from Inputs, and from any node external to the method,

such that |Roots| ≤ 1. See definition of external below.

• NormalCases is a list of normal cases.

• CatchCases is a list of catch cases.

• FinallyCase is a finally case or null.

• If “abstract” ∈ Modifiers, then NormalCases = CatchCases = {} and FinallyCase = null.

• If C is in NormalCases, CatchCases or FinallyCase then C is called a case of the method.

24
• Flag, Index, Uplimit and Terminate are nodes distinct from each other, from any nodes

in Inputs or Roots, and from any node external to the method.

If K is a class, a constructor of K is a 8-tuple (Modifiers, Exception, Inputs, ConstCase, Flag, Index,

Uplimit, Terminate) where:

• Modifiers is a subset of {“public”, “protected”, “private”} legal for a Java constructor.

• Exception is a set of nodes.

• Name is a name.

• Inputs is a list of nodes distinct from each other, and from any node external to the con-

structor. See definition of external below.

• ConstCase is a constructor case, which may be referred to as a case of the constructor.

• Flag, Index, Uplimit and Terminate are nodes distinct from each other, from any nodes

in Inputs, and from any node external to the constructor.

A node n is said to be external to a method or constructor of class K iff n ∈ {Node(A)| A ∈

Attributes(K)}.

A method or constructor M contains a counted loop iff for some case C of M, there is an operation O ∈

Opers(C) such that either O is a counted loop or is a local operation that contains a counted loop.

Refer to section 3.2.4 for the definition of counted loop.

A method or constructor M contains a controlled loop iff for some case C of M, there is an operation O

∈ Opers(C) such that either O is a controlled loop or is a local operation that contains a controlled

loop. Refer to section 3.2.4 for the definition of controlled loop.

3.2.3.1 Example

The following example illustrates a method

M = ({“public”}, {E}, “MyMethod”, (I1, I2), (R), (N1, N2) {C}, F, G, I, U, T)

where:

• E, R, I1, I2, G, I, U and T are nodes.

25
• type(I1) = “int”, type(I2) = “String”, type(R) = “int”.

• N1, N2 are normal cases.

• C is a catch case

• F is a finally case

Figure 3-2: A JGraph method

(a)

(b) (c)

(d) (e) (f)

26
Figure 3-2 (b) and (c) show, respectively, the parameter list of MyMethod, and the list of exceptions

that MyMethod throws. Note that the names of parameters are empty strings, the default provided by

the JGraph prototype. Since names of parameters are important only when JGraph is translated to

Java, they need not be specified until required for translation, at which time they could be supplied by

the programmer or generated by the translator.

Figure 3-2 (d) is the window for the normal case N1 of MyMethod. The two rectangles at the bottom

of this window correspond to the two normal cases N1and N2 (not shown) of MyMethod. In the

implementation, these rectangles are coloured brown to indicate that they represent normal cases. In

windows displaying catch cases, as in Figure 3-2(e), or a finally case as in Figure 3-2(f), the rectangles

are blue and green respectively.

Figure 3-2 (e) is the window for the catch case C of MyMethod. The rectangle at the bottom of this

window shows that the method has only one catch case. The left root of the input bar indicated by the

square icon, is the catch root of C, which will be explained more fully later.

Figure 3-2 (f) is the window for the finally case F of MyMethod. Note that the input bar has one

more root than the input bar of the first normal case of MyMethod. That root, indicated by the

square icon, is called a finally input root, and corresponds to the terminal of the output bar of the nor-

mal cases of the method, as explained later.

In Figure 3-2 (d) to (f) we represent the contents of cases by fuzzy blobs since we are not concerned

with the representation of cases in this example. Cases will be discussed in section 3.2.5 below. Note

that the last four components of a method, Flag, Index, Uplimit and Terminate exist only to facilitate

translation to Java, so they have no representation in JGraph. We will discuss them in detail when we

discuss the translation of a method to Java in section 4.2.3. We also note that not all the components

of a method need to be specified. If a method does not throw exceptions, its Exception component

will be just {}. Similarly, a method does not have to have catch cases if no exceptions are to be caught

inside the method.

27

3.2.4 Operations

In order to continue defining JGraph in a strict, top-down fashion we should define cases next. How-

ever, the definitions of “case” and “operation” are interdependent, so we have chosen to define opera-

tions first.

Since each operation occurs in a case, in the following we assume the operation being defined occurs

in some case C.

There are nine categories of operation, each of which is a tuple consisting of a selection of components

as defined in the following table, where:

• Each row defines a category of operation.

• Each column corresponds to a component of a tuple.

• A grey cell indicates that the corresponding category of operation does not have the

corresponding component.

• Target is either a node or null or ↑.

• Name is a name.

• If |Roots| = 1 and type(head(Roots)) = “boolean”, then Control ∈ { , , , , , ,

null }, otherwise Control = null.

• Terminals is a finite sequence of nodes.

• Roots is a finite sequence of distinct nodes.

• An entry in a cell of the table indicates restrictions on the corresponding component of an

operation of the corresponding category.

• Value is a string that can be typed into a Java program as a constant.

• Cases is a sequence of normal cases.

• CatchCases is a sequence of catch cases.

• FinallyCase is a finally case.

• If C is in NormalCases, CatchCases or FinallyCase then C is called a case of M.

• Flag, Index, Uplimit and Terminate are nodes distinct from each other, and from every

node external to the operation (see definition below).

28
• Inputs is a finite sequence of nodes distinct from each other, and from Flag, Index,

Uplimit and Terminate and from every node external to the operation, such that |Inputs|

= |Terminals|.

• For a local operation, Inputs and Terminals match.

• Ttypes is a function from Inputs to {Simple, Array}∪{i | 1 ≤ i ≤ |Roots|} such that:

• If Ttypes(Inputs[k]) = k1, Ttypes(Inputs[j]) = j1 are both integers, where k < j, then

 k1 < j1.

 • If Ttypes(Inputs[k]) = Array for some k, then type(Terminals[k]) is an array type

 and type(Inputs[k]) = Elemtype(type(Terminals[k])).

 • If Ttypes(Inputs[k]) is an integer for some k, then type(Inputs[k]) =

 type(Roots(Ttypes(Inputs[k]))).

• For a repeat operation,

for each i (1 ≤ i ≤ |Inputs|)

• Dimension is a finite sequence, each element of which is a node or integer.

• Data is a node.

If O is a local or repeat operation such that O ∈ Opers(C) for some case C, then a node n is said to be

external to O iff n is a root of an operation in Opers(C), or is external to C.

A repeat operation O is called a counted loop iff Ttypes(R) = Array for some R ∈ ΙΙΙΙnputs(O).

A repeat operation O is called a controlled loop iff Control(O1) ∈ { , , , } for some O1 ∈

Opers(C1) where C1 is a case of O.

A local or repeat operation O contains a counted loop iff for some case C1 of O, there is an operation

O1 ∈ Opers(C1) such that either O1 is a counted loop or is a local operation that contains a counted

loop.

type(Inputs[i])=







Elemtype(type(Terminals[i]))
if Ttypes(Inputs[i]) = Array

type(Terminals[i])
otherwise

29

A local or repeat operation O contains a controlled loop iff for some case C1 of O, there is an operation

O1 ∈ Opers(C1) such that either O1 is a controlled loop or is a local operation that contains a con-

trolled loop.

If O is a local operation, O ∈ Opers(C) and C is a case of some method, local or repeat M then we

define:

Although in JGraph as defined in [20] repeat operations can have enumeration terminals, such termi-

nals do not translate into very efficient Java, so they are omitted here.

Table 3-1: JGraph operations

tuple components

Ta
rg

et

N
am

e

C
on

tr
ol

Te
rm

in
al

s

R
oo

ts

V
al

ue

N
or

m
al

C
as

es

C
at

ch
C

as
es

Fi
na

lly
C

as
e

T
ty

pe
s

In
pu

ts

Fl
ag

In
de

x

U
pl

im
it

D
im

en
si

on
s

Te
rm

in
at

e

D
at

a

o
pe

ra
ti

o
n

ca
te

go
ry

constructor not node

simple ≤1

get 1

set

alloc 1

literal 1

local ≤1

repeat ≤1

array 1

array set node

array get node 1

match 1 1

Flag(O) = Flag(M)

Uplimit(O) = Uplimit(M)

Index(O) = Index(M)

30

3.2.4.1 Example

The following examples illustrate the above definition.

Table 3-2: Various operations and their visual representations

JGraph operation Visual representation

constructor
(null, (T1, T2))
where T1,T2 are nodes

simple (null, “foo”, null, (), ())

simple
(↑, “foo”, , (T1,T2), (R))
where T1,T2, R are nodes

get
(null, “foo”, null, (R))
where R is a node

get (↑, “foo”, , (R))
where R is a node

set
(null, “foo”, D)
where D is a node the terminal-like icon (called a termi-

nal by Risley) represents D, the Data
of the operation.

set
(↑, “foo”, D)
where D is a node

alloc
(“foo”, (T1, T2), (R))
where T1, T2 and R are nodes

literal
(null, (R), “123”)
where R is node

literal (, (R), “123”)
where R is node

31

local

(null, (T1, T2), (R1, R2, R3), (C), (), (), (I1,
I2), M)
where T1, T2, R1, R2, R3, I1, I2 and M are
nodes, and C is a normal case
Note that I1, I2 appear as the roots of the
input bar in each case of the local opera-
tion.

repeat

(null, (T1, T2), (R1, R2), (C), (), (), P,
(I1, I2), F, N, U, M)
where T1, T2, R, I1, I2, F, N, U and M are
nodes, C is a normal case, and P is the func-
tion
P(I1) = Simple, P(I2) = Simple.
Note that I1, I2 appear as the roots of the
input bar in each case of the repeat opera-
tion.

repeat

(null, (T1, T2, T3), (R1, R2), (C), (), (), P,
(I1, I2, I3), F, N, U, M)
where T1, T2, T3, R, I1, I2, I3, F, N, U and
M are nodes, C is a normal case, and P is
the function
P(I1) = 1, P(I2) = Array, P(I3) = Simple.
Note that this is a counted loop because of
the presence of the Array input.

array
((“foo”), (R), (5,7))
where R is a node

array
((“foo”), (R), (N))
where R and N are nodes

array get
(G, (R), (5,7))
where G, R are nodes

array get
(G, (R), (N))
where G, R and N are nodes The icon consisting of connected ter-

minal and root represents G

Table 3-2: Various operations and their visual representations

32

3.2.5 Cases

Each case is defined with respect to the method, constructor, local operation or repeat operation in

which it occurs, so in the following, let M be some arbitrary but fixed method, constructor, local

operation or repeat operation.

A normal case of M is a 4-tuple (Opers, Synchros, Exception, Outputs), where

• Opers is a set of operations not including any constructor operations.

• ∀O ∈ Opers, Control(O)∈{ , } only if Roots(M) = ().

• Synchros is a set of pairs of the form (O1,O2) where O1,O2 ∈ Opers. A synchro (O1,O2)

is said to be from O1 to O2.

• Exception is either a node or is null .

array get
(↑, (R), (5,N, 7))
where R, N are nodes

array set
(G, (5,7), D)
where G, D are nodes

array set
(G, (N), D)
where G, N and D are nodes

array set
(↑, (5,N, 7), D)
where N and D are nodes

match (, T, (R), “123”)
where T, R are nodes

Note that R does not have visual rep-
resentation. It exists in the formal
structure so that the translation to
Java of match is consistent with that
of other operations.

Table 3-2: Various operations and their visual representations

33
• Outputs is a finite sequence of nodes distinct from Flag, Index, Uplimit and Terminate.

A catch case of M is a 5-tuple (Opers, Catchroot, Synchros, Exception, Outputs) defined as for a nor-

mal case except that:

• Catchroot is a node distinct from all roots of all operations in the case or in other cases of

M.

• ∀o ∈Opers, Control(o)∉{ , }.

A finally case of M is a 5-tuple (Previous, Opers, Synchros, Exception, Outputs) as defined as for a

normal case except that:

• ∀O ∈Opers(C), Control(O)∉{ , }

• Previous is a list of nodes that matches Outputs.

A constructor case of M is defined as for a normal case except that:

• Opers contains exactly one constructor operation O and constructor operations can not

be anywhere except in a constructor case.

• Outputs and Roots(M) must match for a normal, catch or finally case.

• The set Opers - {O} can be partitioned into two subsets Pre and Post such that:

• If O1 ∈ Pre then O1 is either a simple, literal, get, alloc, array or array get operation,

and

• | Roots(O1) | =1,

• Control(O1) = null,

• head(Roots(O1)) ∈Terminals(O2) where O2 = O or O2 ∈ Pre,

• if (O2, O1) ∈Synchros, then O2 ∈ Pre.

In addition, there are several further conditions that every case must satisfy as follows.

• Distinct operations in a case have no roots in common.

• Outputs and Roots(M) must match for a normal, catch or finally case.

• If N is a node and

 either N ∈Terminals(O) for some O ∈ Opers

 or N ∈Dimensions(O) for O ∈ Opers

34
 or N ∈Target(O) for some O ∈ Opers

 or N ∈Data(O) for some O ∈ Opers

 or N ∈Outputs

 or N = Exception

then

 either N ∈Roots(O2) for some O2∈ Opers

 or N ∈Inputs(M)

 or N ∈Previous

 or N = Catchroot

• If N is a node then N is a local root of a normal, catch or finally case iff N ∈ Roots(O) for

some O ∈ Opers, or N ∈ Previous or N=Catchroot. N is a local root of a constructor case

iff either N ∈ Roots(O) for some O ∈ Post, or N occurs more than twice in the case.

Note that “occurs in” here refers to all occurrences of N as roots, terminals, data, targets or

dimensions of operations, or as the exception or an output of the case.

We will denote the set of local roots by Local.

• If R is a node then R is said to be external to the case iff

 either R = Flag(M), Index(M), Uplimit(M) or Terminate(M)

 or R ∈ Inputs(M)

 or R ∈ Roots(M)

 or M is a local or repeat operation in Opers(C) for some case C, and R is a local root of

 C or is external to C.

• No node can be both a local root of the case and external to the case.

• Let G be the directed graph such that Opers is the set of vertices of G, and (O1, O2) is an

edge of G iff (O1,O2) ∈Synchros, or some root of O1 is also Data(O2) or Target(O2) or is

an element of Terminals(O2) or Dimension(O2); then G is acyclic.

Note that if O is the unique constructor operation in a constructor case, O1∈ Pre and O2 ∈ Post,

then G can be linearly ordered in such a way that O1 < O < O2.

35

3.2.5.1 Example

We illustrate the definition of normal, catch and finally case by considering the following example, in

which a local opeation is concerned.

