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  Introduction

 

In the early history of computers, the emphasis was on computation; that is, on the ability of these 

new machines to quickly and with minimal human intervention, solve problems of magnitudes 

greater than those that could be solved by people. Communication was simple and character-based. 

Even though the technology for communicating with computers has advanced beyond paper tape and 

punch cards, this character-based heritage is still with us today. An example is provided by the Unix 

operating system. Although UNIX is strong and powerful, it is hard for a user to communicate with 

because commands must be input via typed text. A major milestone in the history of computers was 

the introduction of personal computers (PCs), The reason the introduction of PCs was significant was 

that for the first time computers were cheap, did not need a special environment, and required much 

less specialized expertise to operate. This meant that they got into the hands of many more people. 

This is what drove the demand for improvements to make them more oriented to users than com-

puter specialists.

It is now almost twenty years since low-cost, high-quality computer graphics became available, pro-

viding the means for users to interact with computers in ways other than by typing lines of text. This 

innovation has led to major advances in communication between computers and users by making it 

possible for users to accomplish tasks by directly manipulating items on the screen. For example, in a 

graphical operating system, the user can delete a file by dragging it to a trash can, or navigate the 

directory structure by opening windows on to lower level directories. Spreadsheets allow data to be 

laid out in a grid like a paper ledger, and formulae to be built by clicking on cells in the grid. 
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Although visual representations now play a significant role in software applications for users, indus-

trial software development still relies to a very great extent on textual programming. Software devel-

opers received no benefits from graphics initially,and even now, twenty years after this phase of 

computing began, the use of visualization in software design and development still lags far behind its 

use in end-user applications. As we will discuss in more detail in Chapter 2, the design of computer 

hardware is inherently sequential, meaning that programs are linear sequences of instructions. As a 

result, programming languages are based on linear communication, that is, text. Algorithms, however, 

have structures which are not necessarily one-dimensional, and might therefore be more understand-

able if they were expressed pictorially.

When high quality graphics hardware and operating systems became available, applications began to 

appear with graphic user interfaces, making them much easier to use. Researchers, who realized the 

potential of graphics for software development, began to investigate the idea of visual programming 

languages (VPL), that is, languages that express algorithms in pictures rather than text. Also, software 

tool makers saw the potential of graphics for other aspects of software development, and began to pro-

duce various tools taking advantage of visual representations. As a result, there are visual formalisms 

for modelling software structures such as the Unified Modelling Language (UML) and Computer-

Aided Software Engineering (CASE) tools employing visual representation such as UML to facilitate 

specification. In the marketplace, there are various GUI builders for directly constructing interfaces. 

Integrated Development Environments (IDE) usually consist of an application framework built on a 

textual programming language, together with a visual GUI builder, and windows and panels contain-

ing scrolling lists and other kinds of controls, providing views of various aspects of a project, such as 

class hierarchies. Examples include Visual C++ and Codewarrior. 

Academic research has tended to concentrate on visual languages for general-purpose programming, 

producing some commercial products, Prograph for example. Commercial work on visual program-

ming has produced VPLs aimed at particular application domains and users, for example LabVIEW 

and PhonePro. The domain-specific VPLs have generally been more successful as products, probably 
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because, like spreadsheets and other end-user applications, they make certain kinds of tasks much eas-

ier for certain kinds of users.

The dominance of textual programming has a lot to do with the history and evolution of computers, 

and the rich theoretical foundations and standards that have been built around texual languages. So, 

although visual programming has received a lot of study, and has been shown to provide some impor-

tant benefits, it faces significant challenges in making inroads into industrial development. 

It is only recently that researchers have begun to look closely at how well or how badly visual pro-

gramming languages perform, and why. Studies and practical experience have shown that they have a 

lot to offer the professional software developer. By providing a direct visual representation of the 

structure of algorithms and allowing the developer to program by directly manipulating this represen-

tation, a visual language relieves the developer of the burden of managing minor syntactic details, and 

of parsing textual encodings to extract the algorithm structures. The programmer is therefore free to 

concentrate more on the important aspects of the programming problem. 

As we have observed above, domain-specific VPLs such as LabVIEW have generally been more suc-

cessful commercially than general-purpose VPLs like Prograph, regardless of the potential benefits of 

VPLs for professional developers. Unlike users of domain-specific VPLs, professional developers need 

tools that conform to industry standards. Hence, a VPL that conforms to a textual language standard 

has a much greater likelihood of acceptance. 
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2

 

   
Visual Languages and

 Software Engineering

 

2.1 The evolution of programming languages

 

In 1946, von Neumann introduced an architecture for computing machines which still provides the 

basis for modern computers. As Figure 2-1 shows below, a von Neumann machine consists of three 

parts, the Central Processing Unit (CPU), Memory and Input and Output Devices (I/O devices), 

which communicate with each other via communication busses. Memory contains data and programs   

consist of sequences of instructions. I/O devices transmit input data and results between machine and 

user. The CPU controls all operations, and performs computations by repeatedly executing the fol-

lowing steps: fetch next instruction from memory, decode it, fetch any required data, execute instruc-

tion.

Consequences of this architecture and operation is that execution is sequential, and programs are lin-

ear sequences of instructions. Therefore communication between the user and computer need only be 

sequential. Hence, input and output (I/O) devices, such as paper tape, card punches, line printers and 

line-oriented terminals, have mostly been designed for sequential communication dealing with strings 

Central
Processing

Unit
Memory

Input and
Output
Devices

communication

Figure 2-1: Von Neumann computer

busses
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of characters. Programming languages have evolved from machine language, through assembly lan-

guage, towards modern programming languages which provide more sophisticated structures for 

expressing algorithms, rather than directly reflecting the simple capabilities of the machine. Although 

a common thread throughout this language evolution is that programs are linear sequences of charac-

ters, the trend has been to make languages more oriented to humans than computers. Since most 

modern high-level programming languages such as C, C++ and Java are text-based, we will use the 

term “textual programming language” (TPL) to refer to them.

Early attempts to make programming languages more human-oriented were rather 

 

ad hoc

 

, introduc-

ing some high-level control structures, but not based on any sound theory. The first was FORTRAN 

in the middle of 50s. However, the move towards higher-level languages drove research into the foun-

dations of formal languages, grammars, automata, parsing, compiling and so forth. Consequently, 

TPLs have strong theoretical foundations. So there is a rich body of knowledge surrounding textual 

programming languages. As computing moved from a research and scientific activity to a mainstream 

commercial activity, programming evolved into an engineering process, requiring standardized pro-

cesses and tools. As a result certain languages have become standards (e.g. C, C++ and Java) and there 

is a great investment in tools and methodologies based on them. So, TPLs are an indispensable part of 

the software engineering world.

 

2.2 Introduction to Visual Programming Languages(VPLs)

 

As the computer has evolved so has the technology of human-computer communication. A particu-

larly important step was the development of graphic display technology and graphic user-input 

devices such as the mouse and light pen, and the possibilities these opened up, especially when they 

became widely available in the early 80s. Also, improvements in processor power made it possible for 

computers to support complex graphical interfaces.

As mentioned in Chapter 1, this evolution of human-computer interface technology brought many 

benefits to users, thereby increasing the demand for applications. Software developers, however, were 
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still stuck with their traditional tools. Although visual tools have been introduced into some aspects of 

the development process they are usually aimed at tasks other than programming, such as GUI 

design, modelling or specification. Visual specification of algorithms has not been generally accepted.

The term “visual programming” is used by different authors in different ways. Some definitions are as 

follows:

 

Visual programming is programming in which more than one dimension is used to convey semantics. Each 

potentially significant multi-dimensional object or relationship is a token (just as in traditional textual pro-

gramming languages each word is a token) and the collection of one or more such tokens is a visual expres-

sion such as diagrams, free-hand sketches, icons and so on. When a programming language’s (semantically-

significant) syntax includes visual expressions, the programming language is a visual programming language 

(VPL).

 

 M. M. Burnett [5]

 

Visual Programming refers to any system that allows the user to specify a program in two-(or more)-dimen-

sional fashion. Conventional textual languages are not considered two dimensional since the compilers or 

interpreters process them as long, one-dimensional streams. 

 

B. A. Myers [15]

 

A visual language manipulates visual information or supports visual interaction, or allows programming 

with visual expressions. The latter is taken to be the definition of a visual programming language. Visual 

programming languages may be further classified according to the type and extent of visual expression used, 

into icon-based languages, form-based languages and diagram languages. Visual programming environ-

ments provide graphical or iconic elements which can be manipulated by the user in an interactive way 

according to some specific spatial grammar for program construction. 

 

E. J. Golin and S. P. Reiss [7]

 

Visually transformed languages are inherently non-visual languages but have superimposed visual represen-

tations. Naturally visual languages have an inherent visual expression for which there is no obvious textual 

equivalent. 

 

M. M. Burnett [5]
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Visual programming is commonly defined as the use of visual expressions (such as graphics, drawings, ani-

mation or icons) in the process of programming. These visual expressions may be used in programming envi-

ronments as graphical interfaces for textual programming languages; they may be used to form the syntax of 

new visual programming languages leading to new paradigms such as programming by demonstration; or 

they may be used in graphical presentations of the behavior or structure of a program.

 

 D. W. McIntyre and 

E. P. Glinert [13] 

 

A visual language is one in which pictorial, iconic, graphical syntax (as opposed to a textual syntax) is used 

as the primary (not just a graphical skeleton with textual flesh) means to express the logic (not just window 

layout) of the program being written. 

 

K.J. Schmucker [23]

From the definitions above we conclude that VPLs are characterised as follows:

•There must be inherently visual expressions associated with (semantically-significant) syntax.

•The visual expressions can be manipulated by the user interactively for the process of 

programming.

Unlike visual programming environments in which a program is still specified in a textual language, 

VPLs are used to create programs via visual expressions. VPLs are not necessarily devoid of text, how-

ever, but may use it as comments, for labels of graphical objects and so forth.

 

2.3 Some visual programming languages

 

In this section, in order to give the reader a general picture of what VPLs are and how they do their 

job, we give a brief description of some in this section, both general-purpose and domain-specific.

 

Prograph

 

 is an object-oriented visual programming language aimed for professional programmers, 

which adopts data flow structure [9]. Data flow is one of the more popular computing models for 

visual languages[12]. A method in Prograph consists of a sequence of cases, each of which is a data 

flow diagram. Cases are executed in order until one executes to completion. For example, Figure 2-2 

shows the two cases of a method quicksort, that implements the quicksort algorithm. The first case 

tests to see if the incoming list is empty, and if so, outputs it as the sorted list.  Otherwise control 
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transfers to the second case, which implements the recursive case of the algorithm. In Prograph, list is 

a built-in primitive type. The operation named > in the example has a specially annotated input indi-

cating that a list is expected, and that the operation will be applied to each element of it.

 

LabVIEW

 

, another visual data flow language, is distributed by National Instruments primarily to pro-

vide a programming interface to measurement and control devices [29]. It is intended for users in 

engineering and science.

LabVIEW, like Prograph, uses spatial containment to indicate control structures such as loops and 

conditionals. Data flows from left to right in LabVIEW diagrams. Figure 2-3 below is a LabVIEW 

program that computes the factorial of an integer. The icons at the upper left provides the input inte-

ger, while constant 1 below it is the initial value of the factorial. The rectangle in the centre is an iter-

ation. The The icon labelled i in it denotes the iteration count, the icon labelled N indicates the 

number of iterations to be performed, and the matching icons with the down and up arrows on the 

left and right borders of the iteration denote a looped variable.

Figure 2-2: A Prograph quicksort method.

(a) (b)
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Forms/3 

 

is a VPL based on a generalisation of the spreadsheet paradigm. A Forms/3 program con-

sists of forms which contain cells, the contents of which are specified by a formulae. A formula is 

defined for each cell by a flexible combination of pointing, typing and gesturing. Figure 2-4, taken 

from [26], shows a sample Forms/3 program program that calculates the n

 

th

 

 element of Fibonacci 

sequence, which is the sum  of the (n-1)

 

st

 

 and (n-2)

 

nd

 

 Fibonacci numbers. The program consists of 

three windows. Window FIB is the model for the other two windows FIB01 and FIB02, which are 

called instances of FIB, which inherit their model’s cell and formulae unless the user explicitly pro-

vides different input. Any change to the model is propagated to its instances. When, as in this exam-

ple, a cell formula in the model form references a cell in an instance of the model, the pattern of 

references is recognised by the system and generalised to create recursion. Forms/3 is a general pur-

pose declarative language. The only implementation is a research prototype.

Figure 2-3: A sample program of LabVIEW
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KidSim 

 

is a rule-based VPL for children in which the programmer creates graphical simulations and 

games by building picture transformation rules. Figure 2-5 depicts a "wall climber" program. The 

main window on the left is where the simulation occurrs. The rules are listed in Mascot 1 window. 

Each rule consists of a graphical precondition on the left of the arrow and a graphical postcondition 

on the right. In the figure, the wall climber has just applied rule 2. The next applicable rule will be 1.  

KidSim is not a tool for general-purpose programming, but is aimed at making the programming of 

animated graphical simulations accessible to children.

Figure 2-4: A sample Forms/3 program.
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From the above samples we can see that, like textual languages, VPLs are based on a variety of differ-

ent programming models, have different target users, and may be general-purpose or aimed at solving 

programming problems in specific application domains.

 

2.4 Advantages of visual languages

 

There is evidence that visual representations can improve the human-machine interface because they 

enhance human cognitive abilities. As a principle, if information is made explicit and presented in a 

consistent and organized way, people can perform better at many tasks, including programming. In 

[28] Whitley concludes that “compared to textual notations, visual notations can provide better orga-

nization and can make information explicit. Moreover, properly-used visuals result in quantifiable 

performance benefits. Several studies show visuals outperforming text in either time or correctness, 

sometimes both”. 

Whitley notes that visual representations are beneficial not only for objects that have concrete 

counter-parts in the real world, but also for “nonspatial” concepts, for which visual representations 

provide organization and make information explicit. Whitley discusses studies which show that the 

benefit of visual representations grows as the size and the complexity of a program grows, and con-

cludes that VPLs could be useful in traditional programming where the problems are usually larger 

Figure 2-5: A program of KidSim
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than the problems used in controlled experiments. Some studies  show that graphics can sometimes 

outperform text even for smaller problems. Hence, VPLs may play an important role in end-user pro-

gramming where problems may be smaller than those encountered by professional programmers.

In a more recent study, Whitley and Blackwell conducted a survey of LabVIEW programmers with 

the aim of determining the effectiveness of the visual aspects of LabVIEW [29]. They discovered that 

“respondents rated the value of LabVIEW’s visual language significantly higher than the value of all 

other LabVIEW features rated in this survey.”

Such studies provide us with valuable data about the usefulness and usability of existing visual pro-

gramming languages and environments: however, it is also important to have some means to assess a 

VPL in order to predict its effectiveness, or to guide VPL designers. In [11] Green and Petre introduce 

the cognitive dimensions framework as a “broad brush evaluation technique for interactive devices 

and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cog-

nitive-relevant aspects of structure, and shows how they can be traded off against each other.”

Although the cognitive dimensions apply as much to textual programming languages and environ-

ments as to visual ones, it seems that visual languages have the potential to perform better than textual 

ones in some of these dimensions. In the following we will restrict our attention to those, and encour-

age the reader to consult [11] for the complete list.

 

Closeness of Mapping

 

 refers to the degree to which a language directly represents objects and actions in 

the problem domain. Visual languages have an inherent advantage over textual ones in this dimension 

since they can directly represent domain objects and relationships, while textual ones must use some 

special syntax to code them.

 

Visibility

 

 refers to whether the required material can readily be made visible, whether it can be 

accessed in order to be made visible, or whether it can readily be identified in order to be accessed. 

VPLs may provide greater opportunities for accessing and displaying information than TPLs since, 

like a city map, their diagrams give the observer a picture of where to look for needed information.
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Secondary notation 

 

 Many programming languages allow extra informationto be added to programs 

unrelated to the formal syntax, such as indenting, commenting, choice of names and so forth. These 

notations make no contributions to the logic ofthe algorithm, but help readers of the program to 

understand it. Since VPLs are pictorial, they provide opportunities for useful annotations using picto-

rial devices which would be difficult to incorporate in textual programs.

 

Role-expressiveness

 

 refers to the extent to which the representation of program elements suggests their 

function. In this dimension, VPLs  have an inherent advantage over TPLs. In TPLs, the common way 

to suggest functions of program elements is to use  appropriate names, such as "while" to denote loop. 

However, in VPLs, different elements could be represented with visual representations in different 

shapes, different colours, or different dimensions so that their functions are obvious.

 

Hidden dependencies

 

 are logically significant relationships between program components which are 

not directly visible. VPLs  have an advantage over TPLs in this dimension. In TPLs, transferring a 

value from its source to its destinations is accomplished by variables. Because these dependencies can  

be observed only by finding the various occurrences of a variable, they are not explicit. In VPLs, how-

ever, it is possible to make dependencies explicit by using by lines, directed graphs and so on. For 

example, in data flow a line is used to connect the source of a value and its destination.

From the above discussion, it is clear that, although textual programming languages provide the foun-

dation for modern software development, they are not necessarily always the best choice. Visual pro-

gramming languages can contribute much to the efficiency and effectiveness of programmers, so it is 

important to develop visual tools to enhance the software development process. 

 

2.5 General tools for software engineers

 

In software engineering, the tools and methodologies used by software developers range from very 

high level ones for capturing the overall structure of a software system, to programming languages for 

coding algorithms. In this section, we will give a brief discussion with examples about those tools.



 

14

 

At the top level, there are various software design methodologies. Booch's object-oriented design 

methodology uses various kinds of diagrams to capture the structure of an object-oriented system [4]. 

The Unified Modelling Language (UML) [22] provides various kinds of diagrams which have only a 

partially defined semantics, and are used for expressing the components of a software system, the 

interactions between components, and the interactions between the system and its users. Entity-rela-

tionship diagrams deal with data structuring and data base specification. Tools which implement these 

methodologies are usually called  Computer Aided Software Engineering (CASE) tools. CASE tools 

are mainly used as documentation tools, but some can also generate code. For example, Visual Case is 

a CASE tool that implements UML [3], and DeZign is a CASE tool for developing databases.

Component technology is sometimes used to provide an intermediate level of organisation between 

high-level specification and actual coding. Components are "black boxes" that encapsulate data and 

associated functionality, and communicate by sending messages to each other. A component can be 

shared and reused by different applications, different platforms or even different machines over a net-

work. Some component-technology standards allow components implemented in different languages 

on different systems to communicate, for example the Common Object Request Broker Architecture 

(CORBA) [24]. Examples of component technologies are Microsoft's Component Object Model 

(COM)[21], JavaBeans[27] and IBM's System Object Model (SOM)[8].

At the implementation level, the software developer uses a programming language, usually imple-

mented in an Integrated Develoment Environment (IDE). An IDE usually provides an application 

framework, a class hierarchy that supplies much of the standard functionality of a modern GUI-

driven application. An IDE usually also includes a GUI builder for constructing interfaces by direct 

manipulation, a debugger, and tools that provide various visualisations of a software project. There are 

many IDEs available in the marketplace such as Microsoft Visual Studio [16], Borland Delphi [18] 

and  C++ builder [17], and Metrowerks CodeWarrior [19].

The development of industrial software is a labour-intensive activity, so it is important that the tools 

used are stable and well supported, and that similar tools are available from several vendors. This 
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implies that development tools, which may be developed by different companies, conform to some 

standards. In particular, industrial software developers tend to use standard programming languages, 

supported by many different tools vendors, and widely used by many developers who form an infor-

mal support network.

Java is the latest evolution of the C language, which has long been a standard for industrial software 

development. This parentage gives Java an automatic advantage in terms of being accepted as a soft-

ware development standard. In addition, unlike any other language in the past, Java has been adopted 

by many influential companies. 

Aside from these strategic advantages, Java also has various technical characteristics that contribute to 

its popularity. For example, Java is object-oriented, supports multi-threading, has the capability to 

handle exceptions, dynamic memory management, a dynamic type casting system, extensive static 

type checking and simpler syntax than other object-oriented languages such as C++. 

 

2.6 Visual software development tools for Java

 

There are quite a few Java-based tools that use visualizations of some aspects of the software develop-

ment process. In this section, we will present some examples.

Visual Age [6] for Java is an IDE produced  by IBM. The core programming language is Java, how-

ever, various kinds of visualisation are provided.  First, windows and panels with scrolling lists and 

other controls are used to display packages, class hierarchies, code versions and so forth. Second, the 

JavaBeans component model is used as a basis for a restricted for of visual programming in which 

graphical representations of components are connected by different kinds of lines, indicating the pass-

ing of messages between components. This message-passing model in Visual Age is most suited to 

GUI programming, as illustrated in Figure 2-6. This diagram shows how to build a GUI and set up 

connections between different GUI components, directed lines indicating the flow of messages 

between components. By making these connections, the programmer codes behaviour into the GUI. 

For examples, the line from the Add button to ToDoList together with the side connection from 
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ToDoItem indicate that when the Add button is pressed, the value in ToDoItem will be added to the 

list of items in ToDoList.

Java Studio is a visual programming environment developed by Sun but no longer marketed. In the 

design window of Java Studio, an example of which is shown in Figure 2-7 below, the programmer 

constucts diagrams consisting of nodes representing Java Beans, connected by wires indicating the 

passage of messages between nodes. A user interface corresponding to a diagram is built in an associ-

ated GUI window (not shown), which displays the graphical representations of those beans in the 

design window that implement GUI items. Like Visual Age, Java Studio is a component-based visual 

programming tool that employs message flow.

Figure 2-6: A sample Visual Age program
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The three systems described above provide limited visual programming capabilities based on compo-

nents. There are other tools for Java that provide some visualisation, GUI design for example. A typi-

cal example is Visual J++ [16], a component of Microsoft Visual Studio, which in addition to visual 

GUI-building, provides tools for organising and managing a development project similar to those in 

Visual Age [6], described above. CodeWarrior is another example of an IDE for Java with similar 

capabilities [19].

 

2.7 JGraph

 

As discussed above, there are many Java-based software development tools that use visualisations to 

some extent. Some use visual representations for high-level system modelling. Others provide visual 

GUI editing facilities. None, however, provides complete visualisations of algorithms, and allows the 

developer to program algorithms by building such visualisations. 

JGraph is a general-purpose visual programming language that addresses this shortcoming. A com-

plete description can be found in [20]. As a data flow visual programming language, it borrows 

heavily from Prograph, using the same case structure for obtaining conditional execution, multiplexes 

for iteration, and controls on operations for controlling execution. From Java, JGraph inherits many 

features such as strong typing, identical data types and data structures, similar exception handling, 

Figure 2-7: Java studio main window
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classes, interfaces and contructors, and identical levels of access (public, private etc) to classes 

attributes and methods.

Since JGraph is compatible with Java in the ways discussed in the above paragraph, it has the potential 

to bring the advantages of visual programming at the algorithm level to the world of industrial soft-

ware development. However, since JGraph will certainly not replace Java, in order for it to be accept-

able, tools to integrate it with Java development will be required. In particular, it will be important to 

allow the programmer to move freely between textual and visual representations of code.

 

2.8 Content of the following chapters and appendix

 

As background to the research reported here, we built a prototype JGraph editor which generates Java 

from JGraph, and imports Java code, translating it to JGraph. A user’s manual is attached in Appendix 

A. Based on these experiments, we have defined two complete translations, and provided a critical 

analysis of them with respect to the goal of enabling the software developer to move freely between 

textual and visual representations. In Chapter 3, we give the formal definition of JGraph to provide a 

basis for defining a translation from JGraph to Java in Chapter 4. In Chapter 5, we define a transla-

tion in the opposite direction. Finally, in Chapter 6, we conclude our work with comparisons between 

Java and JGraph, an evaluation of our results, and suggestions for future work that we believe should 

be undertaken.



 

19

 
3

 

   A formalisation of JGraph

 

3.1 Introduction

 

From this chapter on, we will address the problem of translating JGraph into Java by providing a for-

mal, abstract definition of the JGraph language, relating this definition to the pictorial representation 

presented in [20], and showing how each of the abstractly defined JGraph elements corresponds to 

Java source. In this chapter, we will give a precise, formal specification of JGraph semantics, then in 

the next chaper, we will address the translation process.

In this chapter, We assume the reader is familiar with  the JGraph  language, the details of which can 

be found in [20].

The chapter is organised as follows. First, in section 3.2, we define some useful notation. Then, we 

will give the formal definition of JGraph. The chapter concludes with discussion and comments. The 

definitions in section 3.2 are fairly terse, so they are illustrated by numerous examples.

 

3.2 Formal definition of JGraph

 

Throughout this chapter we will use various notations and conventions as follows. We will use 

 

bold

 

 

style to represent components of entities defined as tuples. For example, 

 

Name

 

 is a component of a 

project. We will frequently use the names of components of tuples as functions. For example, a nor-

mal case is defined as a 4-tuple (

 

Opers

 

, 

 

Synchros

 

, 

 

Exception

 

, 

 

Outputs

 

), so if X is a normal case, then 

 

Synchros

 

(X) denotes the second element of the tuple X. 
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We will denote the empty list by (). If X is a list or sequence, we will denote by X[i] the i

 

th

 

 element of 

X.

In the following, 

 

N

 

 

 

T

 

 are disjoint sets of strings called 

 

names 

 

and

 

 simple types 

 

respectively, which con-

form to the naming conventions of Java.

A 

 

type

 

 is either a simple type or an array type. An array type is a 1-tuple (Elemtype), where Elemtype 

is a type.

In the following, we assume the existence of a set ℜ, the elements of which are called nodes, a 1-1 

function name from ℜ to N and a function type from ℜ to T. Two lists of nodes N1, N2 are said to 

match iff |N1| = |N2| and type(N1[i]) = type(N2[i]) for each i (1 ≤ i ≤ |N1|).

If X is a set of modifiers and Y is a Java construct, we will say that X is legal for a Java Y if Java permits 

all the modifiers in X to be simultaneously applied to the Java construct Y. For example, {“abstract”, 

“final”} is not legal for a Java method but {“abstract”, “protected”} is legal for a Java method.

3.2.1 Package

In JGraph, a package is a pair (Name, Classes) where Name is a name indicating the package name, 

Classes is a set, each element of which is a class or an interface.

3.2.2 Class and Interface

A JGraph class is an 8-tuple (Imports, Modifiers, Name, Superclass, Interfaces, Attributes, Methods, 

Constructors) where:

•  Imports is a set of strings, each indicating a package imported by the class. The set is 

empty if no packages are imported.

•       Modifiers is a subset of {“public”, “abstract”, “final”} legal for a Java class.

•       Name is a type that is the name of the class.

•       Superclass is a type which is the name of a class. 

•       Interfaces is a set of types each of which is the name of an interface.
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•       Attributes is a set of attributes.  

•       Methods is a set of methods.

• Constructors is a set of constructors.

An attribute  is a triple (Modifiers, Node, Value). where:

•      Modifiers is a subset of {“public”, “protected”, “private”, “final”, “static”, “transient”, 

“volatile”} legal for a Java class variable.

•      Node is a node.

•   Value is a string or null.

A JGraph interface is a 6-tuple (Imports, Modifiers, Name, Superclass, Attributes, Methods) where:

•  Imports is a set of strings, each indicating a package imported by the class. The set is 

empty if no packages are imported.

•       Modifiers is a subset of {“public”, “abstract”} legal for a Java interface.

• Name is a type that is the name of the interface.

•       Superclass is a type which is the name of an interface. 

•       Attributes is a set of attributes.  

•       Methods is a set of methods such that ∀M ∈ Methods, “abstract” ∈ Modifier(M)

3.2.2.1 Example

This example illustrates the above definitions by considering a package called MyPackage and some 

classes and interfaces in it, showing how the formal definition corresponds with the visual representa-

tion. Formally, this package is the pair

(“MyPackage”, {C, I1, I2, I })

where C is a class and I1 , I2 and I are interfaces. The structures for C and I are as follows

C = ({“java.*”, “javax.*”}, {“public”}, “MyClass”, “SuperClass”, {“Interface1”, “Interface2”}, 

{({“public”}, “int”, “i”, “0”), ({“public”},  “boolean”, “boo”, “true”)}, {M1, M2},{}) 
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I = ({“java.*”, “javax.*”}, {“public”}, “MyInterface”, “SuperInterface”, ({“public”}, “int”, “i”, “10”),

     ({“public”},  “String”, “str”, “Hello”)}, {M3, M4},{}) 

where M1, M2 M3 and M4 are methods, the representation for which is defined in the next section.

Figure 3-1 shows the JGraph windows that graphically represent some parts of these structures.

 

Figure 3-1: A JGraph package containing two classes and four interfaces

(b)

(d)

(a)

(c)



23
Figure 3-1 (a) shows the project window depicting the list of packages in the project. In particular, it 

includes an icon for MyPackage, and icons of the classes and interfaces in it. Figure 3-1 (b) is a class 

window presenting all the classes and interfaces of the particular package MyPackage and the inherit-

ance relationships between them. Note that since an alias is not a class or interface, SuperClass does 

not occur in MyPackage in Figure 3-1 (a). However, the class that SuperClass refers to must be in one 

of the packages that MyClass imports, as shown in Figure 3-1(c). Figure 3-1(c) shows the list of 

imported packages of the class MyClass. Figure 3-1(d) illustrates the attributes of MyClass.

The figures in this example and those that follow were generated using our JGraph prototype. The 

reader should refer to the User Manual in Appendix A for the meaning of the various controls that are 

attached to the windows shown in these pictures.

3.2.3 Method and constructor.

If K is a class, a method of K is an 12-tuple (Modifiers, Exception, Name, Inputs, Roots, Normal-

Cases, CatchCases, FinallyCase, Flag, Index, Uplimit,Terminate) where:

•  Modifiers is a subset of {“public”, “protected”, “private”, “abstract”, “final”, “native”, 

“static”, “synchronized”} legal for a Java method.

• Exception is a set of nodes.

•       Name is a name.

•       Inputs is a list of nodes distinct from each other, and from any node external to the 

method. See definition of external below.

• Roots is a list of nodes distinct from Inputs, and from any node external to the method, 

such that |Roots| ≤ 1. See definition of external below.

•       NormalCases is a list of normal cases.

•  CatchCases is a list of catch cases.

•   FinallyCase is a finally case or null.

• If “abstract” ∈ Modifiers, then NormalCases = CatchCases = {} and FinallyCase = null.

• If C is in NormalCases, CatchCases or FinallyCase then C is called a case of the method.
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• Flag, Index, Uplimit and Terminate are nodes distinct from each other, from any nodes 

in Inputs or Roots, and from any node external to the method.

If K is a class, a constructor of K is a 8-tuple (Modifiers, Exception, Inputs, ConstCase, Flag, Index, 

Uplimit, Terminate) where:

•  Modifiers is a subset of {“public”, “protected”, “private”} legal for a Java constructor.

• Exception is a set of nodes.

•       Name is a name.

•       Inputs is a list of nodes distinct from each other, and from any node external to the con-

structor. See definition of external below.

•       ConstCase is a constructor case, which may be referred to as a case of the constructor.

• Flag, Index, Uplimit and Terminate are nodes distinct from each other, from any nodes 

in Inputs, and from any node external to the constructor.

A node n is said to be external to a method or constructor of class K iff n ∈ {Node(A)| A ∈ 

Attributes(K)}.

A method or constructor M contains a counted loop iff for some case C of M, there is an operation O ∈ 

Opers(C) such that either O is a counted loop or is a local operation that contains a counted loop. 

Refer to section 3.2.4 for the definition of counted loop.

A method or constructor M contains a controlled loop iff for some case C of M, there is an operation O 

∈ Opers(C) such that either O is a controlled loop or is a local operation that contains a controlled 

loop. Refer to section 3.2.4 for the definition of controlled loop.

3.2.3.1 Example

The following example illustrates a method

M = ({“public”}, {E}, “MyMethod”, (I1, I2), (R), (N1, N2) {C}, F, G, I, U, T)

where: 

• E, R, I1, I2, G, I, U and T are nodes.
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• type(I1) = “int”, type(I2) = “String”, type(R) = “int”. 

• N1, N2 are normal cases.

• C is a catch case

• F is a finally case

              

Figure 3-2: A JGraph method

(a)

(b) (c)

(d) (e) (f )
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Figure 3-2 (b) and (c) show, respectively, the parameter list of MyMethod, and the list of exceptions 

that MyMethod throws. Note that the names of parameters are empty strings, the default provided by 

the JGraph prototype. Since names of parameters are important only when JGraph is translated to 

Java, they need not be specified until required for translation, at which time they could be supplied by 

the programmer or generated by the translator.

Figure 3-2 (d) is the window for the normal case N1 of MyMethod. The two rectangles at the bottom 

of this window correspond to the two normal cases N1and N2 (not shown) of MyMethod. In the 

implementation, these rectangles are coloured brown to indicate that they represent normal cases. In 

windows displaying catch cases, as in Figure 3-2(e), or a finally case as in Figure 3-2(f ), the rectangles 

are blue and green respectively. 