Figure 3-3 (a) shows a case containing a local operation Local, which has several cases that we will

consider in detail in this example. The local operation itself has the following structure:

L =(null, (T1, T2), (R1, R2), (C1), (C2), C3, (I1, I2), M)

Figure 3-3 (b), (c) and (d) show, respectively, the normal case C1, catch case C2 and finally case C3 of

the operation, which have the following structures:

(a)

(b) (c) (d)

Figure 3-3: Cases of a local operation

36
C1 = ((O1,O2), null, E, (U1, U2))

C2 = ((O3), T, null, A, (U3, U4))

C3 = ((P1, P2), (O4), null, null, (U5, U6))

where:

type(T1) = type(I1)

type(T1) = type(I1)

type(R1) = type(P1) = type(U1) = type(U1) = type(U1)

type(R2) = type(P2) = type(U2) = type(U4) = type(U6)

Note that the extra terminals on the output bars of the normal and catch cases in Figure 3-3 represent

the nodes E and A that are the Exception components of these two cases. The extra root on the input

bar of the catch case represents the node T that is the Catchroot component of this case. The extra

two roots (finally input roots) on the input bar of the finally case represent the nodes in the Previous

component of this case.

We illustrate the definition of a constructor case by considering the following example, which deals

with the case of a constructor M of a class named MyClass.

Figure 3-4: A constructor case

37
The constructor case in Figure 3-4 has the following structure:

C = ((O1, O2, O3, O4, O5), {}, null, ())

where
O1 = (null, “foo1”, null, (Input(M)[0]), (N1)),
O2 = (null, (N2), “Hello”),
O3 = (null, “foo2”, null, (N2, Input(M)[1]), (N3)),
O4 = (null, (N1, N3, N3)),
O5 = (null, “Result”, N3).

As Figure 3-4 shows, the three terminals of the constructor operation O4 are connected to the roots of

the operations before the constructor operation. The corresponding directed graph (see section 3.2.5)

G can be linearly ordered in the way described in section 3.2.5 so that O1, O2, O3 ∈ Pre, O5 ∈ Post.

That is O1, O2, O3 <O4 <O5.

3.3 Conclusion

In this chapter we have extended the description of JGraph provided in [20] by providing a formal

definition of the JGraph language, together with illustrative examples. The formalisation we have

described was chosen to facilitate the process of translating JGraph programs into Java described in

the next chapter. However, since the formal definitions were devised after our experiences with imple-

menting the prototype, the data structures used in the JGraph prototype are not based on the formal

definitions we have provided.

38

4Translating JGraph to Java

4.1 Introduction

In this chapter, we will address the problem of translating JGraph into Java by providing a mapping

from the formal definitions of JGraph elements provided in the last chapter to corresponding Java

code. There are several quite obvious reasons for doing this as follows

• Illustrate the close relationship between JGraph and Java.

• Provide a “cheap” way to execute JGraph programs by generating Java code that can be

compiled and executed.

• Possibly also provide a means for immediate execution in an editing/debugging environ-

ment like Prograph CPX. To provide for immediate execution, the Java code would have

to be generated incrementally as the JGraph program is edited, perhaps just for JGraph

elements that are determined to be syntactically correct, as described in [20], and the Java

compiler called “on-the-fly”.

We assume the JGraph program we discuss is correct, and that the reader is familiar with the JGraph

language, the details of which can be found in [20]. Risley, in his thesis, presented the semantics of

JGraph and provided much of the information necessary to translate to Java. In this chapter, we will

fill in all the details necessary for the complete process. The discussions cover the strategy for translat-

ing JGraph visual programs into Java, the style and characteristics of the Java programs generated, and

how to work around the limits of Java such as the lack of a “goto” statement. Our discussion will fol-

low the structure of JGraph in a top down fashion.

39
The chapter is organised as follows. First, in section 4.2, we define some useful notation. Next, we

give the formal definition of the translation process. This is accomplished by defining a function τ

that maps JGraph programs and program parts to Java programs and program parts. The chapter con-

cludes with discussion and comments.

4.2 Translation to Java

In this section we show how a JGraph program can be translated into Java by defining a function τ

that in general, maps a JGraph program part to a string. The one exception, however, is when τ is

applied to a package, in which case it produces a set of strings. The remainder of this chapter is

devoted to defining τ in a top-down fashion.

We will use underscore style to represent Java keywords, for example, public, class and static. We use

the symbol ε to denote the empty string. Some symbols, such as semicolons and commas serve double

duty as characters in strings generated by τ, and as punctuation in our notation. To avoid ambiguity,

we will enclose strings in double quotes. In the following, concatenation of strings is denoted by jux-

taposition. Also, every concatenation involves the insertion of a blank between the concatenated

strings. For example, the concatenation operation “ab”“cd” produces the string “ab cd”.

If X is a set of strings, and α is a string, then [X,α] is the string defined as follows:

 [X, α] = ε if X =∅

 [X, α] = x if x ∈ X and |X| =1

 [X, α] = x α[X1, α] where X = {x} ∪ X1 and |X| > 1

Also, if X and α are as above, and β and γ are strings, we define a string [X, α, β, γ] as follows:

 [X, α, β, γ] = β [X, α] γ if [X, α] ≠ε

 [X, α, β, γ] = ε if [X, α] =ε

40
Note that [X, α] above is not well defined. For example, suppose X is the set of names of inter-

faces {A, B, C} that a class implements, then [X, “,”] may be any of the strings “A, B, C”, “B, C,

A”, “C, A, B” etc. This ambiguity is not important, however, since those elements of JGraph struc-

tures which are defined as sets correspond to elements of Java in which ordering is unimportant; for

example, the order of interface names in the “implements” clause of a class definition.

If x is a list, we denote the first element of x by head(x), and the list obtained by removing the first ele-

ment from x by tail(x). If y is a list, we denote by z*y the list obtained by adding an item z to the

beginning of y.

For a method, local or repeat operation M, let V be any set of strings such that |V|=|Normal-

Cases(M)|, and for each v ∈V, v ∉Ν, v ≠ name(R) for any R ∈ ℜ, and v conforms to Java naming

conventions. Now let Var be an arbitrary but fixed 1-1 function from NormalCases(M) to V.

4.2.1 Package

At the package level, the translation process does nothing more than create a class file for each class in

the package. The translation process then proceeds to the details of each of these classes. If P is a

package, then

τ(P) = {“package” Name(P) “;” τ(C) | C ∈ Classes(P)} ∪ {E} ∪ {F}, where:

 E =“package” Name(P) “;

import java.awt.*;

public class ICaseException extends Exception

 {

 public ICaseException(String Msg)

 {

 super(Msg);

 }

 }”

41
and

 F =“package” Name(P) “;

 import java.awt.*;

 public class ITermException extends Exception

 {

 public ITermException(String Msg)

 {

 super(Msg);

 }

 }”

The exception classes ICaseException and ITermException are added to the generated Java as part of

the mechanism that deals with the case structure of JGraph methods and the terminate control.

Each of the strings in the set of strings generated by applying τ to a package corresponds to one code

file containing one class definition, as required by Java.

4.2.2 Class and Interface

At this level, the correspondance with Java is exact, so the translation process is straightforward and

obvious.

If C is a class then

 τ(C) = τ(Imports(C)) τ(Modifiers(C)) “class” Name(C) τ(Superclass(C)) τ(Interfaces(C)) “{”

 τ(Attributes(C)) τ(Methods(C))“}”

42
where

Where if A is an attribute:

If I is an interface then

 τ(I) = τ(Imports(C)) τ(Modifiers(C)) “interface” Name(C) τ(Superclass(C))“{”

 τ(Attributes(C)) τ(Methods(C))“}”

4.2.2.1 Examples

The following example illustrates the translation of JGraph classes to Java.

Figure 4-1 (a) shows the project window containing the package list. For this example, there is only

one package, named “MyPackage”, containing the class under consideration. Figure 4-1 (b) shows

the class window of MyPackage depicting the inheritance relations between MyClass and other classes

and interfaces. Figure 4-1 (c) and (d) show, respectively, the list of imported packages and attributes

of MyClass. The Java produced by the translation defined above is as follows.

package MyPackage;

import java.*;

import javax.*;

τ(Imports(C)) = [Imports(C), “; import”, “import” , “;”]

 τ(Modifiers(C)) = [Modifiers(C), “ ”]

τ(Superclass(C)) =




“extends” Superclass(C) if Superclass(C) ≠ ε.

ε otherwise.

 τ(Interfaces(C)) = [Interfaces(C), “,”, “implements” , ε]

τ(Attributes(C)) = [{τ(A) | A∈Attributes(C)}, “;”]

 τ(Methods(C)) = [{τ(m) | m∈ Methods(C)}, ε]

 τ(A)=







 [Modifiers(A), “ ”] type(Node(A)) name(Node(A)) “=” Value(A),
if Value(A) ≠null.

[Modifiers(A), “ ”] type(Node(A)) name(Node(A)),
otherwise.

43
import package1;

public MyClass extends SuperClass implements Interface1, Interface2

{

private int i=0;

protected boolean boo=true;

<methods; section 4.2.3>

}

We use the notation <> to indicate code generated from a JGraph element and the section where the

translation is defined.

(a)

(b)

(c)

(d)

Figure 4-1: MyClass and associated items

44

4.2.3 Method.

Since the translation of a method is the most complex part of the process, we divide our explanation

into several levels. At the top level we address the problems of translation not related to the method

body. Then we will discuss the patterns of translation of a method body in terms of cases. The trans-

lation of a case is described in detail in a later section.

Let M be a method then we define τ(M) as below. Note that some of the “helper” functions we require

are defined to be more general than necessary since they will be reused later to define the translations

of local and repeat operations.

45

τ(M) = SIGNATURE(M) BODY(M)

where:

SIGNATURE(M) = [Modifiers(M), “ ”] TYPE(M) Name(M) EXCEP(M)“(” PAR(Inputs(M)) “)

BODY(M) =







“;”
if “abstract” ∈ Modifiers(M)

“{”DECL(M) OUTER(M) RET(M)“}”
otherwise

TYPE(M) =







“void”
 if Roots(M) = ()

type(head(Roots(M)))
 otherwise

EXCEP(M) =




“throws” [{type(E) | E ∈ Exception(M))}, “,”, “ ”, “ ”]
 if Exception(M) ≠ {}

ε otherwise

DECL(M) = ROOTDECL(M) FLAGDECL(M) INDEXDECL(M)

ROOTDECL(M) =







type(head(Roots(M))) name(head(Roots(M))) “;”
if Roots(M) ≠ ()

ε
 otherwise

FLAGDECL(M) =







“boolean” name(Flag(M)) “;”
if M contains a controlled loop

ε otherwise

INDEXDECL(M) =







“int” name(Index(M)) “,” name(Uplimit(M)) “;”
if M contains a counted loop.

ε
 otherwise

OUTER(M) =







“try {” INNER(M) “} catch(ITermException” Terminate(M)) “{” SETFLAG(M) “}”
if Control(O)∈ { , } for some O ∈ Opers(C) for some case C of M

INNER(M)
otherwise

RET(M) =







“return” name(head(Roots(M)))“;”

if(Roots(M)) ≠ ()

ε
 otherwise

46

and if X is a list of nodes, and Y is a list of cases

and

4.2.3.1 Example

In this example we illustrate the translation of JGraph methods to Java by considering a method called

MyMethod, partially illustrated in Figure 4-2, which has the structure:

SETFLAG(M) =







ε if M is a local operation or method

name(Flag(M)) “= false;”
otherwise

INNER(M) = NORM(NormalCases(M)) CATCH(CatchCases(M)) FIN(M)

FIN(M) =







“finally {” τ (FinallyCase(M)) “}”
if FinallyCase(M) ≠ null

ε
otherwise

PAR(X) =









type(head(X)) name(head(X)) “,” PAR(tail(X))
 if |X| > 1

type(head(X)) name(head(X))
 if |X| = 1

ε otherwise

NORM(Y) =







“try {” τ (head(Y)) “} catch (ICaseException” Var(head(Y))“){ ” NORM(tail(Y)) “}”
 if |Y| > 1

τ(head(Y))
 if |Y| = 1

CATCH(Y) =







ε if Y=()
τ(head(Y)) CATCH(tail(Y))
 otherwise

47
 M = ({“public”}, E, “MyMethod”, (I1, I2), (R), (C1, C2, C3), (C4, C5), C6, G, I, U, E)

where:

• name(I1)= “i”.

• name(I2)= “boo”.

• name(R) = “Result”.

• MyMethod contains both controlled and counted loops.

• name(G) = “FlagName”, name(I) = “IndexName”, and name(U) = “UpLimit”.

• Var(C2) = “var2”, Var(C3) = “var3”

Applying the above translation to this method produces the following Java code:

Figure 4-2: A JGraph method

48
public int MyMethod(int i, boolean boo) throws ExceptionName

{

 1 int Result;

 2 boolean FlagName;

 3 int IndexName, UpLimit;

 4 try

 5 {

 6 <normal case; section 4.2.4>

 7 }

 8 catch (ICaseException var2)

 9 {

10. try

11. {

12. <normal case, section 4.2.4>

13. }

14. catch (ICaseException var3)

15. {

16. <normal case, section 4.2.4>

17. }

18. }

19. <catch case, section 4.2.4>

20. <catch case, section 4.2.4>

21. finally

22. {

23. <finally case, section 4.2.4>

24. }

25. return Result;

}

This example illustrates the translation of a JGraph method into Java, where many of the more subtle

and important features of the translation process occur. We now discuss these in detail.

49
Repeat operations: Iterations in JGraph, represented by repeat operations, are controlled either by

indexing through arrays (counted loops), by testing boolean expressions (controlled loops) or by a

combination of both. To represent a counted loop in Java, we need two variables, an index to be incre-

mented in each iteration, and an upper limit on the index, used to stop the iteration. Clearly, if a

method contains several counted loops, the same two variables can be used for each of them, so it

makes sense to declare these variables at the beginning of the method body, as our example illustrates.

Note that if the method were to contain no counted loops, then these variable declarations would be

omitted. If the method contains a counted loop, in the sense defined above, these declarations are

inserted into the Java code by the function INDEXDECL defined above using the Uplimit and Index

components incorporated in the method structure for this purpose.

Similarly, if a method contains a controlled loop, as in the above example, a boolean variable is

required, to be set in the body of the loop and tested in its condition. Again, only one such variable is

required for all controlled loops contained in a method. The function FLAGDECL defined above

inserts a declaration for it at the beginning of the method body in the Java code, if and only if the

method contains a controlled loop.