Figure 3-2 (e) is the window for the catch case C of MyMethod. The rectangle at the bottom of this 

window shows that the method has only one catch case. The left root of the input bar indicated by the 

square icon, is the catch root of C, which will be explained more fully later.

Figure 3-2 (f ) is the window for the finally case F of MyMethod. Note that the input bar has one 

more root than the input bar of the first normal case of MyMethod. That root, indicated by the 

square icon, is called a finally input root, and corresponds to the terminal of the output bar of the nor-

mal cases of the method, as explained later.

In Figure 3-2 (d) to (f ) we represent the contents of cases by fuzzy blobs since we are not concerned 

with the representation of cases in this example. Cases will be discussed in section 3.2.5 below. Note 

that the last four components of a method, Flag, Index, Uplimit and Terminate exist only to facilitate 

translation to Java, so they have no representation in JGraph. We will discuss them in detail when we 

discuss the translation of a method to Java in section  4.2.3. We also note that not all the components 

of a method need to be specified. If a method does not throw exceptions, its Exception component 

will be just {}. Similarly, a method does not have to have catch cases if no exceptions are to be caught 

inside the method. 



27

3.2.4 Operations

In order to continue defining JGraph in a strict, top-down fashion we should define cases next. How-

ever, the definitions of “case” and “operation” are interdependent, so we have chosen to define opera-

tions first.

Since each operation occurs in a case, in the following we assume the operation being defined occurs 

in some case C.

There are nine categories of operation, each of which is a tuple consisting of a selection of components 

as defined in the following table, where:

•  Each row defines a category of operation.

• Each column corresponds to a component of a tuple. 

• A grey cell indicates that the corresponding category of operation does not have the      

corresponding component.

• Target is either a node or null or ↑. 

• Name is a name. 

• If |Roots| = 1 and type(head(Roots)) = “boolean”, then Control ∈ { , , , , , ,          

null }, otherwise Control = null.

•    Terminals is a finite sequence of nodes. 

• Roots is a finite sequence of distinct nodes.

• An entry in a cell of the table indicates restrictions on the corresponding component of an 

operation of the corresponding category.

• Value is a string that can be typed into a Java program as a constant.

• Cases is a sequence of normal cases.

• CatchCases is a sequence of catch cases.

• FinallyCase is a finally case.

•  If C is in NormalCases, CatchCases or FinallyCase then C is called a case of M.

• Flag, Index, Uplimit and Terminate are nodes distinct from each other, and from every 

node external to the operation (see definition below).
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•    Inputs is a finite sequence of nodes distinct from each other, and from Flag, Index, 

Uplimit and Terminate and from every node external to the operation, such that |Inputs| 

= |Terminals|.

• For a local operation, Inputs and Terminals match.

•   Ttypes is a function from Inputs to {Simple, Array}∪{i | 1 ≤ i ≤ |Roots|} such that:

• If Ttypes(Inputs[k]) = k1, Ttypes(Inputs[j]) = j1 are both integers, where k < j, then

   k1 < j1.

 • If Ttypes(Inputs[k]) = Array for some k, then type(Terminals[k]) is an array type

        and type(Inputs[k]) = Elemtype( type(Terminals[k])).

 • If Ttypes(Inputs[k]) is an integer for some k, then type(Inputs[k]) = 

   type(Roots(Ttypes(Inputs[k]))).

• For a repeat operation, 

for each i (1 ≤ i ≤ |Inputs|)

•     Dimension is a finite sequence, each element of which is a node or integer. 

• Data is a node.

If O is a local or repeat operation such that O ∈ Opers(C) for some case C, then a node n is said to be 

external to O iff n is a root of an operation in Opers(C), or is external to C.

A repeat operation O is called a counted loop iff Ttypes(R) = Array for some R ∈ ΙΙΙΙnputs(O).

A repeat operation O is called a controlled loop iff Control(O1) ∈ { , , , } for some O1 ∈ 

Opers(C1) where C1 is a case of O.

A local or repeat operation O contains a counted loop iff for some case C1 of O, there is an operation 

O1 ∈ Opers(C1) such that either O1 is a counted loop or is a local operation that contains a counted 

loop.

type(Inputs[i])=







Elemtype(type(Terminals[i]))
if Ttypes(Inputs[i]) = Array

type(Terminals[i])
otherwise
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A local or repeat operation O contains a controlled loop iff for some case C1 of O, there is an operation 

O1 ∈ Opers(C1) such that either O1 is a controlled loop or is a local operation that contains a con-

trolled loop.

If O is a local operation, O ∈ Opers(C) and C is a case of some method, local or repeat M then we 

define:

Although in JGraph as defined in [20] repeat operations can have enumeration terminals, such termi-

nals do not translate into very efficient Java, so they are omitted here.

Table 3-1: JGraph operations
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constructor not node

simple           ≤1                      

get 1

set

alloc 1

literal 1

local ≤1

repeat ≤1

array 1

array set node

array get node 1

match 1 1

Flag(O) =  Flag(M)

Uplimit(O) = Uplimit(M)

Index(O) =  Index(M)



30

3.2.4.1 Example

The following examples illustrate the above definition.

Table 3-2: Various operations and their visual representations

JGraph operation Visual representation

constructor
(null, (T1, T2))
where T1,T2 are nodes

simple (null, “foo”, null, (), ())

simple
(↑, “foo”, , (T1,T2), (R))
where T1,T2, R are nodes

get
(null, “foo”, null, (R))
where R is a node

get (↑, “foo”, , (R))
where R is a node

set
(null, “foo”, D)
where D is a node the terminal-like icon (called a termi-

nal by Risley) represents D, the Data 
of the operation.

set
(↑, “foo”, D)
where D is a node

alloc
(“foo”, (T1, T2), (R))
where T1, T2  and R are nodes

literal
(null, (R), “123”)
where R is node

literal ( , (R), “123”)
where R is node



31

local

(null, (T1, T2), (R1, R2, R3), (C), (), (), (I1, 
I2), M)
where T1, T2, R1, R2, R3, I1, I2 and M are 
nodes, and C is a normal case
Note that I1, I2 appear as the roots of the 
input bar in each case of the local opera-
tion.

repeat

(null, (T1, T2), (R1, R2), (C), (), (), P, 
(I1, I2), F, N, U, M)
where T1, T2, R, I1, I2, F, N, U and  M are 
nodes, C is a normal case, and P is the func-
tion
P(I1) = Simple, P(I2) = Simple. 
Note that I1, I2 appear as the roots of the 
input bar in each case of the repeat opera-
tion.

repeat

(null, (T1, T2, T3), (R1, R2), (C), (), (), P, 
(I1, I2, I3), F, N, U, M)
where T1, T2, T3, R, I1, I2, I3, F, N, U and 
M are nodes, C is a normal case, and P is 
the function
P(I1) = 1, P(I2) = Array, P(I3) = Simple.
Note that this is a counted loop because of 
the presence of the Array input.

array
((“foo”), (R), (5,7))
where R is a node

array
((“foo”), (R), (N))
where R and N are nodes

array get
(G, (R), (5,7))
where G, R are nodes

array get
(G, (R), (N))
where G, R and N are nodes The icon consisting of connected ter-

minal and root represents G

Table 3-2: Various operations and their visual representations
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3.2.5 Cases

Each case is defined with respect to the method, constructor, local operation or repeat operation in 

which it occurs, so in the following, let M be some arbitrary but fixed method, constructor, local 

operation or repeat operation.

A normal case  of M is a 4-tuple (Opers, Synchros, Exception, Outputs), where

•   Opers is a set of operations not including any constructor operations.

•  ∀O ∈ Opers, Control(O)∈{ , } only if Roots(M) = ().

•      Synchros is a set of pairs of the form (O1,O2) where O1,O2 ∈ Opers. A synchro (O1,O2) 

is said to be from O1 to O2.

• Exception is either a node or is null .

array get
(↑, (R), (5,N, 7))
where R, N are nodes

array set
(G, (5,7), D)
where G, D are nodes

array set
(G, (N), D)
where G, N and D are nodes

array set
(↑, (5,N, 7), D)
where N and D are nodes

match ( , T, (R), “123”)
where T,  R are nodes

Note that R does not have visual rep-
resentation. It exists in the formal 
structure so that the translation to 
Java of match is consistent with that 
of other operations.

Table 3-2: Various operations and their visual representations
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• Outputs is a finite sequence of nodes distinct from Flag, Index, Uplimit and Terminate.

A catch case of M is a 5-tuple (Opers, Catchroot, Synchros, Exception, Outputs) defined as for a nor-

mal case except that: 

•  Catchroot is a node distinct from all roots of all operations  in the case or in other cases of 

M. 

•  ∀o ∈Opers, Control(o)∉{ , }.

A finally case of M is a 5-tuple (Previous, Opers, Synchros, Exception, Outputs) as defined as for a 

normal case except that:

•  ∀O ∈Opers(C), Control(O)∉{ , }

• Previous is a list of nodes that matches Outputs.

A constructor case of M is defined as for a normal case except that:

• Opers contains exactly one constructor operation O and constructor operations can not 

be anywhere except in a constructor case.

• Outputs and Roots(M) must match for a normal, catch or finally case.

• The set Opers - {O} can be partitioned into two subsets Pre and Post such that:

•    If O1 ∈ Pre then O1 is either a simple, literal, get, alloc, array or array get operation, 

and

•   | Roots(O1) | =1,

•   Control(O1) = null,

•   head(Roots(O1)) ∈Terminals(O2) where O2 = O or O2 ∈ Pre,

•   if (O2, O1) ∈Synchros, then O2 ∈ Pre.

In addition, there are several further conditions that every case must satisfy as follows.

•  Distinct operations in a case have no roots in common.

• Outputs and Roots(M) must match for a normal, catch or finally case.

•   If N is a node and

   either N ∈Terminals(O) for some O ∈ Opers

   or N ∈Dimensions(O) for O ∈ Opers 
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   or N ∈Target(O) for some O ∈ Opers 

   or N ∈Data(O) for some O ∈ Opers 

   or N ∈Outputs

   or N = Exception

then 

   either N ∈Roots(O2) for some O2∈ Opers

   or N ∈Inputs(M)

   or N ∈Previous

   or N = Catchroot

• If N is a node then N is a local root of a normal, catch or finally case iff N ∈ Roots(O) for 

some O ∈ Opers, or N ∈ Previous or N=Catchroot. N is a local root of a constructor case 

iff either N  ∈ Roots(O) for some O ∈ Post, or N occurs more than twice in the case.  

Note that “occurs in” here refers to all occurrences of N as roots, terminals, data, targets or 

dimensions of operations, or as the exception or an output of the case.

We will denote the set of local roots by Local.

•   If R is a node then R is said to be external to the case iff

  either R = Flag(M), Index(M), Uplimit(M) or Terminate(M)

  or R ∈ Inputs(M)

  or R  ∈ Roots(M) 

  or M is a local or repeat operation in Opers(C) for some case C, and R is a local root of   

  C or is external to C.

•  No node can be both a local root of the case and external to the case.

• Let G be the directed graph such that Opers is the set of vertices of G, and (O1, O2) is an 

edge of G iff (O1,O2) ∈Synchros, or some root of O1 is also Data(O2) or Target(O2) or is 

an element of Terminals(O2) or Dimension(O2); then G is acyclic. 

Note that if O is the unique constructor operation in a constructor case, O1∈ Pre and O2 ∈ Post, 

then G can be linearly ordered in such a way that O1 < O < O2.
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3.2.5.1 Example

We illustrate the definition of normal, catch and finally case by considering the following example, in 

which a local opeation is concerned.

Figure 3-3 (a) shows a case containing a local operation Local, which has several cases that we will 

consider in detail in this example. The local operation itself has the following structure:

L =(null, (T1, T2), (R1, R2), (C1), (C2), C3, (I1, I2), M)

Figure 3-3 (b), (c) and (d) show, respectively, the normal case C1, catch case C2 and finally case C3 of 

the operation, which have the following structures:

(a)

(b) (c) (d)

Figure 3-3: Cases of a local operation
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C1 = ((O1,O2), null, E, (U1, U2))

C2 = ((O3), T, null, A, (U3, U4))

C3 = ((P1, P2), (O4), null, null, (U5, U6))

where:

type(T1) = type(I1)

type(T1) = type(I1)

type(R1) = type(P1) = type(U1) = type(U1) = type(U1)

type(R2) = type(P2) = type(U2) = type(U4) = type(U6)

Note that the extra terminals on the output bars of the normal and catch cases in Figure 3-3 represent 

the nodes E and A that are the Exception components of these two cases.  The extra root on the input 

bar of the catch case represents the node T that is the Catchroot component of this case. The extra 

two roots (finally input roots) on the input bar of the finally case represent the nodes in the Previous 

component of this case.

We illustrate the definition of a constructor case by considering the following example, which deals 

with the case of a constructor M of a class named MyClass.

Figure 3-4:  A constructor case
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The constructor case in Figure 3-4 has the following structure:

C = ((O1, O2, O3, O4, O5), {}, null, ())

where
O1 = (null, “foo1”, null, (Input(M)[0]), (N1)),
O2 = (null, (N2), “Hello”), 
O3 = (null, “foo2”, null, (N2, Input(M)[1]), (N3)),
O4 = (null, (N1, N3, N3)),
O5 = (null, “Result”, N3).

As Figure 3-4 shows, the three terminals of the constructor operation O4 are connected to the roots of 

the operations before the constructor operation.  The corresponding directed graph (see section 3.2.5) 

G can be linearly ordered in the way described in section 3.2.5 so that O1, O2, O3 ∈ Pre, O5 ∈ Post. 

That is O1, O2, O3 <O4 <O5.

3.3 Conclusion

In this chapter we have extended the description of JGraph provided in [20] by providing a formal 

definition of the JGraph language, together with illustrative examples. The formalisation we have 

described was chosen to facilitate the process of translating JGraph programs into Java described in 

the next chapter. However, since the formal definitions were devised after our experiences with imple-

menting the prototype, the data structures used in the JGraph prototype are not based on the formal 

definitions we have provided. 
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4Translating JGraph to Java

4.1 Introduction

In this chapter, we will address the problem of translating JGraph into Java by providing a mapping 

from the formal definitions of JGraph elements provided in the last chapter to corresponding Java 

code. There are several quite obvious reasons for doing this as follows

• Illustrate the close relationship between JGraph and Java.

• Provide a “cheap” way to execute JGraph programs by generating Java code that can be 

compiled and executed.

• Possibly also provide a means for immediate execution in an editing/debugging environ-

ment like Prograph CPX. To provide for immediate execution, the Java code would have 

to be generated incrementally as the JGraph program is edited, perhaps just for JGraph 

elements that are determined to be syntactically correct, as described in [20], and the Java 

compiler called “on-the-fly”.

We assume the JGraph program we discuss is correct, and that the reader is familiar with  the JGraph  

language, the details of which can be found in [20]. Risley, in his thesis, presented the semantics of 

JGraph and provided much of the information necessary to translate to Java. In this chapter, we will 

fill in all the details necessary for the complete process. The discussions cover the strategy for translat-

ing JGraph visual programs into Java, the style and characteristics of the Java programs generated, and 

how to work around the limits of Java such as the lack of a “goto” statement. Our discussion will fol-

low the structure of JGraph in a top down fashion.
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The chapter is organised as follows. First, in section 4.2, we define some useful notation. Next, we 

give the formal definition of the translation process. This is accomplished by defining a function τ 

that maps JGraph programs and program parts to Java programs and program parts. The chapter con-

cludes with discussion and comments.

4.2 Translation to Java

In this section we show how a JGraph program can be translated into Java by defining a function τ 

that  in general, maps a JGraph program part to a string. The one exception, however, is when τ is 

applied to a package, in which case it produces a set of strings. The remainder of this chapter is 

devoted to defining τ in a top-down fashion.

We will use underscore style to represent Java keywords, for example,  public, class and static. We use 

the symbol ε to denote the empty string. Some symbols, such as semicolons and commas serve double 

duty as characters in  strings generated by τ, and as punctuation in our notation. To avoid ambiguity, 

we will enclose strings in double quotes. In the following, concatenation of strings is denoted by jux-

taposition. Also, every concatenation involves the insertion of a blank between the concatenated 

strings. For example, the concatenation operation “ab”“cd” produces the string “ab cd”. 

If X is a set of strings, and α is a string, then [X,α] is the string defined as follows:

       [X, α] = ε if X =∅

       [X, α] = x if x ∈ X and |X| =1

       [X, α] = x α[X1,  α] where X = {x} ∪ X1 and |X| > 1

Also, if X and α are as above, and β and γ are strings, we define a string [X, α, β, γ]  as follows:

       [X, α, β, γ] = β [X, α] γ if [X, α] ≠ε 

       [X, α, β, γ] = ε  if [X, α] =ε 
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Note that [X, α] above is not well defined. For example, suppose X is the set of names of inter- 

faces {A, B, C} that a class implements, then [X, “,”] may be any of the strings “A, B, C”, “B, C, 

A”, “C, A, B” etc. This ambiguity is not important, however, since those elements of JGraph struc-

tures which are defined as sets correspond to elements of Java in which ordering is unimportant; for 

example, the order of interface names in the “implements” clause of a class definition.

If x is a list, we denote the first element of x by head(x), and the list obtained by removing the first ele-

ment from x by tail(x). If y is a list, we denote by z*y the list obtained by adding an item z to the 

beginning of y.

For a method, local or repeat operation M, let V be any set of strings such that |V|=|Normal-

Cases(M)|, and for each v ∈V, v ∉Ν, v ≠ name(R) for any R ∈ ℜ, and v conforms to Java naming 

conventions. Now let Var be an arbitrary but fixed 1-1 function from NormalCases(M) to V.

4.2.1 Package

At the package level, the translation process does nothing more than create a class file for each class in 

the  package. The translation process then proceeds to the details of each of these classes. If P is a 

package, then

τ(P) = {“package” Name(P) “;”  τ(C) | C ∈ Classes(P)} ∪ {E}  ∪  {F}, where:

                  E =“package” Name(P) “;

import java.awt.*;

public  class ICaseException extends Exception

                    {

              public ICaseException(String Msg)

                              {

                               super(Msg);

                               }

                     }”
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and 

                  F =“package” Name(P) “;

                    import java.awt.*;

                   public  class ITermException extends Exception

                    {

                              public ITermException(String Msg)

                              {

                               super(Msg);

                               }

                    }”

The exception classes ICaseException and ITermException are added to the generated Java as part of 

the mechanism that deals with the case structure of JGraph methods and the terminate control. 

Each of the strings in the set of strings generated by applying τ to a package corresponds to one code 

file containing one class definition, as required by Java.

4.2.2 Class and Interface

At this level, the correspondance with Java is exact, so the translation process is straightforward and 

obvious. 

If C  is a class then 

          τ(C) = τ(Imports(C)) τ(Modifiers(C)) “class” Name(C) τ(Superclass(C)) τ(Interfaces(C)) “{”

                       τ(Attributes(C)) τ(Methods(C))“}”
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where

Where if A is an attribute:

If I  is an interface then 

          τ(I) = τ(Imports(C)) τ(Modifiers(C)) “interface” Name(C) τ(Superclass(C))“{”

                       τ(Attributes(C)) τ(Methods(C))“}”

4.2.2.1 Examples

The following example illustrates the translation of JGraph classes to Java. 

Figure 4-1 (a) shows the project window containing the package list. For this example, there is only 

one package, named “MyPackage”, containing the class under consideration. Figure 4-1 (b) shows  

the class window of MyPackage depicting the inheritance relations between MyClass and other classes 

and interfaces. Figure 4-1 (c)  and (d)  show, respectively, the list of imported packages and attributes 

of MyClass. The Java produced by the translation defined above is as follows.

package MyPackage;

import  java.*;

import  javax.*;

τ(Imports(C)) = [Imports(C), “; import”, “import” , “;” ]

 τ(Modifiers(C))  = [Modifiers(C), “ ”]

τ(Superclass(C)) =




“extends” Superclass(C) if Superclass(C) ≠ ε.

ε otherwise.

  τ(Interfaces(C)) = [Interfaces(C), “,”, “implements” , ε ]

τ(Attributes(C)) = [{τ(A) | A∈Attributes(C)}, “;”]

 τ(Methods(C)) = [{τ(m) | m∈ Methods(C)}, ε]

 τ(A)=







 [Modifiers(A), “ ”] type(Node(A)) name(Node(A)) “=” Value(A),  
if Value(A) ≠null.

[Modifiers(A), “ ”] type(Node(A)) name(Node(A)), 
otherwise.
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import package1;

public MyClass extends SuperClass implements Interface1, Interface2

{

private int i=0;

protected boolean boo=true;

<methods; section 4.2.3>

}

We use the notation <> to indicate code generated from a JGraph element and the section where the 

translation is defined.

(a)

(b)

(c)

(d)

Figure 4-1:  MyClass and associated items
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4.2.3 Method.

Since the translation of a method is the most complex part of the process, we divide our explanation  

into several levels. At the top level we address the problems of translation not related to the method 

body. Then we will discuss the patterns of  translation of a method body  in terms of cases. The trans-

lation of a case is described in detail in a later section. 

Let M be a method then we define τ(M) as below. Note that some of the “helper” functions we require 

are defined to be more general than necessary since they will be reused later to define the translations 

of local and repeat operations.
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τ(M) = SIGNATURE(M) BODY(M)

where:             

SIGNATURE(M) = [Modifiers(M), “ ”] TYPE(M) Name(M) EXCEP(M)“(” PAR(Inputs(M)) “) 

BODY(M) =





  

“;” 
if “abstract” ∈ Modifiers(M)

“{”DECL(M) OUTER(M) RET(M)“}”
otherwise

TYPE(M) =





  

“void”
      if Roots(M) = ()

type(head(Roots(M)))
      otherwise

EXCEP(M) =




“throws” [{type(E) | E ∈ Exception(M))}, “,”, “ ”, “ ”]
      if   Exception(M) ≠ {}

ε    otherwise

DECL(M) = ROOTDECL(M) FLAGDECL(M) INDEXDECL(M)

ROOTDECL(M) =







type(head(Roots(M))) name(head(Roots(M))) “;”
if Roots(M) ≠ ()

ε
        otherwise

FLAGDECL(M) =







“boolean” name(Flag(M)) “;”
if M contains a controlled loop

ε otherwise

INDEXDECL(M) =







“int” name(Index(M)) “,” name(Uplimit(M)) “;”
if M contains a counted loop.

ε
        otherwise

OUTER(M) =







“try {” INNER(M) “} catch(ITermException” Terminate(M)) “{” SETFLAG(M) “}”
if Control(O)∈ { , } for some O ∈ Opers(C) for some case C of M

INNER(M)
otherwise

RET(M) =







“return” name(head(Roots(M)))“;”

if(Roots(M)) ≠ ()

ε
        otherwise
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and if X is a list of nodes, and Y is a list of cases

and

4.2.3.1 Example

In this example we illustrate the translation of JGraph methods to Java by considering a method called 

MyMethod, partially illustrated in Figure 4-2, which has the structure:

SETFLAG(M) =







ε if M is a local operation or method

name(Flag(M)) “= false;”
otherwise

INNER(M) = NORM(NormalCases(M)) CATCH(CatchCases(M)) FIN(M)

FIN(M) =







“finally {” τ (FinallyCase(M)) “}”
if FinallyCase(M) ≠ null

ε
otherwise

PAR(X) =









type(head(X)) name(head(X)) “,” PAR(tail(X))
        if |X| > 1

type(head(X)) name(head(X))
        if |X| = 1

ε      otherwise

NORM(Y) =







“try {” τ (head(Y)) “} catch ( ICaseException” Var(head(Y))“){ ” NORM(tail(Y)) “}”
        if |Y| > 1

τ(head(Y))
        if |Y| = 1

CATCH(Y) =







ε      if Y=()
τ(head(Y)) CATCH(tail(Y))
        otherwise
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  M = ({“public”}, E, “MyMethod”, (I1, I2), (R), (C1, C2, C3), (C4, C5), C6, G, I, U, E)

where:

• name(I1)= “i”.

• name(I2)= “boo”.

• name(R) = “Result”.

• MyMethod contains both controlled and counted loops.

• name(G) = “FlagName”, name(I) = “IndexName”, and name(U) = “UpLimit”.

•  Var(C2) = “var2”, Var(C3) = “var3”

Applying the above translation to this method produces the following Java code:

Figure 4-2:  A JGraph method
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public int MyMethod(int i, boolean boo) throws ExceptionName

{

 1 . . . . . .  int Result;

 2 . . . . . .  boolean FlagName;

 3 . .   . . .  int IndexName, UpLimit; 

 4 . .. . . . . . . . .  try 

 5 . .. . . . . . . . .  { 

 6 . .. . . . .. . . . . . . . . <normal case; section 4.2.4>

 7 . .. . . . . . . . .  } 

 8 . . . . . .   . . .  catch ( ICaseException var2)

 9 . .. . . . . . . . .  { 

10. .. . . . .. . . . . . . . .  try 

11. .. . . . .. . . . . . . . . { 

12. .. . . . .. . . . .. . . . . . . . . <normal case, section 4.2.4> 

13. .. . . . .. . . . . . . . . } 

14. .. . . . .. . . . . . . . .  catch ( ICaseException var3)

15. .. . . . .. . . . . . . . . { 

16. .. . . . .. . . . .. . . . . . . . . <normal case, section 4.2.4>

17. .   . . . .. . . . . . . . . }

18. .   . . . . . . . . }

19. .. . . . . . . . . <catch case, section 4.2.4>

20. .. . . . . . . . . <catch case, section 4.2.4>

21. . . . . .   . . .  finally

22. .. . . . . . . . .  {

23. .. . . . .. . . . . . . . . <finally case, section 4.2.4>

24. .. . . . . . . . .  }

25. . . . . .  return Result;

}

This example illustrates the translation of a JGraph method into Java, where many of the more subtle 

and important features of the translation process occur. We now discuss these in detail.
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Repeat operations: Iterations in JGraph, represented by repeat operations, are controlled either by 

indexing through arrays (counted loops), by testing boolean expressions (controlled loops) or by a 

combination of both. To represent a counted loop in Java, we need two variables, an index to be incre-

mented in each iteration, and an upper limit on the index, used to stop the iteration. Clearly, if a 

method contains several counted loops, the same two variables can be used for each of them, so it 

makes sense to declare these variables at the beginning of the method body, as our example illustrates. 

Note that if the method were to contain no counted loops, then these variable declarations would be 

omitted. If the method contains a counted loop, in the sense defined above, these declarations are 

inserted into the Java code by the function INDEXDECL defined above using the Uplimit and Index 

components incorporated in the method structure for this purpose.

Similarly, if a method contains a controlled loop, as in the above example, a boolean variable is 

required, to be set in the body of the loop and tested in its condition. Again, only one such variable is 

required for all controlled loops contained in a method. The function FLAGDECL defined above 

inserts a declaration for it at the beginning of the method body in the Java code, if and only if the 

method contains a controlled loop.

Normal, catch and finally cases: In a JGraph method, exceptions thrown as a result of executing a 

normal case may be handled by one of the method’s catch cases. Also, an exception thrown by a catch 

case may be handled by a catch case occurring later in the method’s sequence of catch cases. This 

translates into Java in a very straightforward way, as a try block, containing the code corresponding to 

all the normal cases of the JGraph method, followed by one catch block for each catch case, possibly 

followed by a finally block corresponding to the JGraph method’s finally case. In our example, the try 

and catch clauses required for this implementation cover the lines from 4 to 24.

Normal case structure: Each method has at least one normal case. Every case except the last in the 

sequence of normal cases may contain operations with next case controls which, when fired, cause 

execution to pass immediately to the next case in the sequence. Unlike conditional constructs in more 

conventional languages where the conditions are kept seperate from other computations, within a case 
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in JGraph, the evaluation of conditions and other computations are mixed together. An operation 

with a next case control may occur at any point in the linear sequence in which the operations are exe-

cuted and there may be more than one such operation. 

The semantics of the next case control, although it makes sense in the context of data flow, is contrary 

to the principles of structured programming on which Java is based, where each code block should 

finish execution and return control to the enclosing code block.The only mechanisms in standard 

imperative programming languages for causing an abrupt transfer of control out of the middle of a 

code block are “goto”, “break” and exception throwing. Structured programming languages like Java 

don’t support “goto”, although it would certainly be the right mechanism for implementing next case. 

Java has a “break” statement but it is used only inside loops and cases of switch statements. Fortu-

nately, exceptions in Java provide a mechanism which is structurally very similar to the normal case 

structure of a JGraph method. We can see the correspondance if we note that executing a sequence of 

normal cases involves either executing the head case of the sequence to completion, or executing the 

tail. If any next case control in the head case fires then the tail is executed. Similarly executing a “try-

catch” pair in Java involves either executing the “try” to completion or executing the “catch”, and if 

any exception is thrown during execution of the “try”, then the “catch” is executed. Hence the head 

and tail of a sequence of normal cases corresponds to the “try” and “catch” clauses of a “try-catch” pair, 

and firing a next case control in the head case corresponds to throwing an exception in the “try” 

clause.

Our translation of normal cases is based on this correspondance. Wherever a next case control is fired 

in JGraph, the corresponding Java code, throws a special exception “ICaseException” and the next 

normal case will be the catch block catching the exception thrown. Lines 4 to 18 show the code corre-

spondance. There are three normal cases in the example. That means there is at least one next case 

control in each of the first two normal cases. If there were no next control case in the first normal case, 

lines 8 to 18 would be absent.
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4.2.4 Cases.

If C is a case, let P be any total ordering of Opers(C) obtained by topologically sorting the graph G 

defined on the case C as described in Section 3.2.5. See [2] for a description of topological sort.

If C is a normal case, then:

If C is a constructor case of a constructor of class K, let O be the unique constructor operation, P be 

any total ordering of  Opers(C) obtained by topologically sorting the graph G defined on cases as 

described in section 3.2.5 and let P1 be the linear ordering of Pre(C)  induced by P, then:

where OPERS and EXCEP are as defined above.

τ(C) = “{”[{type(L ) name(L ) | L ∈ Local(C)}, “;”] CASEBODY(C)“}”

If C is a catch case, then:

τ(C) =  “catch” (type(Catchroot(C)) name(Catchroot(C))“){”
[{type(L) name(L) | L ∈ Local(C) and L ≠ CatchRoot(C)}, “;”] 
CASEBODY(C)“}”

If C is a finally case, then:

τ(C) = “{”[{type(L ) name(L )|  L ∈ Local(C) and L ∉ Previous(C)}, “;”] [{type(Previ-
ous(C)[i]) name(Previous(C)[i]) = name(Roots(M)[i]) | 1 ≤ i ≤ |Previous(C)|}, “;”, ε, 
“;”] CASEBODY(C)“}”

where:

CASEBODY(C) = OPERS(P)[{name(Roots(M)[i]) = name(Outputs(C)[i]) | 1≤ i ≤ |Outputs(C)|}, “;”, ε, 
“;”] THROW(C) “;”

THROW(C) =






“throw” name(Exception(C))
Exception(C)≠null

ε
otherwise

and if X is a sequence of operations:

OPERS(X) =




τ(head(X)) OPERS(tail(X)) 
     if X≠()

ε   otherwise

τ(C) = “{”[{type(A ) name(A)|  A ∈ Local(C)}, “;”] CREATE(O, {}) OPERS(P1)THROW(C)“}”



52
In Java, the body of a constructor must perform exactly one invocation of a constructor of the parent 

class, which must precede any other actions performed in the constructor body. However, it is legal in 

Java to provide nested expressions as inputs to that constructor call. A constructor case in JGraph, is 

defined in such a way that the network of operations that provide inputs to the constructor operation 

can perform only computations that can be expressed textually as nested expressions (See section 

3.2.5). Also, instead of translating these operations as a sequence of assignments, we must produce 

nested expressions. So the translation of a constructor case is done in two parts, the operations 

“before” the constructor, and those “after”.

The functional style we have been using to define translation is awkward for expressing the translation 

of operations before the constructor. This is because in this translation we have to search backward 

from the constructor operation, remembering the operations we encounter so we can set a variable to 

the expression on the first visit, then simply use that variable on later visits. This requires a “global 

variable” which a pure functional notation can not accommodate. Hence, we will express this transla-

tion as a procedural algorithm.

In the algorithm described below, we will use Java notations and conventions as much as we can as 

well as the various notations we have used in translations described earlier, such as juxtaposition to 

denote concatenation.