Normal, catch and finally cases: In a JGraph method, exceptions thrown as a result of executing a

normal case may be handled by one of the method’s catch cases. Also, an exception thrown by a catch

case may be handled by a catch case occurring later in the method’s sequence of catch cases. This

translates into Java in a very straightforward way, as a try block, containing the code corresponding to

all the normal cases of the JGraph method, followed by one catch block for each catch case, possibly

followed by a finally block corresponding to the JGraph method’s finally case. In our example, the try

and catch clauses required for this implementation cover the lines from 4 to 24.

Normal case structure: Each method has at least one normal case. Every case except the last in the

sequence of normal cases may contain operations with next case controls which, when fired, cause

execution to pass immediately to the next case in the sequence. Unlike conditional constructs in more

conventional languages where the conditions are kept seperate from other computations, within a case

50
in JGraph, the evaluation of conditions and other computations are mixed together. An operation

with a next case control may occur at any point in the linear sequence in which the operations are exe-

cuted and there may be more than one such operation.

The semantics of the next case control, although it makes sense in the context of data flow, is contrary

to the principles of structured programming on which Java is based, where each code block should

finish execution and return control to the enclosing code block.The only mechanisms in standard

imperative programming languages for causing an abrupt transfer of control out of the middle of a

code block are “goto”, “break” and exception throwing. Structured programming languages like Java

don’t support “goto”, although it would certainly be the right mechanism for implementing next case.

Java has a “break” statement but it is used only inside loops and cases of switch statements. Fortu-

nately, exceptions in Java provide a mechanism which is structurally very similar to the normal case

structure of a JGraph method. We can see the correspondance if we note that executing a sequence of

normal cases involves either executing the head case of the sequence to completion, or executing the

tail. If any next case control in the head case fires then the tail is executed. Similarly executing a “try-

catch” pair in Java involves either executing the “try” to completion or executing the “catch”, and if

any exception is thrown during execution of the “try”, then the “catch” is executed. Hence the head

and tail of a sequence of normal cases corresponds to the “try” and “catch” clauses of a “try-catch” pair,

and firing a next case control in the head case corresponds to throwing an exception in the “try”

clause.

Our translation of normal cases is based on this correspondance. Wherever a next case control is fired

in JGraph, the corresponding Java code, throws a special exception “ICaseException” and the next

normal case will be the catch block catching the exception thrown. Lines 4 to 18 show the code corre-

spondance. There are three normal cases in the example. That means there is at least one next case

control in each of the first two normal cases. If there were no next control case in the first normal case,

lines 8 to 18 would be absent.

51

4.2.4 Cases.

If C is a case, let P be any total ordering of Opers(C) obtained by topologically sorting the graph G

defined on the case C as described in Section 3.2.5. See [2] for a description of topological sort.

If C is a normal case, then:

If C is a constructor case of a constructor of class K, let O be the unique constructor operation, P be

any total ordering of Opers(C) obtained by topologically sorting the graph G defined on cases as

described in section 3.2.5 and let P1 be the linear ordering of Pre(C) induced by P, then:

where OPERS and EXCEP are as defined above.

τ(C) = “{”[{type(L) name(L) | L ∈ Local(C)}, “;”] CASEBODY(C)“}”

If C is a catch case, then:

τ(C) = “catch” (type(Catchroot(C)) name(Catchroot(C))“){”
[{type(L) name(L) | L ∈ Local(C) and L ≠ CatchRoot(C)}, “;”]
CASEBODY(C)“}”

If C is a finally case, then:

τ(C) = “{”[{type(L) name(L)| L ∈ Local(C) and L ∉ Previous(C)}, “;”] [{type(Previ-
ous(C)[i]) name(Previous(C)[i]) = name(Roots(M)[i]) | 1 ≤ i ≤ |Previous(C)|}, “;”, ε,
“;”] CASEBODY(C)“}”

where:

CASEBODY(C) = OPERS(P)[{name(Roots(M)[i]) = name(Outputs(C)[i]) | 1≤ i ≤ |Outputs(C)|}, “;”, ε,
“;”] THROW(C) “;”

THROW(C) =






“throw” name(Exception(C))
Exception(C)≠null

ε
otherwise

and if X is a sequence of operations:

OPERS(X) =




τ(head(X)) OPERS(tail(X))
 if X≠()

ε otherwise

τ(C) = “{”[{type(A) name(A)| A ∈ Local(C)}, “;”] CREATE(O, {}) OPERS(P1)THROW(C)“}”

52
In Java, the body of a constructor must perform exactly one invocation of a constructor of the parent

class, which must precede any other actions performed in the constructor body. However, it is legal in

Java to provide nested expressions as inputs to that constructor call. A constructor case in JGraph, is

defined in such a way that the network of operations that provide inputs to the constructor operation

can perform only computations that can be expressed textually as nested expressions (See section

3.2.5). Also, instead of translating these operations as a sequence of assignments, we must produce

nested expressions. So the translation of a constructor case is done in two parts, the operations

“before” the constructor, and those “after”.

The functional style we have been using to define translation is awkward for expressing the translation

of operations before the constructor. This is because in this translation we have to search backward

from the constructor operation, remembering the operations we encounter so we can set a variable to

the expression on the first visit, then simply use that variable on later visits. This requires a “global

variable” which a pure functional notation can not accommodate. Hence, we will express this transla-

tion as a procedural algorithm.

In the algorithm described below, we will use Java notations and conventions as much as we can as

well as the various notations we have used in translations described earlier, such as juxtaposition to

denote concatenation.

CREATE(O, L)

{

S = “”;
if(O ∈ L)

return name(head(Roots(O)));
else
{

if(O is simple, get, array get or constructor operation)
{

if(O is an alloc or array operation)
S = S “new”;

if (Target(O) = ↑)
S = S “super.”;

else
if (Target(O) is a node)

53
{

O1=operation with Target(O) as root;
S = S CREATE(O1, L);
if (O is simple, get)
S = S “.”;

}
}

S = S IDENT(O);

if(O is constructor, simple or alloc)
{

 T = Terminals(O);
 S=S “(”;

while (T ≠ ())
{

t = head(T);
T = tail(T);
if(t ∈ Inputs(K))

S=S name(t);
else
{

O1 = operation with t as root;
S = S CREATE(O1, L);

}
if (T==())

S = S “)”;
else

S = S “,”;
}

}
if(O is an alloc or array get operation)
{

T = Dimensions(O);
S = S “[”;
while T ≠ ()
{

t = head(T);
T = tail(T);
if(t ∈ Inputs(K))

S=S name(t);
else
{

O1 = operation with t as root;
S = S CREATE(O1, L);

}

54
if (T==())

S = S “]”;
else

S = S “][”;
}

}

if(O has a root and the root of this operation occurs more than twice in the case)
S = name(head(Roots(O))) “=” S;

add O to L;
return S;

}

}

where:

4.2.4.1 Example.

Here we illustrate the above definitions by considering the translation of the normal, catch and finally

cases of a local operation called Local, shown from left to right in Figure 4-3 and referred to below as

C1, C2 and C3 respectively.

We assume that Roots(Local) = (R1, R2) where name(R1) = “r1”, name(R2) = “r2”, type(R1) =

“String”, type(R2) = “int”.

IDENT(O1)=














“super”
if O1 is a constructor operation and Target(O1) = ↑

name(K)
if O1 is a constructor operation and Target(O1) ≠ ↑

Name(O1)
if O1 is a simple or get operation

Value(O1)
if O1 is a literal operation

55

Table 4-1: Translation of cases

Case Corresponding Java code

We assume that Exception(C1) = E,
Outputs(C1)=(U1, U2) and Local(C1) = {U1, U2,
L1, L2}

where
name(E) = “except”
type(L1) = “boolean”;
name(L1) = “l1”.
type(L2) = “int”;
name(L2) = “l2”.

name(U1) = “u1”,
name(U2) = “u2”.

{
boolean l1;
int l2;
String u1;
int u2;
<methods; section 4.2.3>
r1 = u1;
r2 = u2;
throw except;

}

C2
C3 C1

Figure 4-3: The three cases of Local

56

4.2.4.2 Example
Here we illustrate the translation of constructor cases using the example in Figure 4-4. Let K be the
class, and M be the constructor in which the constructor case occurs.

We assume that Catchroot(C2) =T,
Outputs(C2)=(U3, U4) and Local(C2) = {U4, L1}

where
type(T) = “MyException”,
name(T) = “CEvar”,
type(L1) = “boolean”;
name(L1) = “l1”.
name(U3) = “u3”,
name(U4) = “u4”,

 catch (MyException CEvar)
 {

int u4;
boolean l1;
<methods; section 4.2.3>
r1 = u3;
r2 = u4;

 }

We assume that Previous(C3) = (P1, P2),
Outputs(C3)=(U5, U6),
Local(C3) = {L1,L2,L3}
where
type(P1) = “String”;
name(P1) = “p1”,
type(P2) = “int”;
name(P2) = “p2”,
type(L1) = “String”;
name(L1) = “l1”,
type(L2) = “boolean”;
name(L2) = “l2”,
type(L3) = “boolean”;
name(L3) = “l3”.
name(U5) = “u5”,
name(U6) = “u6”.

finally
{

String l1;
boolean l2;
boolean l3;
String p1 = r1;
int p2 = r2;
<methods; section 4.2.3>
r1 = u5;
r2 = u6;

}

Table 4-1: Translation of cases

Case Corresponding Java code

57

Table 4-2: translation of constructor case

constructor case Corresponding Java code

C = ((O1, O2, O3, O4, O5), null, null, ())
and Local (C) = {L}

where
Name(K) = “MyClass”,
O1 = (null, “foo1”, null, (T1), (R1))
O2 = (null, (R2), “Hello”)
O3 = (null, “foo2”, null, (T2, T3), (R3))

O4 = (null, (T4, T5, T6))
O5 = (null, “Result”, D)
type(L) = “boolean”;
name(L) = “ret2”;
We assume that Inputs(M) = (I1, I2), and
name(I1) = “param1”,
name(I2) = “param2”

{
int ret2;
MyClass(foo1(param1),

ret2=foo2(“Hello”, param2), ret2);
Result = ret2;

}

Figure 4-4: Constructor case

58

4.2.5 Operations

If O is an operation in some case of a method, local or repeat M then:

where DECL, OUTER are as defined in section 4.2.3 and:

 τ(O) =

































LHS(O) TAR(O) Name(O) “(”TERM(Terminals(O)) “)” CNTRL(O)
if O is a simple operation

name(head(Roots(O))) TAR(O) name(O) CNTRL(O)
if O is a get operation

TAR(O) Name(O) “=” name(head(Terminals(O))) CNTRL(O)
if O is a set operation

name(head(Roots(O))) “= new” Name(O) CNTRL(O)
if O is an alloc operation

name(head(Roots(O))) “= ” Value(O) CNTRL(O)
if O is a literal operation

“{” LOCDECL(O) OUTER(O) “}”
if O is a local operation

“{” FLAGDECL(O) INDEXDECL(O) INIT(O) “while (” HEAD(O) “) {” NEXT(O)
OUTER(O) “}}”

if O is a repeat operation

name(head(Roots(O)))“= new” Name(O) “[” TERM(Dimension(O)) “]”
if O is an array operation

name(head(Roots(O))) = TAR(O) “[” TERM(Dimension(O)) “]”
if O is an array get operation

TAR(O) “[” TERM(Dimension(O)) “]” = name(Data(O))
if O is an array set operation

name(head(Roots(O)))“=”Value(O)“==”name(head(Terminals(O)))“;”CNTRL(O)
if O is a match operation

LOCDECL(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i]) “=” name(Terminals(O)[i])
|1≤ i ≤ | Terminals}, “;”, ε, ”;”]

LHS(O) =




 ε if Roots(O) = ()

name(head(Roots(O)))“=”
if |Roots(O)| = 1

59

TAR(O) =








ε if Target(O) = null

name(r) “.”
if Target(O) = r

“super.”
if Target(O) = ↑

CNTL(O) =









“; if(!” name(head(Roots(O))) “)” {τ(Control(O));}
if Control(O) ∈ { , } or Control(O)= and M is a repeat operation

“; if(” name(head(Roots(O))) “)” {τ(Control(O));}
if Control(O) ∈{ , } or Control(O)= and M is a repeat operation

ε otherwise

INIT(O) = FLAG(O) SIMPLE(O) IND(O) ARRAY(O) LOOP(O)

FLAG(O) =




name(Flag(M)) “= true ;”
if O is a controlled loop

ε otherwise

 IND(O) =




name(Index(M)) “= 0 ;” name(Uplimit(M)) “= 0 ;”
if O is a counted loop

ε otherwise

SIMPLE(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i]) = name(Terminals()[i]) |
1 ≤ i ≤ |Terminals|, Ttypes(T) = Simple}, “;”, ε, ”;”]

ARRAY(O) = [{type(Inputs(O)[i]) name(Inputs(O)[i]) | Ttypes(Inputs(O)[i]) = Array, 1 ≤ i ≤ |Ter-
minals|}, “;”, ε, ”;][{name(Uplimit(O)) “=” name(Uplimit(O)) “<” name(Termi-
nals(O)[i]) “.length ?” name(Uplimit(O)) “:” name(Inputs(O)[i]) | T ∈
Terminals(O)1 ≤ i ≤ |Inputs| and Ttypes(Terminals(O)[i]) = Array}, “;”, “ ”, “;”]

LOOP(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i])“;”
 name(Roots(O)[Ttypes(Terminals(O)[i]]) = name(Terminals(O)[i])|
1 ≤ i ≤ |Terminals| and Ttypes(Terminals(O)[i]) is an integer}, “;”, “ ”, “;”]

HEAD(O) =













name(Flag(M)) “&&” name(Index(M)) “≤” name(Uplimit(M))
if O is a controlled loop and counted loop

name(Flag(M))
if O is a controlled loop but not counted loop

name(Index(M)) “≤” name(Uplimit(M))
if O is a counted loop but not controlled loop

“true”

otherwise

NEXT(O) =

[{name(Inputs(O)[i]) “=” name(Roots(O)[Ttype(Terminals(O)[i]]) |
1≤ i ≤ |Terminals(O)| and Ttype(Terminals(O)[i]) is an integer}, “;”, “ ”,
“;”][{name(Inputs(O)[j]) “=” name(Terminals(O)[j]) “[” name(Index(O)) “]” |
1≤ j ≤ |Terminals(O)| and Ttype(Terminals(O)[j]) = Array}, “;”, “ ”,
“;”]INCRINDEX(O)

60

4.2.5.1 Examples of translating operations

Here we present an extensive sequence of examples to illustrate the above definitions.

INCRINDEX(O)=







name(Index(O)) “++;”
if Ttypes(Terminals(O)[i]) = Array for some i (1 ≤ i ≤ |Terminals|)

ε
otherwise

and for any list X consisting of nodes and integers.