CREATE(O, L)

{

S = “”;
if(O ∈ L)

return name(head(Roots(O)));
else
{

if(O is simple, get, array get or constructor operation)
{

if(O is an alloc or array operation)
S = S “new”;

if (Target(O) = ↑)
S = S “super.”;

else
if (Target(O) is a node)
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{

O1=operation with Target(O) as root;
S = S CREATE(O1, L);
if (O is simple, get)
S = S “.”;

}
}

S = S IDENT(O);

if(O is constructor, simple or alloc)
{

 T = Terminals(O);
 S=S “(”;

while (T ≠ ())
{ 

t = head(T);
T = tail(T);
if( t ∈ Inputs(K))

S=S name(t);
else
{

O1 = operation with t as root;
S = S CREATE(O1, L);

}
if (T==())

S = S “)”;
else

S = S “,”;
}

}
if(O is an alloc or array get operation)
{

T = Dimensions(O);
S = S “[”;
while T ≠ ()
{ 

t = head(T);
T = tail(T);
if( t ∈ Inputs(K))

S=S name(t);
else
{

O1 = operation with t as root;
S = S CREATE(O1, L);

}
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if (T==())

S = S “]”;
else

S = S “][”;
}

}

if(O has a root and the root of this operation occurs more than twice in the case)
S = name(head(Roots(O))) “=” S;

add O to L;
return S;

}

}

where:

4.2.4.1 Example.

Here we illustrate the above definitions by considering the translation of the normal, catch and finally 

cases of a local operation called Local, shown from left to right in  Figure 4-3 and referred to below as 

C1, C2 and C3 respectively.

We assume that Roots(Local) = (R1, R2) where name(R1) = “r1”, name(R2) = “r2”, type(R1) = 

“String”, type(R2) = “int”.

IDENT(O1)=














“super”
if O1 is a constructor operation and Target(O1) = ↑

name(K)
if O1 is a constructor operation and Target(O1) ≠ ↑

Name(O1)
if O1 is a simple or get operation

Value(O1)
if O1 is a literal operation
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Table 4-1: Translation of cases

Case Corresponding Java code

We assume that Exception(C1) = E, 
Outputs(C1)=(U1, U2) and Local(C1) = {U1, U2, 
L1, L2}

where
name(E) = “except”
type(L1) = “boolean”;
name(L1) = “l1”.
type(L2) = “int”;
name(L2) = “l2”.

name(U1) = “u1”,
name(U2) = “u2”.

{
boolean l1;
int l2;
String u1;
int u2;
<methods; section 4.2.3>
r1 = u1;
r2 = u2;
throw except;

}

C2
C3 C1

Figure 4-3: The three cases of Local
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4.2.4.2 Example
Here we illustrate the translation of constructor cases using the example in  Figure 4-4. Let K be the 
class, and M be the constructor in which the constructor case occurs.

We assume that Catchroot(C2) =T, 
Outputs(C2)=(U3, U4) and Local(C2) = {U4, L1}

where
type(T) = “MyException”, 
name(T) = “CEvar”,
type(L1) = “boolean”;
name(L1) = “l1”.
name(U3) = “u3”,
name(U4) = “u4”,

 catch (MyException CEvar)
 {

int u4;
boolean l1;
<methods; section 4.2.3>
r1 = u3;
r2 = u4;

 }

We assume that Previous(C3) = (P1, P2), 
Outputs(C3)=(U5, U6),
Local(C3) = {L1,L2,L3}
where
type(P1) = “String”;
name(P1) = “p1”,
type(P2) = “int”;
name(P2) = “p2”,
type(L1) = “String”;
name(L1) = “l1”,
type(L2) = “boolean”;
name(L2) = “l2”,
type(L3) = “boolean”;
name(L3) = “l3”.
name(U5) = “u5”,
name(U6) = “u6”.

finally
{

String l1;
boolean l2;
boolean l3;
String p1 = r1;
int p2 = r2;
<methods; section 4.2.3>
r1 = u5;
r2 = u6;

}

Table 4-1: Translation of cases

Case Corresponding Java code
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Table 4-2: translation of constructor case

constructor case Corresponding Java code

C = ((O1, O2, O3, O4, O5), null, null, ()) 
and Local (C) = {L}

where
Name(K) = “MyClass”,
O1 = (null, “foo1”, null, (T1), (R1))
O2 = (null, (R2), “Hello”)
O3 = (null, “foo2”, null, (T2, T3), (R3))

O4 = (null, (T4, T5, T6))
O5 = (null, “Result”, D) 
type(L) = “boolean”;
name(L) = “ret2”;
We assume that Inputs(M) = (I1, I2), and
name(I1) = “param1”, 
name(I2) = “param2”

{
int ret2;
MyClass(foo1(param1), 

ret2=foo2(“Hello”, param2), ret2);
Result = ret2;

}

Figure 4-4: Constructor case
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4.2.5 Operations

If O is an operation in some case of a method, local or repeat M then:

where DECL, OUTER are as defined in section 4.2.3 and:

 τ(O) =

































LHS(O) TAR(O) Name(O) “(”TERM(Terminals(O)) “)” CNTRL(O)
if O is a simple operation

name(head(Roots(O))) TAR(O) name(O) CNTRL(O)
if O is a get operation

TAR(O) Name(O) “=” name(head(Terminals(O))) CNTRL(O)
if O is a set operation

name(head(Roots(O))) “= new”  Name(O) CNTRL(O)
if O is an alloc operation

name(head(Roots(O))) “= ”  Value(O) CNTRL(O)
if O is a literal operation

“{” LOCDECL(O) OUTER(O) “}”
if O is a local operation

“{” FLAGDECL(O) INDEXDECL(O) INIT(O) “while (” HEAD(O) “) {”  NEXT(O) 
OUTER(O) “}}”

if O is a repeat operation

name(head(Roots(O)))“= new” Name(O) “[” TERM(Dimension(O)) “]”
if O is an array operation

name(head(Roots(O))) = TAR(O) “[” TERM(Dimension(O)) “]”
if O is an array get operation

TAR(O) “[” TERM(Dimension(O)) “]” = name(Data(O))
if O is an array set operation

name(head(Roots(O)))“=”Value(O)“==”name(head(Terminals(O)))“;”CNTRL(O)
if O is a match operation

LOCDECL(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i]) “=” name(Terminals(O)[i]) 
|1≤ i ≤ | Terminals}, “;”, ε, ”;”]

LHS(O) =
 
 


 ε     if Roots(O) = ()

name(head(Roots(O)))“=” 
if |Roots(O)| = 1
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TAR(O) =








ε      if Target(O) = null

name(r) “.” 
if Target(O) = r

“super.”       
if Target(O) = ↑

CNTL(O) =









“; if(!” name(head(Roots(O))) “)”  {τ(Control(O));}
if Control(O) ∈ { , } or Control(O)=  and M is a repeat operation

“; if(” name(head(Roots(O))) “)”  {τ(Control(O));}
if Control(O) ∈{ , } or Control(O)=  and M is a repeat operation

ε      otherwise

INIT(O) = FLAG(O) SIMPLE(O) IND(O) ARRAY(O) LOOP(O)

FLAG(O) =




name(Flag(M)) “= true ;” 
if O is a controlled loop

ε       otherwise

 IND(O) =




name(Index(M)) “= 0 ;” name(Uplimit(M)) “= 0 ;”
if O is a counted loop

ε      otherwise

SIMPLE(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i]) = name(Terminals()[i]) | 
1 ≤ i ≤ |Terminals|, Ttypes(T) = Simple}, “;”, ε, ”;”]

ARRAY(O) = [{type(Inputs(O)[i]) name(Inputs(O)[i]) | Ttypes(Inputs(O)[i]) = Array, 1 ≤ i ≤ |Ter-
minals|}, “;”, ε, ”;][{name(Uplimit(O)) “=” name(Uplimit(O)) “<” name(Termi-
nals(O)[i]) “.length ?” name(Uplimit(O)) “:”  name(Inputs(O)[i])  | T ∈ 
Terminals(O)1 ≤ i ≤ |Inputs| and Ttypes(Terminals(O)[i]) = Array}, “;”, “ ”, “;”]

LOOP(O) = [{type(Terminals(O)[i]) name(Inputs(O)[i])“;”
  name(Roots(O)[Ttypes(Terminals(O)[i]]) = name(Terminals(O)[i])|
1 ≤ i ≤ |Terminals| and Ttypes(Terminals(O)[i]) is an integer}, “;”, “ ”, “;”]

HEAD(O) =













name(Flag(M)) “&&” name(Index(M)) “≤” name(Uplimit(M)) 
if O is a controlled loop and counted loop

name(Flag(M))
if O is a controlled loop but not counted loop

name(Index(M)) “≤” name(Uplimit(M)) 
if O is a counted loop but not controlled loop

“true” 

otherwise

NEXT(O) =

[{name(Inputs(O)[i]) “=” name(Roots(O)[Ttype(Terminals(O)[i]]) | 
1≤  i ≤ |Terminals(O)| and Ttype(Terminals(O)[i]) is an integer}, “;”, “ ”, 
“;”][{name(Inputs(O)[j]) “=” name(Terminals(O)[j]) “[” name(Index(O)) “]” | 
1≤  j ≤ |Terminals(O)| and Ttype(Terminals(O)[j]) = Array}, “;”, “ ”, 
“;”]INCRINDEX(O)
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4.2.5.1 Examples of translating operations

Here we present an extensive sequence of examples to illustrate the above definitions.

INCRINDEX(O)=







name(Index(O)) “++;”
if Ttypes(Terminals(O)[i]) = Array for some i (1 ≤ i ≤ |Terminals|)

ε
otherwise

and for any list X consisting of nodes and integers.

TERM(X) =















 ε     if X =()

name(head(X))  
if |X| =1 and head(X) is a node

head(X)  
if |X| =1 and head(X) is an integer.

name(head(X)) “][” TERM(tail(X)) 
if |X| >1 and head(X) is a node.

head(X) “][” TERM(tail(X)) 
if |X| >1 and head(X) is an integer.

Table 4-3: Translation of operations
Operation  Formal  structure  Corresponding Java

(null, “foo”, null, (), ()) foo()

(T, “foo”, null, (), ())

where T is a node such that:
name(T)= “t”.

t.foo()

(T1, “foo”, null, (T2), (R)) 

where T1, T2 and R are nodes such 
that:
name(T1) = “t1”,
name(T2) = “t2”,
name(R) = “r”.

r=t1.foo(t2)
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(T1, “foo”, null, (T2), (R))
T1 = ↑
name(T2) = “t2”,
name(R) = “r”.

r=super.foo(t2)

(null, “foo”, null, (R)) 

where R is a node such that:
name(R) = “r”

r = foo

(T, “foo”, null, (R)) 

where T, R are nodes such that:
name(T) = “t”
name(R) = “r”

r = t.foo

(T, “foo”, null, (R)) 

where T, R are nodes such that:
T =  ↑
name(R) = “r”

r=super.foo

(T, (R), (5,7))

where T, R are nodes such that:
name(T) = “t”
name(R) = “r”

r=t[5][7]

(T, (R), (D))

where T, R and D are nodes such that:
name(T) = “t”
name(R) = “r”
name(D) = “index”

r = t[index]

(Τ, (R), (5,N, 7))

where Τ, R, N are nodes such that:
name(Τ) = “n”
name(R) = “r”
name(D) = “index”

r = n[5][index][7]

(null, “foo”, D) 

where D is a node such that:
where:
name(D) = “d”.

foo = d

(T, “foo”, D)

where T, D are nodes such that:
name(T) = “t”
name(D) = “d”

t.foo =d

Table 4-3: Translation of operations
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(T, “foo”, D) 

where T, D are nodes such that:
T = ↑
name(D) = “d”

super.foo = d

(T, (5,7), D)

where T, D are nodes such that:
name(T) = “t”
name(D) = “d”

t[5][7] = d

(T, (N), D)

where T, N, D are nodes such that:
name(T) = “t”
name(N) = “index”
name(D) = “d”

t[index] = d

(Τ, (5,N, 7), D)

where Τ, N and D are nodes such 
that:
name(Τ) = “n”
name(N) = “index”
name(D) = “d”

n[5][index][7] = d

(“foo”, (T1, T2), R)

where T1, T2 and R are nodes such 
that:
name(T1) = “t1”
name(T2) = “t2”
name(R) = “r”,

r = new foo(t1,t2)

(“foo”, (),  R) 

where R is a node such that:
name(R) = “r”

r = new foo()

(“foo”, (R), (5,7)) 

where R is a node such that:
name(R) = “r”.

r = new foo[5][7]

((“foo”), (R), (N)) 

where R, N are nodes such that:
name(R) = “r”,
name(N) = “index”.

r1 = new foo[index]

(null, (R), “123”)

where R is a node such that:
name(R) = “r”

r = 123

Table 4-3: Translation of operations
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(null, T, (R), “123”) where:
name(T) = “t”
name(R) = “r”

Note that a match is simply a short-
hand notation for testing for equality 
and has to do with specific controls. 
However, it is allowed to have the 
control null, in which case the match 
operation does not accomplish any-
thing useful. An example of match 
with controls will be shown in section 
4.2.6.1.

r = t==123;

({}, (T1, T2), (R1, R2, R3), N, C, X, 
(I1,I2), F, D, U, E)

where N is a sequence of normal 
cases, C is a sequence of catch cases,
X is a finally case, T1, T2, I1, I2, F, D, 
U and E are nodes and
type(T1) = “int”, type(T2) = “String”,
name(I1) = “i1”, name(I2) = “i2”,
name(T1) = “t1”, name(T2) = “t2”,
name(R1) = “r1”, name(R2) = “r2”,
name(R3) = “r3”.

{
int i1 = t1;
String i2 = t2;
<Cases; section 4.2.3.1>

}

({}, (T1, T2, T3), (), N, C, X, 
(I1, I2, I3), F, D, U, E)

where N is a sequence of normal 
cases, C is a sequence of catch cases,
X is a finally case, T1, T2, I1, I2, F, D, 
and U are nodes and
type(T1) = “int”, type(T2) = “String”,
type(T3) = “boolean”, 
name(I1) = “i1”, name(I2) = “i2”,
name(I3) = “i3”,
name(T1) = “t1”, name(T2) = “t2”,
name(T3) = “t3”, name(E) = “e”
we assume that there are terminate 
controls in the cases of this local oper-
ation.

{
int i1 = t1;
String i2 = t2;
try
{

<Cases; section 4.2.3.1>
} catch(ITermException e)
{
}

}

Table 4-3: Translation of operations
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As the example of a local operation containing operations with terminate controls shows, if a termi-

nate control (i.e.  or ) on an operation is activated, execution of the case containing the operation 

stops immediately, causing execution of the method, local or repeat to which the case belongs to stop.

To achieve equivalent behaviour in Java, we introduce a special exception class ITermException. If 

execution of a JGraph operation triggers a terminate control, then in the corresponding code, an 

instance of ITermException is thrown, as we will see later in section 4.2.6.1. If a JGraph method con-

tains a case which has an operation with a terminate control, then the body of the corresponding Java 

(null, (T1, T2, T3), (R1, R2), N, C, X, 
E, (I1, I2, I3), F, D, U)

where N is a sequence of normal 
cases, C is a sequence of catch cases, X 
is a finally case, T1, T2, T3, R, I1, I2, F, 
D, U are nodes and
E(I1) = 1,
E(I2) = Array,
E(I3) = Simple,
type(T1) = “int”, type(T2) = (“int”), 
type(T3) = “boolean”,
type(F) = “boolean”, type(D) = “int”, 
type(U) = “int”,
name(T1) = “t1”, name(T2) = “t2”, 
name(T3) = “t3”,
name(I1) = “i1”, name(I2) = “i2”, 
name(I3) = “i3”,
name(R1) = “r1”, name(R2) = “r2”,
name(F) = “flag1”, name(D) = 
“index1”,  name(U) = “uplimit1”,
we assume that
name(Flag(M)) = “flag”, 
name(Index(M)) = “index”,  
name(Uplimit(M)) = “uplimit”,
and there are controlled loops and 
counted loops in N, C and X.

{
boolean flag1;
int index1, uplimit1;
flag = true;
boolean i3 = t3;
index = 0 ;
uplimit = 0;
int i2 = t2;
uplimit=uplimit<t2.length?

uplimit:t2.length;
int i1;
r1 = t1;
while(flag & & index < uplimit)
{

i1 = r1;
i2 = t2[index];
index++;
<Cases; section 4.2.3.1>

}
}

Table 4-3: Translation of operations
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method will consist of a try-catch structure where the try clause contains the code corresponding to 

the cases of the JGraph method, and the catch clause catches any ITermException thrown in the try 

clause. If there were no operation in any case of a JGraph method with a terminate control, then the 

body of the corresponding Java method would not have this try-catch structure.

4.2.6 Controls

The translation of a control is defined with respect to its context. Let X = Control(O) where O ∈ 

Opers(C) and C is a case of some method, local or repeat M, then:

4.2.6.1 Examples of translating controls

τ(X)=













ε if X = null

“throw new ICaseException();”
if  X ∈  { , }

“throw new ITermException();”
if  X ∈  { , }

 name(Flag(M)) “= false ;”
if  X ∈  { , }

Table 4-4: Translation of operations with controls
(T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”

r=t.foo;
if(!r)
throw new ICaseException() ;

(T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”

r=t.foo;
if(!r)
throw new ITermException() ;

 (T, “foo”, { }, R) where:
name(T) = “t”
name(R) = “r”
We assume that the operation is 
in a case of a repeat

r = t.foo;
if( !r )
flag= false ;



66

4.2.7 A general example

In this section, we illustrate the translation process presented in this chapter by considering a real 

example, a JGraph method BubbleSort that applies the bubblesort algorithm to sort an array in place.

    

( , T, (R), “123”) where:
name(T) = “t”
name(R) = “r”

r = t==123;
if(!r)
throw new ICaseException() ;

Table 4-4: Translation of operations with controls
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The corresponding Java program generated from the JGraph program above is as follows:

void BubbleSort(int[] a)
{

try{
boolean flagname;
int r1;
boolean r;
r1 = a.length;
r = r1<=1;
if( r ) throw new ITermException() ;
{ // code for repeat operation “outer” starts here

boolean outer_flag;
flagname = true;
int[] outer_a = a;
int outer_in1;
int outer_r1 = r1;
while ( flagname )
{

outer_in1 = outer_r1;
int outer_rr1;
boolean rr;
int outer_loop1;
try{

outer_rr1 = outer_in1-1;
rr = outer_rr1==0;
if( rr )throw new ITermException() ;
outer_loop1 = 1;
{ // code for repeat operation “inner” starts here

outer_flag = true;
int[] inner_a = outer_a;
index = 0;
uplimit = 0;
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int inner_arrelement1;
uplimit = uplimit < outer_a.length ? uplimit : outer_a.length;
int inner_r1 = outer_loop1;
int inner_r2;
int inner_out1 = outer_rr1;
while (outer_flag && index < uplimit)
{

inner_r2 = inner_out1;
inner_arrelement1 = outer_a[index];
index++;
try{

int inner_rr2;
boolean rr2;
int inner_arrelement2;
inner_rr2 = inner_r2-1;
rr2 = inner_rr2 == 0;
if( rr2) throw new ITermException() ;
inner_arrelement2 = inner_a[inner_r1];
{ // code for local operation “swap” starts here

int swap_arrelement1 = inner_arrelement1;
int[] swap_a = inner_a;
int  swap_arrelement2 = inner_arrelement2;
int swap_r1 = inner_r1;
try{ // first normal case of  “swap” starts here

boolean swap_r;
swap_r= swap_arrelement1< swap_arrelement2;
if( !swap_r ) throw new ICaseException();

}catch(ICaseException e1)
{ // second normal case of  “swap” starts here

int swap_r2;
swap_a[swap_r1]= swap_arrelement2;
swap_r2 = swap_r1-1;
swap_a[swap_r2] = swap_arrelement1;

}
}
outer_loop1== inner_r1+1;
inner_out1= inner_rr2;

}catch(ITermException e2)
{

outer_flag = false;
}

}
}
outer_r1 = outer_rr1;

}catch(ITermException e3)
{
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flagname = false;

}
}

}

}catch(ITermException e)
{
}

}

4.3 Conclusion

In this chapter we have given the formal definition of the translation process to Java. It would be 

impossible in any reasonable amount of space to give examples that cover all combinations of features. 

We hope, however, that the examples we have provided will help the reader understand some of the 

more subtle aspects.

In the next chapter, we will discuss the problem the other way around, that is translating Java pro-

grams into JGraph.
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5Importing Java into JGraph

5.1 Introduction

In this chapter, we will address the problem of importing Java code into JGraph. The purpose is to 

provide JGraph with the capability to visually edit Java code. First individual elements of Java code 

such as keywords, operators and variables are identified by applying lexical analysis. Based on the lex-

eme list generated, corresponding JGraph elements are created and presented in a JGraph project for 

editing. We will go through this procedure in a top down fashion. We assume that the Java program 

imported is correct, thereby avoiding the complications associated with error processing.

The translation we will describe assumes that the source code is general Java: that is, we are not trying 

to identify any structures which might have originated from translating a JGraph program to Java as 

described in Chapter 4. At the end of the chapter we will discuss some of the issues associated with 

doing that. The presentation in this chapter is less formal than that of Chapter 4 relying on a series of 

examples.

5.2 Class files

For convenience, we assume that each class of a project to be translated is stored in a single file con-

taining no other classes. That is each file represents an individual Java class. For example, consider the 

following class file. Here we use the notation <...> introduced in Chapter 4. In this chapter, it indi-

cates that the example code includes a Java construct that will be discussed in another section.

package MyPackage;

import java.awt;
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import java.swing;

<class; section 5.3>

The JGraph generated from this file is illustrated in Figure 5-1. 

             

                       

At the package level, Java and JGraph are slightly different. In particular, unlike JGraph, Java has no 

explicit representation of a package, although specific implementations of Java may. In the example, 

therefore, the generated JGraph has a project window, shown in Figure 5-1(a), that depicts MyPack-

age, as well as the list of classes and interfaces the package contains.

5.3 Class

The following examples illustrate the translation of Java classes and interfaces to JGraph.

(a) (b)

Figure 5-1: JGraph package
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Table 5-1: Translation of classes
Java construct Corresponding JGraph

 class MyClass1 

{
<attributes; section 5.5>

<constructors; section 5.7>

<methods; section 5.7>
}

public class MyClass2 

{
As above

}

final class MyClass3 

{
As above

}

public final class MyClass4 

{
As above

}

abstract class MyClass5

{
As above

}

public abstract class MyClass6 

{
As above

}

interface MyClass7 

{
As above

}
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In the examples  above, different Java classes are represented by different JGraph images. Each JGraph 

class image  consists of a class icon or interface icon in the centre, together with icons at the bottom 

corners of the image indicating the qualifers of the class or interface. For example, a diamond shape at 

the left-bottom indicates that the class can be referenced only from inside the package. A green rectan-

gle indicates that the class is a public class. The characters “A” and “F” indicate that the class is  

abstract or final.

5.4 Inheritance

In the following example, we illustrate the translation of inheritance relationships. Consider the fol-

lowing Java class definition, assuming that the package MyPackage in which it occurs does not con-

tain a class called SuperClass. In the classes window of MyPackage, shown in Figure 5-2, SuperClass is 

represented as an alias. 

public class MyClass extends SuperClass implements Interface1, Interface2

{

       <attributes; section 5.5>

<methods and constructors; section 5.7>

}

public interface MyClass8 

{
As above

}

Table 5-1: Translation of classes
Java construct Corresponding JGraph
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5.5 Attributes 

The translation of Java attributes to JGraph is trivial, as shown below:

public int i=0;

public boolean boo=true;

static int j=0;

5.6 Preprocessing

Because JGraph is a data flow language, there are some significant differences between its execution 

model and that of Java. In particular, JGraph transmits data by data flow, while Java transmits data via 

variables.  Two different variables in Java may have the same name providing they do not have over-

lapping scopes; also, a Java variable may have a value assigned to it more than once during its lifetime. 

Figure 5-2: A JGraph class window showing inheritance

Figure 5-3: Attribute list
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In contrast a JGraph node can occur only once as a root, and receives a value only once. We deal with 

these differences by preprocessing each Java method before translating to JGraph. Much of the pre-

processing is aimed at transforming the Java code such that the variables have the same characteristics 

as roots. 

5.6.1 Simplifying control structures

For simplicity, in the following discussion, we assume that any loop statements in the method are 

while loops, since loops of other kinds can be translated into while loops in the obvious way.

Also, we will assume that all switch statements have been translated into conditional statements in the 

obvious way.

5.6.2 Multiple declarations

To remove multiple declarations, we rename variables to ensure that each variable name is declared 

only once, then we move the declarations to the beginning of the method body. If a variable is initial-

ized where it is declared, we decouple the declaration part from the initialisation part and move just 

the declaration. The remaining initialisation becomes an assignment. By making sure that no variable 

name is used more than once within a method, we obtain Java code in which the pattern of variable 

use is similar to the pattern of occurrence of nodes in JGraph.

If a variable is declared as an array variable. we move the declaration part as discussed above. In Java, 

an array variable may be initialised in its declaration using an array constant, consisting of a list of val-

ues enclosed in braces. Not only does Java not allow array constants in ordinary assignment state-

ments, but JGraph has no equivalent to array constants. So in order to obtain correct Java which is 

similar in structure to JGraph, the single assignment using an array constant is replaced by a sequence 

of assignments, one for each array element.
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5.6.3 Embedded sequences of statements.

In Java, a statement in a sequence of statements can itself be a sequence of statements enclosed in 

braces. If there are no local variables declared in such a nested sequence, then the nesting is unneces-

sary. After the above preprocessing step that deals with the removal of multiple declarations, all the 

declarations of local variables are moved to the beginning of the method. As a result, no nested 

sequence of statements will have local variables declared. Therefore, such sequences can be removed, 

as follows.

Let S be a sequence of statements {S1, ..., Sn} occurring in the method such that some statement Si in 

the sequence is also a sequence of statements, say {T1, ..., Tm}, then replace S in the method by {S1, ..., 

S(i-1), T1, ...,Tm, S(i+1), ..., Sn} and repeat until there are no embedded sequences of statements 

remaining.

Table 5-2: Sample of multiple declarations

Original code Preprocessed code

void MyMethod(boolean b)
{

if(b)
{

int n;
<body-t>

}else
{

byte n;
<body-e>

}

}

void MyMethod(boolean b)
{

int n;
byte n1;

if(b)
{

<body-t>
}else
{

<body-e1>
}

}

where <body-e1> is the same as <body-e> 
except that each occurrence of n is replaced by 
n1;



77

5.6.4 Method returns

In Java, a statement of the form "return E" in a non-void method, where E is some expression, causes 

execution of the method to break, and the value of E to be returned to the calling procedure. If the 

"return" occurs in the "try" or "catch" clauses of a "try-catch-finally" structure, executing the return 

will cause a break to the "finally" clause. This pattern can be nested to any depth, in which case the 

value returned by the method will be that computed by the last "return" statement executed.

A void method may or may not contain return statements. If it does, then it behaves as described 

above except that it returns no value.

In contrast, since JGraph is data flow, each method must be executed to completion. Therefore, 

before we import a Java program into JGraph, we preprocess it so that the method body has a specific 

form and contains only one "return" statement. 

First, a list of all return types of all methods in the program being translated is created, and for each 

type in the list, an exception class is added to the program, as follows:

package MyPackage ;

import java.awt.*;

public  class IRetExcep_T extends Throwable

Table 5-3: Sample of embedded sequences of statements.

Original code Preprocessed code

void MyMethod(boolean b)
{

<body-1>
{

int n;
<body-2>

}
<body-3>

}

void MyMethod(boolean b)
{

int n;
<body-1>
<body-2>
<body-3>

}
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{

T RetResult;

public IRetExcep_T(T RetResult)

{

this.RetResult = RetResult;

}

                     }

where we assume the return type of the method being dealt with is T and the package in which the 

method occurs is MyPackage. If the method returns void, then we have a simpler definition for the 

corresponding exception class as follows:

package MyPackage ;

import java.awt.*;

public  class IRetExcep_void extends Throwable

{

                     }

Assuming the classes for return types have been added, we now transform each method as follows. 

Suppose the method is as follows, where T is the return type.

<qualifiers> T name(<parameters>) 

{

<body>

}

Assuming T is not void, preprocessing produces the following:

<qualifiers> T name(<parameters>) 

{
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<newbody>

}

where <newbody> is obtained by replacing every statement of the form "return E;" in <body>, where 

E is some expression, by "throw new IRetExcep_T(E);"

If T is void, the preprocessed code is as above except that E is the empty string in each of the throw 

statements.

Note that if a method returns void, the code above should not contain T Result.

5.6.5 Unary increment and decrement operators

In Java, the unary operator ++ can occur as either a prefix operator or a postfix operator, and must 

have a variable as its operand. The value of the expression ++x is the value of x+1; the value of x++ is 

the value of x; and in both cases, the value of x after the expression is evaluated is the value of x+1. 

The unary operator -- behaves analogously, except that it decrements its operand. 

We preprocess the unary operators above by replacing all occurrences of  ++x with (x = x + 1), and x++ 

with ((x=x+1)-1), and similarly for x-- and --x.

5.6.6 The operators +=, -=, /=, *=

We replace all the occurrences of expressions of the form x op= c, where op denotes one of the opera-

tors +, -, /, *, by x = x op c;

5.6.7 Condition of while loops and conditional statements

In Java, the condition of while loops and conditional statements could be either a boolean variable or 

an expression. In order the deal with embedded assignments in the condition and exceptions that 

might be thrown in the condition, which will be discussed in later sections, we preprocess it as fol-

lows:

1. If S = "if <condition> <body-t> else <body-e>"
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    S is replaced by:

    S1 = "E = <condition>; if (E) {<body-t>} else {<body-e>}"

where E is a boolean variable. The declaration of E is added in the beginning of the method.

2. If S = "while <condition> <body> "

    S is replaced by:

    S1 = "E = <condition>; while(E) {<body-> E = <condition>;}"

where E is a boolean variable. The declaration of E is added in the beginning of the method.

5.6.8 Embedded assignments

In this step, we discuss the removal of embedded assignments; that is, assignment expressions that 

occur as operands in other expressions. There are several good reasons for taking this step. Making 

every assignment into a statement will simplify the process of removing multiple assignments dis-

cussed later. The translation of if-else and loops will be simpler as a result, since no variables will be 

assigned values in the condition.  The translation of Java variable-to-variable assignments into JGraph 

will be simplified.

As we will explain, removing embedded assignments is accomplished by adding assignment state-

ments before the statement that contains the embedded assignment expressions. It is important, 

therefore, that preprocessing step 5.6.2 has been done at this point since it moves all declarations to 

the start of the method, guaranteeing that the new assignment statements added in this step follow 

declarations of the variables to which they assign values.

In this step we iteratively transform a statement containing embedded assignment expressions by 

replacing each embedded assignment by a new variable, introducing a preceding assignment state-
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ment that sets the value of the new variable, and a following assignment statement that copies the 

value of the new variable into the original variable. For example the statement:

z =( x = y*x)

would be expanded to:

x1 = y*x;

z = x1;

x = x1;

If a variable on the left of an embedded assignment appears elsewhere in the expression, then we have 

to replace some of its occurrences in the expression with the corresponding new variable, and if there 

are several embedded assignments in an expression, we need to be careful about the order in which 

they are removed, and exactly which variable occurrences in the expression are replaced. 

Assignment and method call statement

If embedded assignments occur in an assignment or method call statement, the process consists of 

two steps.

1. Rewriting the statement

In Java, operands of an expression are processed left to right, except for the operands of = which

are processed in the opposite order. To make it easier to specify which variable occurrences get

 renamed in step 2, below, we transform the expression so that all operands are processed left to

 right. To do this, we replace every assignment expression x = A in the statement by the expression

A => x.

2. Expanding the statement
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Suppose that after step 1, the statement has the form S0 A ⇒ x S1;, where at least one of S0 and

S1 is not the empty string, and S0 contains no occurrence of ⇒. Then the statement is replaced

by x1 = A; S0 x1 S1’; x = x1; where S1’ is obtained by replacing every x in S1 by a new variable x1

 of the same type as x. The declaration of x1 is added at the beginning of the method. This 

process is repeated until no occurrences of ⇒ remain.

We illustrate the above process by considering the following example:

x = (x = 5*(y = 3)) + ( x = y*x)

After step 1 above, the original statement is re-written to:

(5*(3 ⇒ y) ⇒ x) + ( y*x ⇒ x) ⇒ x;

Applying step 2 repeatedly, results in the following sequence of transformations:

y1 = 3;

(5* y1 ⇒ x) + ( y1*x ⇒ x)  ⇒ x;

y = y1;

Note that we have removed superfluous parentheses in generating the above. The next expansion pro-

duces:

y1 = 3;

x1 = 5*y1;

x1 + ( y1*x1 ⇒ x1)  ⇒ x;

x = x1;

y = y1;

Finally we obtain:
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y1 = 3;

x1 = 5*y1;

x2 = y1*x1;

x1 + x2   ⇒ x;

x1 = x2;

x = x1;

y = y1;

Since the original statement was an assignment, we must convert the last => into =, obtaining:

y1 = 3;

x1 = 5*y1;

x2 = y1*x1;

x = x1 + x2;

x1 = x2;

x = x1;

y = y1;

Note that because of section 5.6.7, there would be no assignments embedded in the condition of 

while loops and conditional statement.