TERM(X) =















 ε if X =()

name(head(X))
if |X| =1 and head(X) is a node

head(X)
if |X| =1 and head(X) is an integer.

name(head(X)) “][” TERM(tail(X))
if |X| >1 and head(X) is a node.

head(X) “][” TERM(tail(X))
if |X| >1 and head(X) is an integer.

Table 4-3: Translation of operations
Operation Formal structure Corresponding Java

(null, “foo”, null, (), ()) foo()

(T, “foo”, null, (), ())

where T is a node such that:
name(T)= “t”.

t.foo()

(T1, “foo”, null, (T2), (R))

where T1, T2 and R are nodes such
that:
name(T1) = “t1”,
name(T2) = “t2”,
name(R) = “r”.

r=t1.foo(t2)

61

(T1, “foo”, null, (T2), (R))
T1 = ↑
name(T2) = “t2”,
name(R) = “r”.

r=super.foo(t2)

(null, “foo”, null, (R))

where R is a node such that:
name(R) = “r”

r = foo

(T, “foo”, null, (R))

where T, R are nodes such that:
name(T) = “t”
name(R) = “r”

r = t.foo

(T, “foo”, null, (R))

where T, R are nodes such that:
T = ↑
name(R) = “r”

r=super.foo

(T, (R), (5,7))

where T, R are nodes such that:
name(T) = “t”
name(R) = “r”

r=t[5][7]

(T, (R), (D))

where T, R and D are nodes such that:
name(T) = “t”
name(R) = “r”
name(D) = “index”

r = t[index]

(Τ, (R), (5,N, 7))

where Τ, R, N are nodes such that:
name(Τ) = “n”
name(R) = “r”
name(D) = “index”

r = n[5][index][7]

(null, “foo”, D)

where D is a node such that:
where:
name(D) = “d”.

foo = d

(T, “foo”, D)

where T, D are nodes such that:
name(T) = “t”
name(D) = “d”

t.foo =d

Table 4-3: Translation of operations

62

(T, “foo”, D)

where T, D are nodes such that:
T = ↑
name(D) = “d”

super.foo = d

(T, (5,7), D)

where T, D are nodes such that:
name(T) = “t”
name(D) = “d”

t[5][7] = d

(T, (N), D)

where T, N, D are nodes such that:
name(T) = “t”
name(N) = “index”
name(D) = “d”

t[index] = d

(Τ, (5,N, 7), D)

where Τ, N and D are nodes such
that:
name(Τ) = “n”
name(N) = “index”
name(D) = “d”

n[5][index][7] = d

(“foo”, (T1, T2), R)

where T1, T2 and R are nodes such
that:
name(T1) = “t1”
name(T2) = “t2”
name(R) = “r”,

r = new foo(t1,t2)

(“foo”, (), R)

where R is a node such that:
name(R) = “r”

r = new foo()

(“foo”, (R), (5,7))

where R is a node such that:
name(R) = “r”.

r = new foo[5][7]

((“foo”), (R), (N))

where R, N are nodes such that:
name(R) = “r”,
name(N) = “index”.

r1 = new foo[index]

(null, (R), “123”)

where R is a node such that:
name(R) = “r”

r = 123

Table 4-3: Translation of operations

63

(null, T, (R), “123”) where:
name(T) = “t”
name(R) = “r”

Note that a match is simply a short-
hand notation for testing for equality
and has to do with specific controls.
However, it is allowed to have the
control null, in which case the match
operation does not accomplish any-
thing useful. An example of match
with controls will be shown in section
4.2.6.1.

r = t==123;

({}, (T1, T2), (R1, R2, R3), N, C, X,
(I1,I2), F, D, U, E)

where N is a sequence of normal
cases, C is a sequence of catch cases,
X is a finally case, T1, T2, I1, I2, F, D,
U and E are nodes and
type(T1) = “int”, type(T2) = “String”,
name(I1) = “i1”, name(I2) = “i2”,
name(T1) = “t1”, name(T2) = “t2”,
name(R1) = “r1”, name(R2) = “r2”,
name(R3) = “r3”.

{
int i1 = t1;
String i2 = t2;
<Cases; section 4.2.3.1>

}

({}, (T1, T2, T3), (), N, C, X,
(I1, I2, I3), F, D, U, E)

where N is a sequence of normal
cases, C is a sequence of catch cases,
X is a finally case, T1, T2, I1, I2, F, D,
and U are nodes and
type(T1) = “int”, type(T2) = “String”,
type(T3) = “boolean”,
name(I1) = “i1”, name(I2) = “i2”,
name(I3) = “i3”,
name(T1) = “t1”, name(T2) = “t2”,
name(T3) = “t3”, name(E) = “e”
we assume that there are terminate
controls in the cases of this local oper-
ation.

{
int i1 = t1;
String i2 = t2;
try
{

<Cases; section 4.2.3.1>
} catch(ITermException e)
{
}

}

Table 4-3: Translation of operations

64

As the example of a local operation containing operations with terminate controls shows, if a termi-

nate control (i.e. or) on an operation is activated, execution of the case containing the operation

stops immediately, causing execution of the method, local or repeat to which the case belongs to stop.

To achieve equivalent behaviour in Java, we introduce a special exception class ITermException. If

execution of a JGraph operation triggers a terminate control, then in the corresponding code, an

instance of ITermException is thrown, as we will see later in section 4.2.6.1. If a JGraph method con-

tains a case which has an operation with a terminate control, then the body of the corresponding Java

(null, (T1, T2, T3), (R1, R2), N, C, X,
E, (I1, I2, I3), F, D, U)

where N is a sequence of normal
cases, C is a sequence of catch cases, X
is a finally case, T1, T2, T3, R, I1, I2, F,
D, U are nodes and
E(I1) = 1,
E(I2) = Array,
E(I3) = Simple,
type(T1) = “int”, type(T2) = (“int”),
type(T3) = “boolean”,
type(F) = “boolean”, type(D) = “int”,
type(U) = “int”,
name(T1) = “t1”, name(T2) = “t2”,
name(T3) = “t3”,
name(I1) = “i1”, name(I2) = “i2”,
name(I3) = “i3”,
name(R1) = “r1”, name(R2) = “r2”,
name(F) = “flag1”, name(D) =
“index1”, name(U) = “uplimit1”,
we assume that
name(Flag(M)) = “flag”,
name(Index(M)) = “index”,
name(Uplimit(M)) = “uplimit”,
and there are controlled loops and
counted loops in N, C and X.

{
boolean flag1;
int index1, uplimit1;
flag = true;
boolean i3 = t3;
index = 0 ;
uplimit = 0;
int i2 = t2;
uplimit=uplimit<t2.length?

uplimit:t2.length;
int i1;
r1 = t1;
while(flag & & index < uplimit)
{

i1 = r1;
i2 = t2[index];
index++;
<Cases; section 4.2.3.1>

}
}

Table 4-3: Translation of operations

65
method will consist of a try-catch structure where the try clause contains the code corresponding to

the cases of the JGraph method, and the catch clause catches any ITermException thrown in the try

clause. If there were no operation in any case of a JGraph method with a terminate control, then the

body of the corresponding Java method would not have this try-catch structure.

4.2.6 Controls

The translation of a control is defined with respect to its context. Let X = Control(O) where O ∈

Opers(C) and C is a case of some method, local or repeat M, then:

4.2.6.1 Examples of translating controls

τ(X)=













ε if X = null

“throw new ICaseException();”
if X ∈ { , }

“throw new ITermException();”
if X ∈ { , }

 name(Flag(M)) “= false ;”
if X ∈ { , }

Table 4-4: Translation of operations with controls
(T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”

r=t.foo;
if(!r)
throw new ICaseException() ;

(T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”

r=t.foo;
if(!r)
throw new ITermException() ;

 (T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”
We assume that the operation is
in a case of a repeat

r = t.foo;
if(!r)
flag= false ;

66

4.2.7 A general example

In this section, we illustrate the translation process presented in this chapter by considering a real

example, a JGraph method BubbleSort that applies the bubblesort algorithm to sort an array in place.

(, T, (R), “123”) where:
name(T) = “t”
name(R) = “r”

r = t==123;
if(!r)
throw new ICaseException() ;

Table 4-4: Translation of operations with controls

67

The corresponding Java program generated from the JGraph program above is as follows:

void BubbleSort(int[] a)
{

try{
boolean flagname;
int r1;
boolean r;
r1 = a.length;
r = r1<=1;
if(r) throw new ITermException() ;
{ // code for repeat operation “outer” starts here

boolean outer_flag;
flagname = true;
int[] outer_a = a;
int outer_in1;
int outer_r1 = r1;
while (flagname)
{

outer_in1 = outer_r1;
int outer_rr1;
boolean rr;
int outer_loop1;
try{

outer_rr1 = outer_in1-1;
rr = outer_rr1==0;
if(rr)throw new ITermException() ;
outer_loop1 = 1;
{ // code for repeat operation “inner” starts here

outer_flag = true;
int[] inner_a = outer_a;
index = 0;
uplimit = 0;

68
int inner_arrelement1;
uplimit = uplimit < outer_a.length ? uplimit : outer_a.length;
int inner_r1 = outer_loop1;
int inner_r2;
int inner_out1 = outer_rr1;
while (outer_flag && index < uplimit)
{

inner_r2 = inner_out1;
inner_arrelement1 = outer_a[index];
index++;
try{

int inner_rr2;
boolean rr2;
int inner_arrelement2;
inner_rr2 = inner_r2-1;
rr2 = inner_rr2 == 0;
if(rr2) throw new ITermException() ;
inner_arrelement2 = inner_a[inner_r1];
{ // code for local operation “swap” starts here

int swap_arrelement1 = inner_arrelement1;
int[] swap_a = inner_a;
int swap_arrelement2 = inner_arrelement2;
int swap_r1 = inner_r1;
try{ // first normal case of “swap” starts here

boolean swap_r;
swap_r= swap_arrelement1< swap_arrelement2;
if(!swap_r) throw new ICaseException();

}catch(ICaseException e1)
{ // second normal case of “swap” starts here

int swap_r2;
swap_a[swap_r1]= swap_arrelement2;
swap_r2 = swap_r1-1;
swap_a[swap_r2] = swap_arrelement1;

}
}
outer_loop1== inner_r1+1;
inner_out1= inner_rr2;

}catch(ITermException e2)
{

outer_flag = false;
}

}
}
outer_r1 = outer_rr1;

}catch(ITermException e3)
{

69
flagname = false;

}
}

}

}catch(ITermException e)
{
}

}

4.3 Conclusion

In this chapter we have given the formal definition of the translation process to Java. It would be

impossible in any reasonable amount of space to give examples that cover all combinations of features.

We hope, however, that the examples we have provided will help the reader understand some of the

more subtle aspects.

In the next chapter, we will discuss the problem the other way around, that is translating Java pro-

grams into JGraph.

70

5Importing Java into JGraph

5.1 Introduction

In this chapter, we will address the problem of importing Java code into JGraph. The purpose is to

provide JGraph with the capability to visually edit Java code. First individual elements of Java code

such as keywords, operators and variables are identified by applying lexical analysis. Based on the lex-

eme list generated, corresponding JGraph elements are created and presented in a JGraph project for

editing. We will go through this procedure in a top down fashion. We assume that the Java program

imported is correct, thereby avoiding the complications associated with error processing.

The translation we will describe assumes that the source code is general Java: that is, we are not trying

to identify any structures which might have originated from translating a JGraph program to Java as

described in Chapter 4. At the end of the chapter we will discuss some of the issues associated with

doing that. The presentation in this chapter is less formal than that of Chapter 4 relying on a series of

examples.

5.2 Class files

For convenience, we assume that each class of a project to be translated is stored in a single file con-

taining no other classes. That is each file represents an individual Java class. For example, consider the

following class file. Here we use the notation <...> introduced in Chapter 4. In this chapter, it indi-

cates that the example code includes a Java construct that will be discussed in another section.

package MyPackage;

import java.awt;

71
import java.swing;

<class; section 5.3>

The JGraph generated from this file is illustrated in Figure 5-1.

At the package level, Java and JGraph are slightly different. In particular, unlike JGraph, Java has no

explicit representation of a package, although specific implementations of Java may. In the example,

therefore, the generated JGraph has a project window, shown in Figure 5-1(a), that depicts MyPack-

age, as well as the list of classes and interfaces the package contains.

5.3 Class

The following examples illustrate the translation of Java classes and interfaces to JGraph.

(a) (b)

Figure 5-1: JGraph package

72

Table 5-1: Translation of classes
Java construct Corresponding JGraph

 class MyClass1

{
<attributes; section 5.5>

<constructors; section 5.7>

<methods; section 5.7>
}

public class MyClass2

{
As above

}

final class MyClass3

{
As above

}

public final class MyClass4

{
As above

}

abstract class MyClass5

{
As above

}

public abstract class MyClass6

{
As above

}

interface MyClass7

{
As above

}

73

In the examples above, different Java classes are represented by different JGraph images. Each JGraph

class image consists of a class icon or interface icon in the centre, together with icons at the bottom

corners of the image indicating the qualifers of the class or interface. For example, a diamond shape at

the left-bottom indicates that the class can be referenced only from inside the package. A green rectan-

gle indicates that the class is a public class. The characters “A” and “F” indicate that the class is

abstract or final.

5.4 Inheritance

In the following example, we illustrate the translation of inheritance relationships. Consider the fol-

lowing Java class definition, assuming that the package MyPackage in which it occurs does not con-

tain a class called SuperClass. In the classes window of MyPackage, shown in Figure 5-2, SuperClass is

represented as an alias.

public class MyClass extends SuperClass implements Interface1, Interface2

{

 <attributes; section 5.5>

<methods and constructors; section 5.7>

}

public interface MyClass8

{
As above

}

Table 5-1: Translation of classes
Java construct Corresponding JGraph

74

5.5 Attributes

The translation of Java attributes to JGraph is trivial, as shown below:

public int i=0;

public boolean boo=true;

static int j=0;

5.6 Preprocessing

Because JGraph is a data flow language, there are some significant differences between its execution

model and that of Java. In particular, JGraph transmits data by data flow, while Java transmits data via

variables. Two different variables in Java may have the same name providing they do not have over-

lapping scopes; also, a Java variable may have a value assigned to it more than once during its lifetime.

Figure 5-2: A JGraph class window showing inheritance

Figure 5-3: Attribute list

75
In contrast a JGraph node can occur only once as a root, and receives a value only once. We deal with

these differences by preprocessing each Java method before translating to JGraph. Much of the pre-

processing is aimed at transforming the Java code such that the variables have the same characteristics

as roots.

5.6.1 Simplifying control structures

For simplicity, in the following discussion, we assume that any loop statements in the method are

while loops, since loops of other kinds can be translated into while loops in the obvious way.

Also, we will assume that all switch statements have been translated into conditional statements in the

obvious way.

5.6.2 Multiple declarations

To remove multiple declarations, we rename variables to ensure that each variable name is declared

only once, then we move the declarations to the beginning of the method body. If a variable is initial-

ized where it is declared, we decouple the declaration part from the initialisation part and move just

the declaration. The remaining initialisation becomes an assignment. By making sure that no variable

name is used more than once within a method, we obtain Java code in which the pattern of variable

use is similar to the pattern of occurrence of nodes in JGraph.

If a variable is declared as an array variable. we move the declaration part as discussed above. In Java,

an array variable may be initialised in its declaration using an array constant, consisting of a list of val-

ues enclosed in braces. Not only does Java not allow array constants in ordinary assignment state-

ments, but JGraph has no equivalent to array constants. So in order to obtain correct Java which is

similar in structure to JGraph, the single assignment using an array constant is replaced by a sequence

of assignments, one for each array element.

76

5.6.3 Embedded sequences of statements.

In Java, a statement in a sequence of statements can itself be a sequence of statements enclosed in

braces. If there are no local variables declared in such a nested sequence, then the nesting is unneces-

sary. After the above preprocessing step that deals with the removal of multiple declarations, all the

declarations of local variables are moved to the beginning of the method. As a result, no nested

sequence of statements will have local variables declared. Therefore, such sequences can be removed,

as follows.

Let S be a sequence of statements {S1, ..., Sn} occurring in the method such that some statement Si in

the sequence is also a sequence of statements, say {T1, ..., Tm}, then replace S in the method by {S1, ...,

S(i-1), T1, ...,Tm, S(i+1), ..., Sn} and repeat until there are no embedded sequences of statements

remaining.

Table 5-2: Sample of multiple declarations

Original code Preprocessed code

void MyMethod(boolean b)
{

if(b)
{

int n;
<body-t>

}else
{

byte n;
<body-e>

}

}

void MyMethod(boolean b)
{

int n;
byte n1;

if(b)
{

<body-t>
}else
{

<body-e1>
}

}

where <body-e1> is the same as <body-e>
except that each occurrence of n is replaced by
n1;

77

5.6.4 Method returns

In Java, a statement of the form "return E" in a non-void method, where E is some expression, causes

execution of the method to break, and the value of E to be returned to the calling procedure. If the

"return" occurs in the "try" or "catch" clauses of a "try-catch-finally" structure, executing the return

will cause a break to the "finally" clause. This pattern can be nested to any depth, in which case the

value returned by the method will be that computed by the last "return" statement executed.

A void method may or may not contain return statements. If it does, then it behaves as described

above except that it returns no value.

In contrast, since JGraph is data flow, each method must be executed to completion. Therefore,

before we import a Java program into JGraph, we preprocess it so that the method body has a specific

form and contains only one "return" statement.

First, a list of all return types of all methods in the program being translated is created, and for each

type in the list, an exception class is added to the program, as follows:

package MyPackage ;

import java.awt.*;

public class IRetExcep_T extends Throwable

Table 5-3: Sample of embedded sequences of statements.

Original code Preprocessed code

void MyMethod(boolean b)
{

<body-1>
{

int n;
<body-2>

}
<body-3>

}

void MyMethod(boolean b)
{

int n;
<body-1>
<body-2>
<body-3>

}

78
{

T RetResult;

public IRetExcep_T(T RetResult)

{

this.RetResult = RetResult;

}

 }

where we assume the return type of the method being dealt with is T and the package in which the

method occurs is MyPackage. If the method returns void, then we have a simpler definition for the

corresponding exception class as follows:

package MyPackage ;

import java.awt.*;

public class IRetExcep_void extends Throwable

{

 }

Assuming the classes for return types have been added, we now transform each method as follows.

Suppose the method is as follows, where T is the return type.

<qualifiers> T name(<parameters>)

{

<body>

}

Assuming T is not void, preprocessing produces the following:

<qualifiers> T name(<parameters>)

{

79
<newbody>

}

where <newbody> is obtained by replacing every statement of the form "return E;" in <body>, where

E is some expression, by "throw new IRetExcep_T(E);"

If T is void, the preprocessed code is as above except that E is the empty string in each of the throw

statements.

Note that if a method returns void, the code above should not contain T Result.

5.6.5 Unary increment and decrement operators

In Java, the unary operator ++ can occur as either a prefix operator or a postfix operator, and must

have a variable as its operand. The value of the expression ++x is the value of x+1; the value of x++ is

the value of x; and in both cases, the value of x after the expression is evaluated is the value of x+1.

The unary operator -- behaves analogously, except that it decrements its operand.

We preprocess the unary operators above by replacing all occurrences of ++x with (x = x + 1), and x++

with ((x=x+1)-1), and similarly for x-- and --x.

5.6.6 The operators +=, -=, /=, *=

We replace all the occurrences of expressions of the form x op= c, where op denotes one of the opera-

tors +, -, /, *, by x = x op c;

5.6.7 Condition of while loops and conditional statements

In Java, the condition of while loops and conditional statements could be either a boolean variable or

an expression. In order the deal with embedded assignments in the condition and exceptions that

might be thrown in the condition, which will be discussed in later sections, we preprocess it as fol-

lows:

1. If S = "if <condition> <body-t> else <body-e>"

80
 S is replaced by:

 S1 = "E = <condition>; if (E) {<body-t>} else {<body-e>}"

where E is a boolean variable. The declaration of E is added in the beginning of the method.

2. If S = "while <condition> <body> "

 S is replaced by:

 S1 = "E = <condition>; while(E) {<body-> E = <condition>;}"

where E is a boolean variable. The declaration of E is added in the beginning of the method.

5.6.8 Embedded assignments

In this step, we discuss the removal of embedded assignments; that is, assignment expressions that

occur as operands in other expressions. There are several good reasons for taking this step. Making

every assignment into a statement will simplify the process of removing multiple assignments dis-

cussed later. The translation of if-else and loops will be simpler as a result, since no variables will be

assigned values in the condition. The translation of Java variable-to-variable assignments into JGraph

will be simplified.

As we will explain, removing embedded assignments is accomplished by adding assignment state-

ments before the statement that contains the embedded assignment expressions. It is important,

therefore, that preprocessing step 5.6.2 has been done at this point since it moves all declarations to

the start of the method, guaranteeing that the new assignment statements added in this step follow

declarations of the variables to which they assign values.

In this step we iteratively transform a statement containing embedded assignment expressions by

replacing each embedded assignment by a new variable, introducing a preceding assignment state-

81
ment that sets the value of the new variable, and a following assignment statement that copies the

value of the new variable into the original variable. For example the statement:

z =(x = y*x)

would be expanded to:

x1 = y*x;

z = x1;

x = x1;

If a variable on the left of an embedded assignment appears elsewhere in the expression, then we have

to replace some of its occurrences in the expression with the corresponding new variable, and if there

are several embedded assignments in an expression, we need to be careful about the order in which

they are removed, and exactly which variable occurrences in the expression are replaced.

Assignment and method call statement

If embedded assignments occur in an assignment or method call statement, the process consists of

two steps.

1. Rewriting the statement

In Java, operands of an expression are processed left to right, except for the operands of = which

are processed in the opposite order. To make it easier to specify which variable occurrences get

 renamed in step 2, below, we transform the expression so that all operands are processed left to

 right. To do this, we replace every assignment expression x = A in the statement by the expression

A => x.

2. Expanding the statement

82
Suppose that after step 1, the statement has the form S0 A ⇒ x S1;, where at least one of S0 and

S1 is not the empty string, and S0 contains no occurrence of ⇒. Then the statement is replaced

by x1 = A; S0 x1 S1’; x = x1; where S1’ is obtained by replacing every x in S1 by a new variable x1

 of the same type as x. The declaration of x1 is added at the beginning of the method. This

process is repeated until no occurrences of ⇒ remain.

We illustrate the above process by considering the following example:

x = (x = 5*(y = 3)) + (x = y*x)

After step 1 above, the original statement is re-written to:

(5*(3 ⇒ y) ⇒ x) + (y*x ⇒ x) ⇒ x;

Applying step 2 repeatedly, results in the following sequence of transformations:

y1 = 3;

(5* y1 ⇒ x) + (y1*x ⇒ x) ⇒ x;

y = y1;

Note that we have removed superfluous parentheses in generating the above. The next expansion pro-

duces:

y1 = 3;

x1 = 5*y1;

x1 + (y1*x1 ⇒ x1) ⇒ x;

x = x1;

y = y1;

Finally we obtain:

83
y1 = 3;

x1 = 5*y1;

x2 = y1*x1;

x1 + x2 ⇒ x;

x1 = x2;

x = x1;

y = y1;

Since the original statement was an assignment, we must convert the last => into =, obtaining:

y1 = 3;

x1 = 5*y1;

x2 = y1*x1;

x = x1 + x2;

x1 = x2;

x = x1;

y = y1;

Note that because of section 5.6.7, there would be no assignments embedded in the condition of

while loops and conditional statement.

5.6.9 Missing else

As we will see below, each if-then-else statement in a Java program will be translated into a two-case

local operation. In Java, such conditional statements may have no else clause: however, in JGraph, to

obtain conditional behaviour, more than one case is required. To expedite their translation to JGraph,

therefore, an empty else clause is added to each if-then statement.

84

5.6.10 Exceptions

In Java, a value is assigned to a variable before an exception is thrown will be available in the code exe-

cuted after the exception, provided that this code is in the scope of the variable. In JGraph, however,

when control transfers out of the case where the exception is thrown the only values computed in the

case which will still be available are those passed as outputs from the case and those will be available

only in the finally case of the method, local or repeat to which the exception-throwing case belongs.

For that reason, in order to translate a Java program into JGraph, we need to rearrange the Java code

so that in the JGraph translation, a value assigned to a node before an exception is thrown will be

available in the computation conducted after the exception. The way we accomplish this rearrange-

ment is to locate each statement that may throw an exception, then replace it with code that will gen-

erate an appropriate exception without actually throwing it, and avoid executing code that would not

have been executed if an exception had been thrown in the original code. The exceptions created are

assigned to a variable, which is declared at the beginning of the method to be of type Throwable, and

used to throw an exception, if necessary, only at the end of the method. In this way we reduce all the

various throws to assignments to the variable declared.

Firstly, we declare at the beginning of the method a new variable v of type Throwable, then we define

a function STRIPTHROW which operates on statements and sequences of statements to replace all

exception throwing by assignment to v.

Let S be a sequence of statements, then:

STRIPTHROW(S)=








S1; STRIPTHROW(x1); if(v == null) {STRIPTHROW(S2)}
if S = S1; x1; S2 where S1 is a sequence of statements that cannot throw

 exceptions, and x1 is a statement that may throw exceptions.

S if S cannot throw exceptions.

85
If S is a void expression or an assignment, and S may throw exceptions, then

STRIPTHROW(S) = try{S; v = null;} catch(Throwable e) {v = e;}

If S is a conditional statement that may throw exceptions, say S = if (E) {<body -t> } else {<body-e>}

where E is a boolean variable, then:

STRIPTHROW(S) = if (E){STRIPTHROW(body-t)} else{STRIPTHROW(body-e)}

If S is a throw statement, say S = throw T;, then

STRIPTHROW(S) = “v =T;”

If S is a while loop statement, say S = while (E) {<body>} where E is a boolean variable, then:

STRIPTHROW(S) = while (E){STRIPTHROW(<body>)}

If S is a try-catch-finally statement, let

S = try{<body-t>} catch(E1 e1){<body-c1>} catch(E2 e2){<body-c2>}...

 catch(Em em){<body-cm>} finally{<body-f>}

then:

STRIPTHROW(S) = STRIPTHROW(<body-t>) if (v != null){

if (v instanceof E1) {e1 = v; v =null; STRIPTHROW(<body-c1>)}

else if (v instanceof E2){e2 = v; v =null;STRIPTHROW(<body-c2>)}...

else if (v instanceof Em){em = v; v =null;STRIPTHROW(<body-cm>)}else{}}else{}

STRIPTHROW(<body-f>)

Note that if a try-catch-finally does not contain a finally clause, STRIPTHROW(<body-f>) would not

occur in the above.

Using STRIPTHROW, we transform the body, <body> of the method M. First we define a function

THROWS to deal with throws clause of M, as follows:

86

If M is non-void and returns value of type T, we replace <body> by

STRIPTHROW(<body>);THROWS(M) return ((IRetExcep_T)v).RetResult;

If M is void and has a throws clause, we replace <body> by

STRIPTHROW(<body>);if (v != null) THROWS(M) else{}

Otherwise, we replace <body> by STRIPTHROW(<body>).

THROWS(M)=











if(v instanceof p1) throw (p1) v;
else if(v instanceof p2) throw (p2) v;...
else if(v instanceof pn) throw (pn) v;
else{}

if the declaration of M includes the clause throws p1 , p2 ...pn for some n > 0

ε if M has no throws clause.

87
This process is illustrated by the example as follows.

5.6.11 Isolating variables.

In JGraph, conditionals are dealt with by multi-case locals, loops by repeat operations, and exception

handling by multi-case locals. Each of these structures involves cases with their own roots, different

Code after step 5.5.8 Preprocessed code

String MyMethod(boolean b) throws E3
{

try
{

if(b)
throw new E1();

else
throw new E2();

}catch(E1 e1)
{

System.out.println(“E1 is
thrown”);

throw new E3();
return “Hello World”;

}catch(E2 e2)
{

System.out.println(“E2 is
thrown”);

}finally
{

System.out.println(“finally is
 reached”};
}

}

where E1, E2, E3 are three different exception
types.

void MyMethod(boolean b) throws E3
{

Throwable v;
if(b)

v = new E1();
else

v = new E2();
if(v != null)

if(v instanceof E1)
{ e1=v;

v = null;
System.out.println(“E1 is

 thrown”);
v = new E3();

}else
if(v instanceof E2)
{

e2 = v;
v = null;
System.out.println(“E2 is
thrown”);

}
{

System.out.println(“finally is
reached”};

}
} else{}
if(v instanceof E3)

throw (E3)v;
else
{
}
return ((IRetExcep_T) v).RetResult;

}

88
from the roots in the enclosing case. In Java, on the other hand, the variables that occur in loops, if-

then-else statements and try-catch-finally statements can also occur outside. Consequently, in this

preprocessing step, we transform the Java code by introducing new local variables into these struc-

tures, different from variables occurring outside them.

If R is a variable then R is external to a statement if it is not an attribute of the class of the method and

has an occurrence in the method which is not in the statement.