5.6.9 Missing else

As we will see below, each if-then-else statement in a Java program will be translated into a two-case 

local operation. In Java, such conditional statements may have no else clause: however, in JGraph, to 

obtain conditional behaviour, more than one case is required. To expedite their translation to JGraph, 

therefore, an empty else clause is added to each if-then statement.
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5.6.10 Exceptions

In Java, a value is assigned to a variable before an exception is thrown will be available in the code exe-

cuted after the exception, provided that this code is in the scope of the variable. In JGraph, however, 

when control transfers out of the case where the exception is thrown the only values computed in the 

case which will still be available are those passed as outputs from the case and those will be available 

only in the finally case of the method, local or repeat to which the exception-throwing case belongs.

For that reason, in order to translate a Java program into JGraph, we need to rearrange the Java code 

so that in the JGraph translation, a value assigned to a node before an exception is thrown will be 

available in the computation conducted after the exception. The way we accomplish this rearrange-

ment is to locate each statement that may throw an exception, then replace it with code that will gen-

erate an appropriate exception without actually throwing it, and avoid executing code that would not 

have been executed if an exception had been thrown in the original code. The exceptions created are 

assigned to a variable, which is declared at the beginning of the method to be of type Throwable, and 

used to throw an exception, if necessary, only at the end of the method. In this way we reduce all the 

various throws to assignments to the variable declared.

Firstly, we declare at the beginning of the method a new variable v of type Throwable, then we define 

a function STRIPTHROW which operates on statements and sequences of statements to replace all 

exception throwing by assignment to v.

Let S be a sequence of statements, then:

STRIPTHROW(S)=








S1; STRIPTHROW(x1); if(v == null) {STRIPTHROW(S2)}
if S = S1; x1; S2 where S1 is a sequence of statements that cannot throw

 exceptions, and x1 is a statement that may throw exceptions.

S if S cannot throw exceptions.
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If S is a void expression or an assignment, and S may throw exceptions, then 

STRIPTHROW(S) = try{S; v = null;} catch(Throwable e) {v = e;}

If S is a conditional statement that may throw exceptions, say S = if (E) {<body -t> } else {<body-e>} 

where E is a boolean variable, then:

STRIPTHROW(S) = if (E){STRIPTHROW(body-t)} else{STRIPTHROW(body-e)}

If S is a throw statement, say S = throw T;, then

STRIPTHROW(S) = “v =T;”

If S is a while loop statement, say S = while (E) {<body>} where E is a boolean variable, then:

STRIPTHROW(S) = while (E){STRIPTHROW(<body>)}

If S is a try-catch-finally statement, let

S = try{<body-t>} catch(E1 e1){<body-c1>} catch(E2 e2){<body-c2>}...

      catch(Em em){<body-cm>} finally{<body-f>}

then:

STRIPTHROW(S) = STRIPTHROW(<body-t>) if (v != null){

if (v instanceof  E1) {e1 = v; v =null; STRIPTHROW(<body-c1>)}

else if (v instanceof E2){e2 = v; v =null;STRIPTHROW(<body-c2>)}...

else if (v instanceof Em){em = v; v =null;STRIPTHROW(<body-cm>)}else{}}else{}

STRIPTHROW(<body-f>)

Note that if a try-catch-finally does not contain a finally clause, STRIPTHROW(<body-f>) would not 

occur in the above.

Using STRIPTHROW, we transform the body, <body> of the method M. First we define a function

THROWS to deal with throws clause of M, as follows:
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If M is non-void and returns value of type T, we replace <body> by 

STRIPTHROW(<body>);THROWS(M) return ((IRetExcep_T)v).RetResult;

If M is void and has a throws clause, we replace <body> by

STRIPTHROW(<body>);if (v != null) THROWS(M) else{}

Otherwise, we replace <body> by STRIPTHROW(<body>).

THROWS(M)=











if(v instanceof p1) throw (p1) v;
else if(v instanceof p2) throw (p2) v;...
else if(v instanceof pn) throw (pn) v;
else{}

if the declaration of M includes the clause throws p1 , p2 ...pn for some n > 0

ε if M has no throws clause.



87
This process is illustrated by the example as follows.

5.6.11 Isolating variables.

In JGraph, conditionals are dealt with by multi-case locals, loops by repeat operations, and exception 

handling by multi-case locals. Each of these structures involves cases with their own roots, different 

Code after step 5.5.8 Preprocessed code

String MyMethod(boolean b) throws E3
{

try
{

if(b)
throw new E1();

else
throw new E2();

}catch(E1 e1)
{

System.out.println(“E1 is 
thrown”);

throw new E3();
return “Hello World”;

}catch(E2 e2)
{

System.out.println(“E2 is 
thrown”);

}finally
{

System.out.println(“finally is
 reached”};
}

}

where E1, E2, E3 are three different exception 
types.

void MyMethod(boolean b) throws E3
{

Throwable v;
if(b)

v = new E1();
else

v = new E2();
if( v != null)

if( v instanceof E1)
{ e1=v; 

v = null;
System.out.println(“E1 is

 thrown”);
v = new E3();

}else
if( v instanceof E2)
{

e2 = v;
v = null;
System.out.println(“E2 is
thrown”);

}
{

System.out.println(“finally is
reached”};

}
} else{}
if(v instanceof E3)

throw (E3)v;
else
{
}
return ((IRetExcep_T) v).RetResult;

}
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from the roots in the enclosing case. In Java, on the other hand, the variables that occur in loops, if-

then-else statements and try-catch-finally statements can also occur outside. Consequently, in this 

preprocessing step, we transform the Java code by introducing new local variables into these struc-

tures, different from variables occurring outside them.

If R is a variable then R is external to a statement if it is not an attribute of the class of the method and 

has an occurrence in the method which is not in the statement.

Let X be the set of all variables that are external to but occur in a statement S where S is a loop, if-

then-else or try-catch-finally statement., and for each x in X, let x’ be a new variable; then the declara-

tion "T x’ ;" is added to the beginning of the method, and S is replaced by SN as follows.

Note that the preprocessing step as described in section 5.6.10 guarantees that there is no finally 

clause in the method body, every catch case is in the particular form catch(E e){ v = e;}, and there is no 

more than one catch case in any try-catch statements.

1. If S = "if <condition> <body-t> else <body-e> "

    S is replaced by:

    S1 = "IN if <condition1> {<body-t1> OUT} else {<body-e1> OUT}"

    where

• if x is assigned a value in <body-t> or <body-e> then OUT is the statement 

"x = COPY(x’) ;" and otherwise OUT is the empty string.

•   <condition1>, <body-t1> and <body-e1> are obtained by replacing all occurrences of

 x by x’ in <condition>, <body-t> and <body-e> respectively.

• if x occurs in <condition>, or x is used before it is assigned in <body-t> or in 

<body-e>, or x is assigned in <body-t> but not in <body-e> or vice versa, then IN is

the statement "x’ = COPY(x) ;" and otherwise IN is the empty string. 
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    This process is repeated for all the variables in X, obtaining SN.

Each assignment statement that includes the function COPY is a value passing statement that essen-

tially does a variable-to-variable assignment, but corresponds to the transmission of a value between 

the outside and the inside of a JGraph entity, for example, from a terminal on the outside of a local to 

the corresponding input bar root on the inside. Although value passing statements are Java assign-

ments, in the final translation to JGraph, they will be treated differently from variable-to-variable 

assignments. Note that the Java code that results from the introduction of these value passing state-

ments can not be correct since the function COPY is undefined, and in fact could not be defined 

since it applies to variables of any type. However, if every value passing statement is replaced by an 

assignment, the code will be correct. 

This process is illustrated by the example below.

Code after step 5.5.9 Preprocessed code

void MyMethod(boolean b)
{

int i=0;
int k=-1;

if(b)
{

int n = i;
<body-t>

}else
{

int m = k;
<body-e>
k = m;

}

}

Assuming that i is not assigned 
a value anywhere in <body-t> 

void MyMethod(boolean b)
{

int i’;
int i=0;
i’ = COPY(i);
k’ = COPY(k);
if(b)
{

int n = i’;
<body-t’>
k = COPY(k’);

}else
{

int m = k’;
<body-e’>
k’ = m;
k = COPY(k’);

}
}
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2. If S = "while <condition> <body>"

    S is replaced by:

    S1 = " IN while <condition1>{ <body1> OUT}

    where

• if x occurs in <condition> or is used before it is assigned in <body> then IN is the

statement "x’ = COPY(x) ;" and otherwise IN is the empty string.

• if x is assigned a value before it is used in <body> then OUT is the statement 

"x = COPY(x’) ;". Otherwise, if x is both used and assigned and is used before it is

 assigned a value in <body> then OUT is "LP(x’) ; x = COPY(x’);". Otherwise OUT is

the empty string.

•  <body1> is obtained by replacing all occurrences of x by x’ in <body>.

•  <condition1>  is obtained by replacing all occurrences of x by x’ in <condition>

    This process is repeated for all the variables in X, obtaining SN.

The function LP identifies variables in Java that will correspond to the loop terminals and loop roots 

of a repeat operation in JGraph. Note that the Java code that results from the introduction of the loop 

function LP cannot be correct since LP is undefined, and in fact could not be defined since it applies 

to variables of any type.

This process is illustrated by the example below.
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3. If S = “try <body> catch(E e) {<body-e>}”, S is replaced by:

    S1 = “IN try  {<body-1> OUT} catch (E e){ <body-e> OUT}”

    where

• if x is used before it is assigned in <body> then IN is the statement “x’ = COPY(x) ;”

 and otherwise IN is the empty string.

Code after step 5.5.9 Preprocessed code

void MyMethod(boolean b)
{

int i = 0;
while(b)
{

i += 1;
System.out.println(i);
if(i == 100)
{

b = false;
}else
{}

}
}

void MyMethod(boolean b)
{

int i’;
boolean b’;
boolean b”;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b” = false;
b’ = COPY(b”);

}else
{

b’ = COPY(b”);
}
i = COPY (i’);
LP(b’);
b = COPY(b’);

}

}
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• if x is assigned a value in <body>, or x is v then OUT is the 

statement "x = COPY(x’) ;". Otherwise, OUT is the empty string.

• <body-1> is obtained by replacing all occurrences of x by x’ in <body>.

    This process is repeated for all the variables in X, obtaining SN.

Note that <body> is not possibly in the form  “throw T;” since it has been eliminated in section 

5.6.10.

This process is illustrated by the example below.

5.6.12 Removing multiple assignments

Since JGraph is a data flow language each of its "variables", that is, roots, can be assigned a value only 

once. This property of data flow languages is called single assignment. In Java, however, a variable can, 

in general, be assigned a value more than once. So we need to modify a given Java program to remove 

multiple assignments.

Code after step 5.5.9 Preprocessed code

......
int i = 0;
int n = 100;
try
{

S;
v = null;

}catch(E e)
{

v = e;
}

where E is an Exception type, S is a statement 
that may throw an exception of type E. Assum-
ing that variables i and n are used in S. 

......
int i = 0;
int n = 100;
n’ = COPY(n);
i’ = COPY(i);
try
{

S’;
v = null;

}catch(E e)
{

v = e;
}.

where S’ is the same as S except that each occur-
rence of n and i are replaced by n’ and i’.
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Step 5.6.2 guarantees that all variables in a method are uniquely named and therefore makes it easy to 

identify multiple assignments since two assignments to variables of the same name must, in fact, be 

assignments to the same variable. Also, in looking for multiple assignments, we can restrict our atten-

tion to assignment statements since embedded assignment expressions were removed in step 5.6.8. 

We also note that because of step 5.6.9, every conditional statement has an else clause.

We say that two assignment statements in a method are compatible iff the variables being assigned are 

different, or the assignments are in different clauses of a try-catch statement or an if-then-else state-

ment; otherwise the two assignments are incompatible.

    Let the body of the method be S1 “x = A;” S2 “x = B;” S3, where the two assignments are 

    incompatible. 

    The method body is replaced by S1 “x = A;” S2 “x1 = B;” S3’, where S3’ is obtained by replacing each

    occurrence of x in S3 by x1 except that wherever LP(x) occurs in S3 , it is replaced by 

    LOOP(x, x1),  where x1 is a new variable of the same type as x. The declaration of x1 is added  to

    the beginning of the method. The process is repeated for all the multiple assignments until it no

    longer applies.

This process is illustrated by the example below.

Like LP, LOOP identifies variables in Java that will correspond to the loop terminals and loop roots of 

a repeat operation in JGraph, and like LP , LOOP could not be defined since it applies to variables of 

any type. However, if LOOP(x, x’) is replaced by the assignment x = x’, the code will be correct.



94

5.6.13 Variable to variable assignments

We remove all assignments of the form x = y, where x and y are variables, and replace every occurrence

of x by y.

Code after step 5.5.10 Preprocessed code

void MyMethod(boolean b)
{

int i’;
boolean b’;
boolean b”;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b” = false;
b’ = COPY(b”);

}else
{

b’ = COPY(b”);
}
i = COPY (i’);
LP(b’);
b = COPY(b’);

}

}

void MyMethod(boolean b)
{

int i’;
int i”;
boolean b’;
boolean b”;
boolean  b1;
boolean  b2;
int i = 0;
b’ = COPY(b);
while(b’)
{

i’ += 1;
System.out.println(i’);
i” = COYP(i’);
b” = COPY(b’);
if(i” == 100)
{

b1 = false;
b2 = COPY(b1);

}else
{

b2 = COPY(b”);
}
i = COPY (i’);
LOOP(b’, b2);
b = COPY(b2);

}

}
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5.7 Methods and Constructors

Here we illustrate how Java methods and constructors are translated into JGraph by considering a 

class with several methods and one constructor. Here we are not dealing with the translation of the 

method bodies, so we have omitted them from the Java code, and show only those JGraph windows 

that correspond to the explicit parts of the Java code.

Some of the corresponding JGraph windows are shown in Figure 5-4. To avoid repetition, the details 

of parameters and exceptions are shown for only one method.

MyClass(int i, boolean boo)
{

<expressions; section 5.8.1>

<controls; section 5.9.1, 5.9.2, 5.9.3>
<assignments; section 5.8.2>

}

int MyMethod1(int i, boolean boo) throws IOException
{

As above

}

public String MyMethod2( boolean boo)
{

As above

}

protected void MyMethod3(void) throws Exception
{

As above

}

private int MyMethod4(boolean boo)
{

As above

}



96

5.8 Expressions

In this section we will address the translation of expressions, where an expression is built using the 

standard Java operators including assignment. We ignore declarations since they have no representa-

tion in the corresponding JGraph except as types of roots.

Since JGraph is a dataflow language, it does not in general have assignments like Java since there are 

no variables. There is an exception to this general rule though, which is when the left-hand side of an 

assignment is an expression that represents an attribute of an instance. In this case JGraph actually 

performs an assignment in much the same way as Java. So first we will deal with Java expressions that 

do not involve assignments, then consider assignment expressions. All Java expressions either return 

Figure 5-4: JGraph methods corresponding to Java



97
one value or no value. We will refer to these two categories as “non-void” and “void” respectively. In 

all examples of non-void expressions, we will identify the root in the corresponding JGraph structure 

that provides the value of the expression.

In Java, a variable is an expression. Since JGraph has no variables, there is no direct representation in 

JGraph of a Java expression that is simply a variable. In Java, however, a variable cannot occur as an 

expression unless it has been assigned a value. So the root which corresponds to an expression which is 

simply a variable is the root of the expression that provides the value for the variable.

In the following discussion, we will use fuzzy blobs to represent JGraph structures equivalent to Java 

expressions and statements. So if X is a Java expression, then  represents the correspond-

ingJGraph structure. If a fuzzy blob represents a non-void expression, then there will be a unique root 

on some operation in it that corresponds to the expression in the sense that the value for the expres-

sion will be produced at that root. Since variables can be assigned within a Java expression, so within a 

corresponding fuzzy blob there will be other roots corresponding to these assigned variables.

5.8.1 Expressions which are not assignments

Table 5-4: Examples of translating functional expressions
Java Expression Corresponding JGraph

Name()

where Name refers to a 
void method

Name()

where Name refers to a 
non-void method where the root corresponds to the expression.

Name(T1,T2)

where Name refers to a 
void method and T1 and 
T2 are expressions
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Name(T1,T2)

Where Name refers to a 
non-void method and T1 
and T2 are expressions

where the root of the operation Name corresponds to 
the expression.

T1.Name(T2,T3)

where Name refers to a 
void method and T1, T2 
and T3 are expressions

T1.Name(T2,T3)

Where Name refers to a 
non-void method and T1, 
T2 and T3 are expressions

where the root of the operation Name corresponds to 
the expression.

super.Name(T1,T2)

where Name refers to a 
void method and T1 and 
T2 are expressions

super.Name(T1,T2)

Where Name refers to a 
non-void method and T1 
and T2 are expressions

where the root of the operation Name corresponds to 
the expression.