Let X be the set of all variables that are external to but occur in a statement S where S is a loop, if-

then-else or try-catch-finally statement., and for each x in X, let x’ be a new variable; then the declara-

tion "T x’ ;" is added to the beginning of the method, and S is replaced by SN as follows.

Note that the preprocessing step as described in section 5.6.10 guarantees that there is no finally

clause in the method body, every catch case is in the particular form catch(E e){ v = e;}, and there is no

more than one catch case in any try-catch statements.

1. If S = "if <condition> <body-t> else <body-e> "

 S is replaced by:

 S1 = "IN if <condition1> {<body-t1> OUT} else {<body-e1> OUT}"

 where

• if x is assigned a value in <body-t> or <body-e> then OUT is the statement

"x = COPY(x’) ;" and otherwise OUT is the empty string.

• <condition1>, <body-t1> and <body-e1> are obtained by replacing all occurrences of

 x by x’ in <condition>, <body-t> and <body-e> respectively.

• if x occurs in <condition>, or x is used before it is assigned in <body-t> or in

<body-e>, or x is assigned in <body-t> but not in <body-e> or vice versa, then IN is

the statement "x’ = COPY(x) ;" and otherwise IN is the empty string.

89
 This process is repeated for all the variables in X, obtaining SN.

Each assignment statement that includes the function COPY is a value passing statement that essen-

tially does a variable-to-variable assignment, but corresponds to the transmission of a value between

the outside and the inside of a JGraph entity, for example, from a terminal on the outside of a local to

the corresponding input bar root on the inside. Although value passing statements are Java assign-

ments, in the final translation to JGraph, they will be treated differently from variable-to-variable

assignments. Note that the Java code that results from the introduction of these value passing state-

ments can not be correct since the function COPY is undefined, and in fact could not be defined

since it applies to variables of any type. However, if every value passing statement is replaced by an

assignment, the code will be correct.

This process is illustrated by the example below.

Code after step 5.5.9 Preprocessed code

void MyMethod(boolean b)
{

int i=0;
int k=-1;

if(b)
{

int n = i;
<body-t>

}else
{

int m = k;
<body-e>
k = m;

}

}

Assuming that i is not assigned
a value anywhere in <body-t>

void MyMethod(boolean b)
{

int i’;
int i=0;
i’ = COPY(i);
k’ = COPY(k);
if(b)
{

int n = i’;
<body-t’>
k = COPY(k’);

}else
{

int m = k’;
<body-e’>
k’ = m;
k = COPY(k’);

}
}

90
2. If S = "while <condition> <body>"

 S is replaced by:

 S1 = " IN while <condition1>{ <body1> OUT}

 where

• if x occurs in <condition> or is used before it is assigned in <body> then IN is the

statement "x’ = COPY(x) ;" and otherwise IN is the empty string.

• if x is assigned a value before it is used in <body> then OUT is the statement

"x = COPY(x’) ;". Otherwise, if x is both used and assigned and is used before it is

 assigned a value in <body> then OUT is "LP(x’) ; x = COPY(x’);". Otherwise OUT is

the empty string.

• <body1> is obtained by replacing all occurrences of x by x’ in <body>.

• <condition1> is obtained by replacing all occurrences of x by x’ in <condition>

 This process is repeated for all the variables in X, obtaining SN.

The function LP identifies variables in Java that will correspond to the loop terminals and loop roots

of a repeat operation in JGraph. Note that the Java code that results from the introduction of the loop

function LP cannot be correct since LP is undefined, and in fact could not be defined since it applies

to variables of any type.

This process is illustrated by the example below.

91

3. If S = “try <body> catch(E e) {<body-e>}”, S is replaced by:

 S1 = “IN try {<body-1> OUT} catch (E e){ <body-e> OUT}”

 where

• if x is used before it is assigned in <body> then IN is the statement “x’ = COPY(x) ;”

 and otherwise IN is the empty string.

Code after step 5.5.9 Preprocessed code

void MyMethod(boolean b)
{

int i = 0;
while(b)
{

i += 1;
System.out.println(i);
if(i == 100)
{

b = false;
}else
{}

}
}

void MyMethod(boolean b)
{

int i’;
boolean b’;
boolean b”;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b” = false;
b’ = COPY(b”);

}else
{

b’ = COPY(b”);
}
i = COPY (i’);
LP(b’);
b = COPY(b’);

}

}

92
• if x is assigned a value in <body>, or x is v then OUT is the

statement "x = COPY(x’) ;". Otherwise, OUT is the empty string.

• <body-1> is obtained by replacing all occurrences of x by x’ in <body>.

 This process is repeated for all the variables in X, obtaining SN.

Note that <body> is not possibly in the form “throw T;” since it has been eliminated in section

5.6.10.

This process is illustrated by the example below.

5.6.12 Removing multiple assignments

Since JGraph is a data flow language each of its "variables", that is, roots, can be assigned a value only

once. This property of data flow languages is called single assignment. In Java, however, a variable can,

in general, be assigned a value more than once. So we need to modify a given Java program to remove

multiple assignments.

Code after step 5.5.9 Preprocessed code

......
int i = 0;
int n = 100;
try
{

S;
v = null;

}catch(E e)
{

v = e;
}

where E is an Exception type, S is a statement
that may throw an exception of type E. Assum-
ing that variables i and n are used in S.

......
int i = 0;
int n = 100;
n’ = COPY(n);
i’ = COPY(i);
try
{

S’;
v = null;

}catch(E e)
{

v = e;
}.

where S’ is the same as S except that each occur-
rence of n and i are replaced by n’ and i’.

93
Step 5.6.2 guarantees that all variables in a method are uniquely named and therefore makes it easy to

identify multiple assignments since two assignments to variables of the same name must, in fact, be

assignments to the same variable. Also, in looking for multiple assignments, we can restrict our atten-

tion to assignment statements since embedded assignment expressions were removed in step 5.6.8.

We also note that because of step 5.6.9, every conditional statement has an else clause.

We say that two assignment statements in a method are compatible iff the variables being assigned are

different, or the assignments are in different clauses of a try-catch statement or an if-then-else state-

ment; otherwise the two assignments are incompatible.

 Let the body of the method be S1 “x = A;” S2 “x = B;” S3, where the two assignments are

 incompatible.

 The method body is replaced by S1 “x = A;” S2 “x1 = B;” S3’, where S3’ is obtained by replacing each

 occurrence of x in S3 by x1 except that wherever LP(x) occurs in S3 , it is replaced by

 LOOP(x, x1), where x1 is a new variable of the same type as x. The declaration of x1 is added to

 the beginning of the method. The process is repeated for all the multiple assignments until it no

 longer applies.

This process is illustrated by the example below.

Like LP, LOOP identifies variables in Java that will correspond to the loop terminals and loop roots of

a repeat operation in JGraph, and like LP , LOOP could not be defined since it applies to variables of

any type. However, if LOOP(x, x’) is replaced by the assignment x = x’, the code will be correct.

94

5.6.13 Variable to variable assignments

We remove all assignments of the form x = y, where x and y are variables, and replace every occurrence

of x by y.

Code after step 5.5.10 Preprocessed code

void MyMethod(boolean b)
{

int i’;
boolean b’;
boolean b”;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b” = false;
b’ = COPY(b”);

}else
{

b’ = COPY(b”);
}
i = COPY (i’);
LP(b’);
b = COPY(b’);

}

}

void MyMethod(boolean b)
{

int i’;
int i”;
boolean b’;
boolean b”;
boolean b1;
boolean b2;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b1 = false;
b2 = COPY(b1);

}else
{

b2 = COPY(b”);
}
i = COPY (i’);
LOOP(b’, b2);
b = COPY(b2);

}

}

95

5.7 Methods and Constructors

Here we illustrate how Java methods and constructors are translated into JGraph by considering a

class with several methods and one constructor. Here we are not dealing with the translation of the

method bodies, so we have omitted them from the Java code, and show only those JGraph windows

that correspond to the explicit parts of the Java code.

Some of the corresponding JGraph windows are shown in Figure 5-4. To avoid repetition, the details

of parameters and exceptions are shown for only one method.

MyClass(int i, boolean boo)
{

<expressions; section 5.8.1>

<controls; section 5.9.1, 5.9.2, 5.9.3>
<assignments; section 5.8.2>

}

int MyMethod1(int i, boolean boo) throws IOException
{

As above

}

public String MyMethod2(boolean boo)
{

As above

}

protected void MyMethod3(void) throws Exception
{

As above

}

private int MyMethod4(boolean boo)
{

As above

}

96

5.8 Expressions

In this section we will address the translation of expressions, where an expression is built using the

standard Java operators including assignment. We ignore declarations since they have no representa-

tion in the corresponding JGraph except as types of roots.

Since JGraph is a dataflow language, it does not in general have assignments like Java since there are

no variables. There is an exception to this general rule though, which is when the left-hand side of an

assignment is an expression that represents an attribute of an instance. In this case JGraph actually

performs an assignment in much the same way as Java. So first we will deal with Java expressions that

do not involve assignments, then consider assignment expressions. All Java expressions either return

Figure 5-4: JGraph methods corresponding to Java

97
one value or no value. We will refer to these two categories as “non-void” and “void” respectively. In

all examples of non-void expressions, we will identify the root in the corresponding JGraph structure

that provides the value of the expression.

In Java, a variable is an expression. Since JGraph has no variables, there is no direct representation in

JGraph of a Java expression that is simply a variable. In Java, however, a variable cannot occur as an

expression unless it has been assigned a value. So the root which corresponds to an expression which is

simply a variable is the root of the expression that provides the value for the variable.

In the following discussion, we will use fuzzy blobs to represent JGraph structures equivalent to Java

expressions and statements. So if X is a Java expression, then represents the correspond-

ingJGraph structure. If a fuzzy blob represents a non-void expression, then there will be a unique root

on some operation in it that corresponds to the expression in the sense that the value for the expres-

sion will be produced at that root. Since variables can be assigned within a Java expression, so within a

corresponding fuzzy blob there will be other roots corresponding to these assigned variables.

5.8.1 Expressions which are not assignments

Table 5-4: Examples of translating functional expressions
Java Expression Corresponding JGraph

Name()

where Name refers to a
void method

Name()

where Name refers to a
non-void method where the root corresponds to the expression.

Name(T1,T2)

where Name refers to a
void method and T1 and
T2 are expressions

98

Name(T1,T2)

Where Name refers to a
non-void method and T1
and T2 are expressions

where the root of the operation Name corresponds to
the expression.

T1.Name(T2,T3)

where Name refers to a
void method and T1, T2
and T3 are expressions

T1.Name(T2,T3)

Where Name refers to a
non-void method and T1,
T2 and T3 are expressions

where the root of the operation Name corresponds to
the expression.

super.Name(T1,T2)

where Name refers to a
void method and T1 and
T2 are expressions

super.Name(T1,T2)

Where Name refers to a
non-void method and T1
and T2 are expressions

where the root of the operation Name corresponds to
the expression.

Table 5-4: Examples of translating functional expressions
Java Expression Corresponding JGraph

99

Table 5-5: Examples of translating operator expressions
Java Expression Corresponding JGraph

T1 + T2
where T1 and T2 are expressions

where the root of the operation + corresponds to the expression.

T1+T2+T3
where T1, T2 and T3 are expres-
sions

where the root of the operation + corresponds to the expression.
Note that associative binary operations like + can have any num-
ber of inputs.

T1 ? T2 : T3
where T1, T2 and T3 are expres-
sions

where the root of the operation ?: corresponds to the expression.

Table 5-6: Object Get
Java Expression Corresponding JGraph

Name

where Name refers to an
attribute

where the root corresponds to the expression.

100

T.Name

where Name refers to an
attribute and T is an expression

where the root of the operation Name corresponds to the
expression.

super.Name

where Name refers to an
attribute

where the root corresponds to the expression.

T[5][7]

where T is an expression

where the root of the operation corresponds to the expression.

T[T1]

where T and T1 are expressions

where the root of the operation corresponds to the expression.

Table 5-7: Allocations
Java Expression Corresponding JGraph

new Name(T1,T2)

where Name refers to a class

where the root of the operation Name corresponds to the
expression

Table 5-6: Object Get
Java Expression Corresponding JGraph

101

5.8.2 Assignment expressions

In Java an assignment expression has the form X=Y, where Y is an expression and X is either a variable

which is not an attribute of a class, or an expression that evaluates to an attribute of an instance or an

element of an array. Since JGraph is data flow, it has no variables, and therefore, no construct equiva-

lent to Java’s assignment to a variable. The use of a variable after it is assigned in Java will be repre-

sented in JGraph by a data link connecting the root corresponding to the expression that provides the

new Name()

where Name refers to a class
where the root corresponds to the expression

new foo[5][7]

where foo refers to a class or type
where the root corresponds to the expression

new foo[T]

where foo refers to a class or type
and T is an expression

where the root of the operation corresponds to the expression

Table 5-8: Constants
Java Expression Corresponding JGraph

“Hello”

where the root corresponds to the expression.

Table 5-7: Allocations
Java Expression Corresponding JGraph

102
variable its value, to a terminal in the JGraph structure corresponding to the expression in which the

variable is used.

The second kind of JGraph assignment, in which the left hand side is an expression that evaluates to

an attribute of an instance or element of an array, corresponds to a set operation in JGraph. The vari-

ous possibilities are illustrated below:

Table 5-9: Object Set and Array Set
Java Expression Corresponding JGraph

Name=T

where Name refers to an
attribute and T is an expression

T[5][7]=T1

where T and T1 are expressions

T1[T2]=T3

where T1, T2 and T3 are expres-
sions

T1.Name=T2

where Name refers to an
attribute and T1 and T2 are
expressions

super.Name=T

where Name refers to an
attribute and T is an expression

103

5.8.2.1 General example:

The following example provides a more comprehensive example of the translation of expressions:

x.b.a = Func(Z);

5.8.3 Bodies of methods and control structures

After the preprocessing steps, the body of each Java method, and the body of each control structure

consists of a sequence of statements each of which is one of the following:

• Void expression

• Assignment expression

• Declaration

• Control structure

If a method has a throws clause, it will have a conditional statement at the end of its body, in which

exceptions of the types specified in the clause are thrown. After preprocessing, these will be the only

throw statements in the method. The translation of Java expressions to JGraph has been discussed

above in general, and therefore, void expressions have been dealt with. The translation of assignment

expressions has been covered in section 5.8.2. Declarations produce no corresponding JGraph struc-

tures. The translation of control structures will be covered in section 5.9. Hence, it remains in this

section to describe how a sequence of statements is translated.

Figure 5-5: A general example

104
We will describe the translation of a sequence of statements in a recursive fashion. First, the empty

sequence of statements produces no JGraph structures. Now consider a non-empty sequence S ; Y

where S is the first statement and Y is the remainder of the sequence. Figure 5-6 shows the corre-

sponding JGraph structure. Each connection indicates that a value produced in the structure repre-

sented by blob S is used in the structure represented by blob Y. Note that because of preprocessing

step 5.6.12 above, there are no multiple assignments in the method, so the root at the tail of the con-

nection is uniquely defined.

5.8.4 Method

The following example illustrates the translation to JGraph of Java methods that are not void. After

the preprocessing described in section 5.6.4 for method returns and the preprocessing steps described

in section 5.6.10 for try-catch-finally statement, the method has the following form.

public int MyMethod(int param1, String param2) throws E

{

Throwable v;

Throwable v1;

......

<body>

v1= COPY(v);

Figure 5-6: A general example of translating statements

105
if (v1 instanceof E)

{

throw (E) v1;

} else

{

}

return ((IRetExcep_int) v).RetResult;

}

The corresponding JGraph is as follows::

The roots on the input bar correspond to the parameters of the method. The terminal on the output

bar corresponds to the return value. The terminal on the local operation LocThw corresponds to v.

Figure 5-8 depicts the cases of the local operation LocThw resulting from translating the conditional

statement in the above code as described in section 5.9.1 below. The root on the input bars of the

cases corresponds to v1.

Figure 5-7: JGraph method obtained from a non-void Java method that throws exceptions

106

The following example illustrates the translation to JGraph of void Java methods. After the prepro-

cessing described in section 5.6.4 for method returns and the preprocessing steps described in section

5.6.10 for try-catch-finally statements, the method has the following form.

public void MyMethod(int param1, String param2) throws E

{

Throwable v;

Throwable v1;

......

<body>

v1 = COPY(v);

if(v1 !=null)

{

if (v1 instanceof E) throw (E) v1;

else{}

Figure 5-8: The cases of local methods of MyMethod

107
}else{}

}

The corresponding JGraph is as follows:

Note that in the examples above, if the method does not throw exceptions to its caller, that is, it is not

declared with a throws clause, the local operation LocThw would be omitted.

Figure 5-10 depicts the cases of the local operation LocThw resulting from translating the conditional

statement in the above code as described in section 5.9.1 below. The root on the input bars of both

cases corresponds to v1 .

Figure 5-9: JGraph method obtained from a void Java method that throws exceptions

108

5.9 Control structures

5.9.1 If statements

Consider the following conditional statement and associated value passing statements preceding it,

resulting from preprocessing step 5.6.11.

x1 = COPY(x);

y1 = COPY(y);

z1 = COPY(z);

if(z1)

{

<body1>

u = COPY(u1);

v = COPY(v1);

}

else

{

<body2>

Figure 5-10: The cases of local methods of MyMethod

109
u = COPY(u2);

v = COPY(v2);

}

Figure 5-11 above shows that the if statement is translated into a local operation that consists of two

normal cases. The terminals on the local operation correspond to the variables x, y, z respectively; the

roots on the local operation correspond to the variables u and v, respectively; the roots on the input

bars correspond to the variables x1, y1 and z1 respectively; the terminals on the output bar of the first

case correspond to the variables u1 and v1, respectively; and the terminals on the output bar of the

second case correspond to the variables u2 and v2, respectively. The first case contains JGraph struc-

tures obtained by translating <body1>, together with a match operation that tests the condition of the

if-then-else, reduced in step 5.6.7 to a single variable. The second case contains the JGraph structures

obtained by translating <body2>. Note that the output bar terminals in each case are guaranteed to be

connected into the blobs since the variables corresponding to the output bar terminals are those

which are assigned values that are used outside the conditional structure, and are identified by the

value passing statements at the ends of the if and else bodies.

Figure 5-11: Translation of if-else structure

(b) (c)(a)

110

5.9.2 While statements

Consider the following while loop statement and associated value passing statements preceding it,

resulting from preprocessing step 5.6.11.

x1= COPY(x); y1 = COPY(y);

while(x1)

{

<body>

LOOP(x1, x2); x3 = COPY(x2);

LOOP(y1, y2); y3 = COPY(y2);

z3 = COPY(z2);

}

The while loop is translated into a JGraph repeat operation, shown in Figure 5-12 (a), which has one

case, depicted in Figure 5-12 (b). The terminals of the operation correspond to x, y; the roots of the

operation correspond to x3, y3 and z3 respectively; the roots on the input bar correspond to x1 and y1

respectively, the terminals on the output bar correspond to x2, y2 and z2 respectively.

(a)

Figure 5-12: Translation of while loop

(b)

111
Note that after preprocessing the only loops remaining in the Java code are while loops.

5.9.3 Try-catch structure

Consider the following try-catch statement and associated value passing statements preceding it,

resulting from preprocessing step 5.6.11.

x1 = COPY(x);

u1 = COPY(u);

z1 = COPY(z);

try

{

u2= A;

v1 = null;

v = COPY(v1);

u3 = COPY(u2);

}catch(Throwable e)

{

v = COPY(e);

u3 = COPY(u1);

}

We assume that in the code above, the variables x1 and z1 are the only variables occurring in A.

Note that the only try-catch structures that remain after preprocessing are those resulting from pre-

processing step 5.6.10, so the original body of the try clause can only contain either an assignment or

a void expression. If the try body contains a void expression, then the u1 = COPY(u), u3 = COPY(u2

), and u3 = COPY(u1) statements above would not be present.

112

Figure 5-13 (a) depicts the JGraph local resulting from the Java try-catch statement, consisting of the

try case in (b) and catch case in (c).The terminals of the local operation correspond to the variables x,

y and z respectively; the roots of the local operation correspond to the variables v and u respectively.

The roots of the input bar correspond to the variables x1, y1 and z1 respectively; the terminals of the

output bar on Figure 5-13(b) correspond to v1 and u1 respectively; and the terminals of the output

bar on Figure 5-13(c) correspond to e and y1 respectively.

<Dr. cox, since the next section is pretty much stand alone, I will make sure the JGraph code is correct

regarding the preprocessing steps in this weekend>

5.10 A comprehensive example

In this section, we illustrate the translation process on an example, a method that bubblesorts an inte-

ger array, which demonstrates many of the features of the transformations we have described.

void BubbleSort(int [] a)

{

int i, j, n, tmp;

n = a.length;

Figure 5-13: Translation of try-catch structure

(a) (b) (c)

113
for(i = 0; i < n-1; i++)

{

for(j = 0; j < n-1-i; j++)

if(a[j + 1] < a[j])

{

tmp = a[j];

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

The JGraph program corresponding to the program above is shown in Figure 5-14. For simplicity, we

will not present the preprocessed code.

114

Figure 5-14: Bubble

115

5.11 Conclusion

In this chapter we have discussed the process of translating from Java to JGraph. It would be difficult

in any reasonable amount of space to give examples that cover all combinations of features. We hope,

however, that the examples we have provided will help the reader understand some of the more subtle

aspects.

In the next chapter, we will conclude our discussions by informally comparing the features of Java and

JGraph programs generated by the two translations.

116

6 Conclusions and Future Work

6.1 Introduction

Although visual programming has been extensively studied for twenty years or more and has been

shown to have substantial benefits, it has not been adopted to any great extent by the industrial soft-

ware development community. The work reported here is part of a larger project, the goal of which is

to build a general purpose visual programming environment that adheres to the Java standard. In ear-

lier work, a visual language JGraph was designed, and as background to the work reported here, a pro-

totype has been implemented.

In order for a Java-compatible visual language to be part of mainstream software engineering, various

tools will be required. For example, a programmer needs to be able to move easily between textual and

visual representations of a program. We have conducted a preliminary investigation of the problem of

translating between JGraph and Java.

In order to provide a firm foundation for describing a translation from JGraph to Java, in Chapter 3

we presented a formal definition of JGraph syntax, and gave examples to illustrate its connection to

the visual representation. In Chapter 4, we defined a function that maps correct JGraph programs,

expressed in the notation of Chapter 3 into equivalent Java, again illustrated by examples.

In Chapter 5 we address the problem of translating Java to JGraph. Because of JGraph’s data flow fea-

tures, in order to turn Java programs, which are typical control flow programs, into data flow pro-

117
grams, we introduced several preprocessing steps before the final translation into JGraph. These steps

are illustrated with a series of examples.

In this chapter, we compare Java and JGraph for both similarities and differences, and how these have

affected the two translations we have described. We also provide an assessment of our results in terms

of how well they achieve the goal of allowing a programmer to easily move between visual and textual

programming. Finally, we will suggest some possible future directions for this work.

6.2 Comparison of Java and JGraph

In this section we will ignore the obvious major difference between JGraph and Java, namely, that one

is visual and the other textual. Although some of the more substantial structural differences we will

discuss below are due to this difference in the mode of representation, it is the structural differences

that concern us, rather than the reason that they arise.

First we note the ways in which the two languages are similar. In Java and JGraph, the concepts of

package and class are identical. Classes and interfaces in both languages have the same qualifiers in the

same combinations; attributes have the same qualifiers. Items can be imported from other packages.

The concept of method is also identical in both Java and JGraph. A method must have a name and a

parameter list which may be empty. If the method is not the constructor of a class, it must have a

return type which may be void. For Java and JGraph, a method can be declared with the same qualifi-

ers in the same combinations.

Both Java and JGraph provide exceptions, which can be thrown anywhere, and can be handled by a

try-catch-finally structure. In both languages, an unhandled exception must be explicitly thrown by

the method in which the throw occurs. To this extent, the two languages provide the same exception

throwing and handling capabilities via structures that are essentially similar. However,because of the

interaction of exception handling and data flow in JGraph, there are some significant differences as

well, which we will discuss later in this section.

118
As we know, JGraph is a data flow programming language and Java is control flow. In data flow, exe-

cution of a program is primarily driven by the flow of data through a network of processing elements,

together with superimposed control structures for conditional execution, looping and so forth. In

contrast, in a control flow language, execution is driven by stepping through a sequence of statements.

The superimposed control in JGraph is achieved by enclosing diagrams in cases, sequences of which

make up the bodies of methods and control structures. These properties of JGraph have two impor-

tant consequences. First, each node, which corresponds to a variable in a textual language, can be

assigned a value only once; and second, the scope of a node is limited to the case in which it occurs, so

the only values that come out of a case are those that are passed through the output bar, when or if

execution of the case completes. On the other hand, a variable in Java can be assigned a value multiple

times and its scope is the block in which it is declared, including inside nested statements. Although

these differences are apparently minor, they lead to major structural differences between equivalent

programs in the two languages.

In Java, a method body does not have to execute to completion since a return statement can appear-

anythere. In JGraph, however, one case of a method body must be executed to completion.

In JGraph, conditional execution is accomplished by sequence of cases, executed in order until one

finishes. The computing of conditions is mixed with other computations in each case, and control can

jump from anywhere in a case to the next case. In contrast, in Java conditions and computations are

separate, so once the commitment has been made to execute either the then or the else part of an if-

then-else, it will be executed to the end, barring exception throwing or returning.

In JGraph, iteration of execution is handled by the repeat operation. The computing of conditions is

mixed with other computations in cases of a repeat, so if evaluating a condition causes a terminate

control to fire, iteration stops immediately without finishing execution of the case. A repeat can have

array inputs, indicating that successive iterations apply to successive array elements. Array inputs also

provide loop control since iteration stops if an array input is exhausted. In Java, there are several forms

of loop statement such as while, do-while and for. Conditions and computations are separate, so once

119
the commitment has been made to execute loop body, it will be executed to the end, unless a return

statement is encountered or an exception thrown.

In JGraph there are two ways an exception can be thrown in a case, by a method call or by an excep-

tion terminal on the output bar of the case. If exceptions are thrown in a method call, execution of the

case is terminated so all results computed in the case will be lost. If an exception is thrown at the out-

put bar, however, values of output bar terminals are available to the associated finally case. In Java,

however, exceptions can be thrown anywhere in a try clause, and any value computed for a variable is

available to the associated catch and finally clauses, provided they are within the scope of the variable.

Because JGraph is data flow, and is expressed visually, there is no strict linear order of execution

imposed by the way a program is drawn, unless the programmer forces a particular execution order

using synchros. In Java there is a strict linear order imposed by the order of statements, even though it

may be possible to reorder statements without changing the meaning of the program. This difference

between the two languages does not result in any significant structural differences between equivalent

programs.

6.3 Characteristics of Java generated from JGraph and vice versa.

In JGraph, changes in the normal progression of execution through a data flow diagram are accom-

plished by controls, which cause abrupt termination of execution and transfer of control elsewhere. To

mimic this in Java, we have had to resort to exception throwing. Hence the generated Java code relies

heavily on the exception mechanism for ordinary control flow, and contains the special extra classes

needed to accomplish this.

A Java program generated from JGraph will contain a large number of variables resulting from single

assignment and the fact that in JGraph variables are local to cases.

During translation of a Java program to JGraph, try-catch-finally statements are largely eliminated

and replaced by conditionals. Some try-catch structures are reintroduced to deal with exceptions in a

120
very localised fashion. The end result is that in the JGraph code, there will be no finally cases, and

each catch case simply outputs the caught exception. Any normal case that may throw an exception

contains at least one operation that calls a method that may throw an exception, but has no exception

root on its output bar. Finally, the only place an exception terminal may occur is on the output bar of

the case of a method. Note that every method will have exactly one case.

The generated JGraph will include exception classes declared for holding the return values of meth-

ods, the exception classes will be imported to JGraph too as additional classes. The number of excep-

tion classes could be big if a project has many methods with many return types.

There are various other trivial characteristics of a JGraph program generated from Java. For example,

the conditions of conditional statements and loops are just variables, and the repeat operations do not

have any array inputs.

6.4 Assessment of the translations

Although we have solved the problems of transforming JGraph programs into Java and vice versa in

the previous chapters, the translations are not just inverses of each other. We have not shown an exam-

ple of applying the two translations end-to-end, however, it should be obvious to the reader that

doing so will produce code that is quite different from the original, regardless of whether we start with

a Java program or a JGraph program. An example of this non-reversibility is as follows.

When a JGraph program is translated to Java, a sequence of cases in the original program corresponds

to nested try-catch-finally statements in the resulting Java program. During the reverse translation,

these nested try-catch-finally statements are replaced by nested if-then statements, each of which

becomes a two-case local operation. If the original sequence consisted of more than two cases, then it

will not be the same as the final JGraph obtained after two translations, since it has case sequences of

length at most two. Even if the sequence of cases in the original JGraph had only two cases, translat-

ing to Java and back does not produce the same code, as the following example shows. Note that for

121
simplicity we have not included the value-passing statements generated in step 5.6.11 in the example

code.

Figure 6-1 shows the case windows of a two-case local operation Local. The Java code resulting from

translating Local is as follows:

{

boolean bl;

<other declarations>

try

{

bl = op1();

if (!bl) throw new ICaseException();

op2();

}catch(ICaseException e)

{

Figure 6-1: The cases of a local operation

122
}

}

which will be transformed, by applying preprocessing steps as described in Chapter 5, into the code

below before it is translated back into JGraph again:

<declarations>

bl = op1();

if (!bl)

{

v = new ICaseException();

}else{}

if(v==null)

{

op2();

}else {}

if(v != null)

{

if(v instanceof ICaseException)

{} else{}

}else{}

We can see that the original two-case local has turned into three conditional statements, each of which

will become a two-case local after translation into JGraph.

Because of the major differences between JGraph and Java discussed in section 6.2 above, both trans-

lations introduce special mechanisms and structures, resulting in code that would not be written by a

programmer proficient in the target programming language. For example, a Java programmer is

unlikely to write code which embodies the single assignment rule of data flow and achieves condi-

123
tional execution by throwing exceptions. Similarly, a proficient JGraph programmer is unlikely to cre-

ate a program in which exception throwing and handling is replaced by deeply nested conditional

statements.

One question which arises naturally from the above discussion is the following. If we translate back

and forth several times, does the process iterate towards some fixed point? The answer to the question

is clearly negative, as illustrated by the above example, where each round of translations multiplies the

number of two-case locals by three. The size of the code therefore increases at each step so no fixed

point exists.

6.5 Future work

The goal of the JGraph project, of which the research reported here is a part, is to bring the benefits of

visual programming to industrial software development. The success of this project depends on adher-

ing to a standard. Although JGraph is compatible with Java, for it to be acceptable to professional

developers, some mechanism is necessary to allow easy transition back and forth between visual and

textual representations of a program.

As background to the research reported here I have implemented a prototype JGraph editor, and

experimented with translating between between Java and JGraph. Based on that experience, I have

defined two translations and assessed their usefulness in terms of the overall goals of the project.

As discussed in section 6.3, the two translations are not inverses of each other, and although the code

produced by each is correct, it is not of the quality a proficient programmer would produce. An

important question to be addressed, therefore, is whether reversible tranformations, producing better

quality code, can be devised. This may require changes to the design of JGraph. On the implementa-

tion side, the prototype should be extended to include features of JGraph not currently supported,

and to serve as a test bed for improved translations.

124

References
[1] Ambler. A. L & Burnett M. M., Influence of Visual Technology on the Evolution of Language

Environments, ieeec, Vol 22, Issue 10, (Oct1989), pp. 9-22.

[2] Brassard G. & Bratley P., Fundamentals of Algorithmics, Prentice Hall, (1996).

[3] Booch G., Jacobson I., & Rumbaugh J., The Unified Modeling Language User Guide, Addison

Wesley Professional, (1999).

[4] Booch G., Object Oriented Design: with applications, The Benjamin/Cummings Publishing

Company, Inc., (1991).

[5] Burnett M. M. , Visual Programming. Encyclopedia of Electrical and Electronics Engineering

(John G. Webster, ed.), John Wiley & Sons Inc., New York, (1999).

[6] Carrel-Billiard M & Akerley J., Programming with VisualAge for Java, IBM Redbook, (1998).

[7] Golin E. J. & Reiss S. P., The Specification of Visual Language Syntax, IEEE Workshop on Visual

Languages, (1990), pp.105-110.

[8] Coskun N. & Sessions R., Class Objects in SOM, IBM Personal Systems Developer (Summer

1992): 67-77.

[9] Cox P. T., Giles F.R. & Pietrzykowski T. (1989). Prograph: A Step toward Liberating the Pro-

grammer from Textual Conditioning, Proceedings of the 1989 IEEE Workshop in Visual Languages,

pp.150-156.

[10] Cox P. T. & Song B., A formal Model for Component-based Software, IEEE Symposium on

Visual/Multimedia Approaches to Programming and Software Engineering, Stresa, Italy, (2001).

125
[11] Green T. R. G & Petre M.,Usability Analysis of Visual Programming Environments: a ‘cognitive

dimensions’ framework, Journal of Visual Languages and Computing, (1996).

[12] Hils D., Visual Languages and Computing Survey: Data Flow Visual Programming Languages,

Journal of Visual Languages and Computing v3 no.1, Academic Press, (1992).

[13] McIntyre D. W. and Glinert E. P., Visual Tools for Generating Iconic Programming Environ-

ments, (1992).

[14] Muller P. A., Instant UML, Wrox Press, (1997).

[15] Myers B. A., Taxonomies of Visual Programming and Program Visualization, jvlc, (1990), pp.97-

123.

[16] Microsoft Company, Visual Studio .Net, http://msdn.microsoft.com/vstudio, accessed 2002.

[17] Borland Software Corporation, C++ Builder: Revolutionary C++ for Internet, http://www.bor-

land.com/cbuilder, accessed July 2002.

[18] Borland Software Corporation, Delphi: Next-generation e-business development, http://www.bor-

land.com/delphi, accessed July 2002.

[19] Metrowerks, a Motorola company, CodeWarrior Development Tools, http://www.metrow-

erks.com/mw/default.htm, accessed July 2002.

[20] Risley, JGraph: A Java Compatible Visual Language. MCS Thesis, Faculty of Computer Science,

Dalhouise University, (2000).

[21] Rogerson D., Inside COM, Microsoft Press, (1996).

[22] Rumbaugh J., Jacobson I., & Booch G., The Unified Modeling Language Reference Manual, Add-

ison Wesley Professional, (1999).

126
[23] Schmucker K.J., Rapid Prototyping using visual programming tools, Tutorial Notes,CHI’96, Van-

couver, (1996).

[24] Schmidt D. Overview of CORBA, http://www.cs.wustl.edu/~schmidt/corba-overview.html.

[25] Sun Microsystems, JavaBeans Specification, http://www.javasoft.com/beans/spec.html, (1997).

[26] Yang S. & Burnett M.M., From Concrete forms to Generalized Abstractions through Perspective-

Oriented Analysis Of Logical Relationships. Proceedings 1994 IEEE Symposium on Visual Languages.

[27] Wayner P., Java Beans for Real Programmers(For Real Programmers Series), Morgan Kaufmann

Publishers, (June 1998).

[28] Whitley K. N., Visual programming languages and the empirical evidence for and against, Journal

of Visual Languages and Computing, Vol. 8, No. 1, (Feb 1997), pp. 109-142.

[29] Whitley K. N and Blackwell A. F., Visual Programming in the Wild: A Survey of LabVIEW Pro-

grammers, Journal of Visual Languages and Computing, Vol. 12, No. 4, (Aug 2001), pp. 435-472.

127

APPENDIX A

JGraph Users Manual

128

Instruction :

JGraph is a visual programming language. This document describes how to use the JGraph prototype.

It assumes that the reader is already familiar with the JGraph language. By using the prototype of

JGraph, users can do following things:

1. Build and edit JGraph programs.

2. Generate Java code from JGraph programs.

3. Import Java program into JGraph.

We will describe how to work with JGraph prototype in the following chapters. In this document, the

material will be presented in the order in which the user encounters the various GUI items.

1. Summary of JGraph

129
Figure 1-1 Mainframe of JGraph

When JGraph starts up, the Main Frame appears. This frame contains all other JGraph windows, and

provides top-level control of the JGraph application via the seven menus shown in Figure 1-1.

There are seven menus in the menu bar, providing the following functions.

The File menu contains items that create a new project, open an existing project, import java program

into JGraph and save the current JGraph program.

Figure 1-2 File menu

The menu Class provides items for changing the characteristics of the selected class. At one time,

there could be only one class selected. The selected class in a class window can be set to “public”,

“abstract”, “final” or “alias” by selecting items in this menu.

Figure 1-3 Class menu

The menu Method is used for setting the characteristics of the selected method. That is, selecting dif-

ferent items sets a method to “public”, “private”, “protected” or “abstract”. At one time, there could be

only one method selected.

Figure 1-4 Method menu

130

The menu Opers is used for setting the type of the selected operation in a case window. At one time,

there is only one operation selected. The available operation types are “Simple operation”, “Get oper-

ation”, “Set operation”, “Allocation operation”, “Local operation”, “Literal operation” and “Repetition

operation”.

Figure 1-5 Opers menu

The Controls menu is used for adding controls to the selected operations in a case window and

changing the type of selected roots or terminators. The available controls types are “Next case (false)”,

“Next case (false)”, “Term False case”, “Term True case”, “Finish False case”, “Finish True case”. The

available types of roots and terminators are: “Origination”, “Reference”, “Array”, ”Loop”, “Enum”,

“Finally” and “Thrown”.

Figure 1-6 Controls menu

131
The menu Favorite provides users with some options for tailoring the environment to suit their pref-

erence. In the present implement, this menu simply allows the user to hide the project panel to reduce

desktop clutter.

Figure 1-7 Favorite menu

The menu Project is responsible to generate Java source code and compile it.

Figure 1-8 Project menu

2. Start working with a project.

There are several ways to start working with a project. The user can create a new project, open an

existing project or create a project by importing a Java program into JGraph. These actions are per-

formed by selecting the New, Open, and Import Java code Items respectively from the File menu.

To import java source code into JGraph, the user must create a list of all the Java files to be included

in the imported project, and then select the list file in the Dialog box to open a project.

132

Figure 2-1 The dialog box for the user to select a project.

After a project is selected, a project panel will appear so that users can work on it. The project panel

contains all the classes and the related methods in the project in a tree.

If users feel inconvenient because the panel take some place, they can hide that panel by going to

Menu “Favorite” and select “Hide”.

133

Figure 2-2 The project panel

Table 2-1 The project buttons

The project panel appears after selected a project as shown in Figure 2-5. In this case, the project

name is prjcode.

3 Edit classes.

Double click the mouse on the node “prjcode” in the project panel; an internal frame for editing

classes will appear. Clicking the mouse anywhere in the frame will add a new class in the project and a

class icon will be shown in the frame representing the class. Selecting the class icon and then pressing

the “Delete” key will delete the class from the project. The class icon consists of two parts; double

clicking the mouse on the right part of the icon will activate an internal frame via which the user can

Table 1:
icon description

Create a new package

Change the name of the current package

Delete the current package.

134
edit the attributes and the packaged lists for the class. The user can also browse the list of methods

associated to the class and modify some items such as method name and parameters in the frame.

Double clicking the mouse on the left part of the class icon will activate an internal frame in which

the user can edit methods in the class.

The relationship between the class icon and the internal frames mentioned above is shown as Figure

3-1:

 (a)

(b)

135

(c)

(d)

 Figure 3-1

In order to set up inheritance between two classes, just select the class icon to denote the subclass,

press and hold the “Alt” key, move the mouse to the super class icon and click on it, then release the

“Alt” key. The inheritance relationship between the two classes will be done as shown in the graph

below. JClass1 is the super class of Jclass2:

Figure 3-2

136

4. Edit methods.

Same way as editing classes above, the user can add a new method by clicking the mouse anywhere in

the corresponding internal frame activated by double clicking the left part of a class icon, and delete it

by selecting it and pressing the ”Delete” key.

The Method icon consists of two parts, double click the mouse on the right part of the icon will acti-

vate an internal frame via which the user can edit the attributes and browse the list of parameters for

the method as well. Double click the mouse on the left part of the method icon will activate an inter-

nal frame in which the user can edit cases in the method.

The relationship between the method icon and the internal frames mentioned above is shown in Fig-

ure 4-1:

137
Figure 4-1

5. Edit cases.

There are two long bars in a case by default. One of them locates on the topside of the case window

denoting the beginning of a case. Another bar locates at the bottom of the case window denoting the

termination of a case. Of course, the user can drag and drop them anywhere off their default location

in the window. Clicking on the lower side of the start bar will create the parameters for that case. The

parameters are represented by small circles. The user can specify details of them by double clicking on

the specific small circles. The return terminals are represented by small circles also.

Figure 5-1

5.1 Specify the parameters.

138
Click the mouse on the lower side of the top bar will create a new circle denoting a input parameter.

Double click the mouse on it will pop up a small dialog to specify the type and the name of the

parameter.

Figure 5-1-1

5.2 Edit operations

Clicking the mouse in the blank area of the case window cause to generate a new operation. Selecting

the operation, going to the “Oper” menu and selecting an appropriate type to set the type of the oper-

ation. Clicking the mouse on the topside of the operation will create a terminal. Clicking the mouse

on the lower side of the operation will create a root. Double clicking the mouse on the terminal or

root will pop up a small dialog box as Figure 5-1-1 to set the terminal or the root respectively.

If the operation is a local method operation, double clicking the mouse on it will create a new case

window within which the user can edit the local method.

If the operation is a local class operation, double clicking the mouse on the right side or the left side of

the operation will activate internal frames as Figure 3.1 to edit a local class.

139
Figure 5-2-1

5.3 Edit controls

After selected an operation, going to “Control” menu and selecting a menu item will apply a corre-

sponding control to the operation.

Figure 5-3-1

5.4 Connection between roots and terminals.

After selected a root or terminal, press and hold the “Alt” key and move the mouse to the terminal or

root, it will set up the connection between the root and the termial.

Figure 5-4-1

5.5 Synchronization.

140
After selected an operation, press and hold the “Shift” key and move the mouse to another operation,

it will set up the synchronization between two operations.

Figure 5-5-1

5.6 Navigate the cases.

Move the mouse to the topside of the case window. A list of buttons will appear. Clicking the mouse

on the left button will make a bar on the bottom of the case button visible. On the bar there list all

the normal cases denoted by square boxes. Double click the mouse on the appropriate square box will

activate the corresponding case window to edit, as Figure 5-6-1 (a) illustrates. Otherwise, click the

middle button on the topside of the case window will make a bar on the bottom of the case button for

catching exceptions visible. On the bottom bar there lists all the cases (denoted by square boxes as

well) available for catching exceptions, as Figure 5-6-1 (b) illustrates. Double clicking the mouse on

the appropriate box will activate the corresponding case window to edit. If clicking the right button

on the topside of the case window, a bar on the bottom of the case will be made visible. There lists the

only potential square box for the finally statement in Java, as Figure 5-6-1 (c) illustrates. Double click-

ing on it will activate the corresponding case window to edit. The user can also delete a case from the

bottom. The user just need to select the corresponding square box and then press the “Delete” key.

141

(a)

(b)

142
 (c)

Figure 5-6-1

6. Generate the Java source code.

It is quite simple to generate Java code from the JGraph program. It just need go to project menu and

select “Generate source code” menu item. The correspondring Java source code will be generated in

the directory where the project is opened from.

7. Build the generated Java program.

Go to the project menu and select “Build” menu item. The JGraph application will call Java Compile

to compile the generated Java program.