Table 5-4: Examples of translating functional expressions
Java Expression Corresponding JGraph
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Table 5-5: Examples of translating operator expressions
Java Expression Corresponding JGraph

T1 + T2
where T1 and T2 are expressions

where the root of the operation + corresponds to the expression.

T1+T2+T3
where T1, T2 and T3 are expres-
sions

where the root of the operation + corresponds to the expression. 
Note that associative binary operations like + can have any num-
ber of inputs.

T1 ? T2 : T3
where T1, T2 and T3 are expres-
sions

where the root of the operation ?: corresponds to the expression.

Table 5-6: Object Get
Java Expression Corresponding JGraph

Name

where Name refers to an 
attribute

where the root corresponds to the expression.
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T.Name

where Name refers to an 
attribute and T is an expression

where the root of the operation Name corresponds to the 
expression.

super.Name

where Name refers to an 
attribute

where the root corresponds to the expression.

T[5][7]

where T is an expression

where the root of the operation corresponds to the expression.

T[T1]

where T and T1 are expressions

where the root of the operation corresponds to the expression.

Table 5-7: Allocations
Java Expression Corresponding JGraph

new Name(T1,T2)

where Name refers to a class

where the root of the operation Name corresponds to the 
expression

Table 5-6: Object Get
Java Expression Corresponding JGraph
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5.8.2 Assignment expressions

In Java an assignment expression has the form X=Y, where Y is an expression and X is either a variable 

which is not an attribute of a class, or an expression that evaluates to an attribute of an instance or an 

element of an array. Since JGraph is data flow, it has no variables, and therefore, no construct equiva-

lent to Java’s assignment to a variable. The use of a variable after it is assigned in Java will be repre-

sented in JGraph by a data link connecting the root corresponding to the expression that provides the 

new Name()

where Name refers to a class
where the root corresponds to the expression

new foo[5][7]

where foo refers to a class or type
where the root corresponds to the expression

new foo[T]

where foo refers to a class or type 
and T is an expression

where the root of the operation corresponds to the expression

Table 5-8: Constants
Java Expression Corresponding JGraph

“Hello”

where the root corresponds to the expression.

Table 5-7: Allocations
Java Expression Corresponding JGraph
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variable its value, to a terminal in the JGraph structure corresponding to the expression in which the 

variable is used.

The second kind of JGraph assignment, in which the left hand side is an expression that evaluates to 

an attribute of an instance or element of an array, corresponds to a set operation in JGraph. The vari-

ous possibilities are illustrated below:

Table 5-9: Object Set and Array Set
Java Expression Corresponding JGraph

Name=T

where Name refers to an 
attribute and T is an expression

T[5][7]=T1

where T and T1 are expressions

T1[T2]=T3

where T1, T2 and T3 are expres-
sions

T1.Name=T2

where Name refers to an 
attribute and T1 and T2 are 
expressions

super.Name=T

where Name refers to an 
attribute and T is an expression
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5.8.2.1 General example:

The following example provides a more comprehensive example of the translation of expressions:

x.b.a = Func(Z);

5.8.3 Bodies of methods and control structures

After the preprocessing steps, the body of each Java method, and the body of each control structure 

consists of a sequence of statements each of which is one of the following:

• Void expression

• Assignment expression

• Declaration

• Control structure

If a method has a throws clause, it will have a conditional statement at the end of its body, in which 

exceptions of the types specified in the clause are thrown. After preprocessing, these will be the only 

throw statements in the method. The translation of Java expressions to JGraph has been discussed 

above in general, and therefore, void expressions have been dealt with.  The translation of assignment 

expressions has been covered in section 5.8.2. Declarations produce no corresponding JGraph struc-

tures. The translation of control structures will be covered in section 5.9. Hence, it remains in this 

section to describe how a sequence of statements is translated.

Figure 5-5: A general example
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We will describe the translation of a sequence of statements in a recursive fashion. First, the empty 

sequence of statements produces no JGraph structures. Now consider a non-empty sequence S ; Y 

where S is the first statement and Y is the remainder of the sequence.  Figure 5-6 shows the corre-

sponding JGraph structure. Each connection indicates that a value produced in the structure repre-

sented by blob S is used in the structure represented by blob Y. Note that because of preprocessing 

step 5.6.12 above, there are no multiple assignments in the method, so the root at the tail of the con-

nection is uniquely defined. 

5.8.4 Method

The following example illustrates the translation to JGraph of Java methods that are not void. After  

the preprocessing described in section 5.6.4 for method returns and the preprocessing steps described 

in section 5.6.10 for try-catch-finally statement, the method has the following form.

public int MyMethod(int param1, String param2) throws E

{

Throwable v;

Throwable v1;

......

<body>

v1= COPY(v);

Figure 5-6: A general example of translating statements
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if (v1 instanceof E) 

{

throw (E) v1;

} else

{

}

return ((IRetExcep_int) v).RetResult;

}

The corresponding JGraph is as follows::

The roots on the input bar correspond to the parameters of the method. The terminal on the output 

bar corresponds to the return value.  The terminal on the local operation LocThw corresponds to v.

Figure 5-8 depicts the cases of the local operation LocThw resulting from translating the conditional 

statement in the above code as described in section 5.9.1 below. The root on the input bars of the 

cases corresponds to v1.

Figure 5-7: JGraph method obtained from a non-void Java method that throws exceptions
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The following example illustrates the translation to JGraph of void Java methods. After  the prepro-

cessing described in section 5.6.4 for method returns and the preprocessing steps described in section 

5.6.10 for try-catch-finally statements, the method has the following form. 

public void MyMethod(int param1, String param2) throws E

{

Throwable v;

Throwable v1;

......

<body>

v1 = COPY(v);

if(v1 !=null)

{

if (v1 instanceof E) throw (E) v1;

else{}

Figure 5-8: The cases of local methods of MyMethod
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}else{}

}

The corresponding JGraph is as follows:

Note that in the examples above, if the method does not throw exceptions to its caller, that is, it is not 

declared with a throws clause, the local operation LocThw would be omitted.

Figure 5-10 depicts the cases of the local operation LocThw resulting from translating the conditional 

statement in the above code as described in section 5.9.1 below. The root on the input bars of both 

cases corresponds to v1 .

Figure 5-9: JGraph method obtained from a void Java method that throws exceptions
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5.9 Control structures

5.9.1 If statements

Consider the following conditional statement and associated value passing statements preceding it, 

resulting from preprocessing step 5.6.11.

x1 = COPY(x);

y1 = COPY(y);

z1 = COPY(z);

if(z1)

{

<body1>

u = COPY(u1);

v = COPY(v1);

}

else

{

<body2>

Figure 5-10: The cases of local methods of MyMethod



109
u = COPY(u2);

v = COPY(v2);

}

             

Figure 5-11 above shows that the if statement is translated into a local operation that consists of two 

normal cases. The terminals on the local operation correspond to the variables x, y, z respectively; the 

roots on the local operation correspond to the variables u and v, respectively; the roots on the input 

bars correspond to the variables x1, y1 and z1 respectively; the terminals on the output bar of the first 

case correspond to the variables u1 and v1, respectively; and the terminals on the output bar of the 

second case correspond to the variables u2 and v2, respectively. The first case contains JGraph struc-

tures obtained by translating <body1>, together with a match operation that tests the condition of the 

if-then-else, reduced in step 5.6.7 to a single variable. The second case contains the JGraph structures 

obtained by translating <body2>.  Note that the output bar terminals in each case are guaranteed to be 

connected into the blobs since the variables corresponding to the output bar terminals are those 

which are assigned values that are used outside the conditional structure, and are identified by the 

value passing statements at the ends of the if and else bodies.

Figure 5-11: Translation of if-else structure

(b) (c)(a)
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5.9.2 While statements

Consider the following while loop statement and associated value passing statements preceding it, 

resulting from preprocessing step 5.6.11.

x1= COPY(x); y1 = COPY(y);

while(x1)

{

<body>

LOOP(x1, x2); x3 = COPY(x2); 

LOOP(y1, y2); y3 = COPY(y2); 

z3 = COPY(z2);

}

The while loop is translated into a JGraph repeat operation, shown in Figure 5-12 (a), which has one 

case, depicted in Figure 5-12 (b). The terminals of the operation correspond to x, y; the roots of the 

operation correspond to x3, y3 and z3 respectively; the roots on the input bar correspond to x1 and y1 

respectively, the terminals on the output bar correspond to x2, y2 and z2 respectively.

(a)

Figure 5-12: Translation of while loop

(b)
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Note that after preprocessing the only loops remaining in the Java code are while loops.

5.9.3 Try-catch structure

Consider the following try-catch statement and associated value passing statements preceding it, 

resulting from preprocessing step 5.6.11. 

x1 = COPY(x);

u1 = COPY(u);

z1 = COPY(z); 

try

{

u2= A;

v1 = null;

v = COPY(v1);

u3 = COPY(u2);

}catch(Throwable e)

{

v = COPY(e);

u3 = COPY(u1);

}

We assume that in the code above, the variables x1 and z1 are the only variables occurring in A.

Note that the only try-catch structures that remain after preprocessing are those resulting from pre-

processing step 5.6.10, so the original body of the try clause can only contain either an assignment or 

a void expression. If the try body contains a void expression, then the u1 = COPY(u), u3 = COPY(u2 

), and u3 = COPY(u1) statements above would not be present.
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Figure 5-13 (a) depicts the JGraph local resulting from the Java try-catch statement, consisting of the 

try case in (b) and catch case in (c).The terminals of the local operation correspond to the variables x, 

y and z respectively; the roots of the local operation correspond to the variables v and u respectively. 

The roots of the input bar correspond to the variables x1, y1 and z1 respectively; the terminals of the 

output bar on Figure 5-13(b) correspond to v1 and u1 respectively; and the terminals of the output 

bar on Figure 5-13(c) correspond to e and y1 respectively.

<Dr. cox, since the next section is pretty much stand alone, I will make sure the JGraph code is correct 

regarding the preprocessing steps in this weekend>

5.10 A comprehensive example

In this section, we illustrate the translation process on an example, a method that bubblesorts an inte-

ger array, which demonstrates many of the features of the transformations we have described.

void BubbleSort(int [] a)

{

int i, j, n, tmp;

n = a.length;

Figure 5-13: Translation of try-catch structure

(a) (b) (c)
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for(i = 0; i < n-1; i++)

{

for(j = 0; j < n-1-i; j++)

if(a[ j + 1] < a[j])

{

tmp = a[j];

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

The JGraph program corresponding to the program above is shown in Figure 5-14.  For simplicity, we 

will not present the preprocessed code.
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Figure 5-14: Bubble 
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5.11 Conclusion

In this chapter we have discussed the process of translating from Java to JGraph. It would be difficult 

in any reasonable amount of space to give examples that cover all combinations of features. We hope, 

however, that the examples we have provided will help the reader understand some of the more subtle 

aspects.

In the next chapter, we will conclude our discussions by informally comparing the features of Java and 

JGraph programs generated by the two translations.
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6  Conclusions and Future Work

6.1 Introduction

Although visual programming has been extensively studied for twenty years or more and has been 

shown to have substantial benefits, it has not been adopted to any great extent by the industrial soft-

ware development community.  The work reported here is part of a larger project, the goal of which is 

to build a general purpose visual programming environment that adheres to the Java standard. In ear-

lier work, a visual language JGraph was designed, and as background to the work reported here, a pro-

totype has been  implemented.

In order for a Java-compatible visual language to be part of mainstream software engineering, various 

tools will be required. For example, a programmer needs to be able to move easily between textual and 

visual representations of a program. We have conducted a preliminary investigation of the problem of 

translating between JGraph and Java.

In order to provide a firm foundation for describing a translation from JGraph to Java, in Chapter 3 

we presented a formal definition of JGraph syntax, and gave examples to illustrate its connection to 

the visual representation. In Chapter 4, we defined a function that maps correct JGraph programs, 

expressed in the notation of Chapter 3 into equivalent Java, again illustrated by examples.

In Chapter 5 we address the problem of translating Java to JGraph. Because of JGraph’s data flow fea-

tures, in order to turn Java programs, which are typical control flow programs, into data flow pro-
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grams, we introduced several preprocessing steps before the final translation into JGraph. These steps  

are illustrated with a series of examples.

In this chapter, we compare Java and JGraph for both similarities and differences, and how these have 

affected the two translations we have described. We also provide an assessment of our results in terms 

of how well they achieve the goal of allowing a programmer to easily move between visual and textual 

programming. Finally, we will suggest some possible future directions for this work.

6.2 Comparison of Java and JGraph

In this section we will ignore the obvious major difference between JGraph and Java, namely, that one 

is visual and the other textual. Although some of the more substantial structural differences we will 

discuss below are due to this difference in the mode of representation, it is the structural  differences 

that concern us, rather than the reason that they arise.

First we note the ways in which the two languages are similar. In Java and JGraph, the concepts of 

package and class are identical. Classes and interfaces in both languages have the same qualifiers in the 

same combinations; attributes have the same qualifiers. Items can be imported from other packages.

The concept of method is also identical in both Java and JGraph. A method must have a name and a 

parameter list which may be empty. If the method is not the constructor of a class, it must have a 

return type which may be void. For Java and JGraph, a method can be declared with the same qualifi-

ers  in the same combinations.

Both Java and JGraph provide exceptions, which can be thrown anywhere, and can be handled by a 

try-catch-finally structure. In both languages, an unhandled exception must be explicitly thrown by 

the method in which the throw occurs. To this extent, the two languages provide the same exception 

throwing and handling capabilities via structures that are essentially similar. However,because of the 

interaction of exception handling and data flow in JGraph, there are some significant differences as 

well, which we will discuss later in this section.
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As we know, JGraph is a data flow programming language and Java is control flow. In data flow, exe-

cution of a program is primarily driven by the flow of data through a network of processing elements, 

together with superimposed control structures for conditional execution, looping and so forth. In 

contrast, in a control flow language, execution is driven by stepping through a sequence of statements. 

The superimposed control in JGraph is achieved by enclosing diagrams in cases, sequences of which 

make up the bodies of methods and control structures. These properties of JGraph have two impor-

tant consequences. First, each node, which corresponds to a variable in a textual language, can be 

assigned a value only once; and second, the scope of a node is limited to the case in which it occurs, so 

the only values that come out of a case are those that are passed through the output bar, when or if 

execution of the case completes. On the other hand, a variable in Java can be assigned a value multiple 

times and its scope is the block in which it is declared, including inside nested statements. Although 

these differences are apparently minor, they lead to major structural differences between equivalent 

programs in the two languages.

In Java, a method body does not have to execute to completion since a return statement can appear-

anythere. In JGraph, however, one case of a method body must be executed to completion.

In JGraph, conditional execution is accomplished by sequence of cases, executed in order until one 

finishes. The computing of conditions is mixed with other computations in each case, and control can 

jump from anywhere in a case to the next case. In contrast, in Java conditions and computations are 

separate, so once the commitment has been made to execute either the then or the else part of an if-

then-else, it will be executed to the end, barring exception throwing or returning.

In JGraph, iteration of execution is handled by the repeat operation. The computing of conditions is 

mixed with other computations in cases of a repeat, so if evaluating a condition causes a terminate 

control to fire, iteration stops immediately without finishing execution of the case. A repeat can have 

array inputs, indicating that successive iterations apply to successive array elements. Array inputs also 

provide loop control since iteration stops if an array input is exhausted. In Java, there are several forms 

of loop statement such as while, do-while and for. Conditions and computations are separate, so once 
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the commitment has been made to execute loop body, it will be executed to the end, unless a return 

statement is encountered or an exception thrown.

In JGraph there are two ways an exception can be thrown in a case, by a method call or by an excep-

tion terminal on the output bar of the case. If exceptions are thrown in a method call, execution of the 

case is terminated so all results computed in the case will be lost. If an exception is thrown at the out-

put bar, however, values of output bar terminals are available to the associated finally case. In Java, 

however, exceptions can be thrown anywhere in a try clause, and any value computed for a variable is 

available to the associated catch and finally clauses, provided they are within the scope of the variable.

Because JGraph is data flow, and is expressed visually, there is no strict linear order of execution 

imposed by the way a program is drawn, unless the programmer forces a particular execution order 

using synchros. In Java there is a strict linear order imposed by the order of statements, even though it 

may be possible to reorder statements without changing the meaning of the program.  This difference 

between the two languages does not result in any significant structural differences between equivalent 

programs.

6.3 Characteristics of Java generated from JGraph and vice versa.

In JGraph, changes in the normal progression of execution through a data flow diagram are accom-

plished by controls, which cause abrupt termination of execution and transfer of control elsewhere. To 

mimic this in Java, we have had to resort to exception throwing. Hence the generated Java code relies 

heavily on the exception mechanism for ordinary control flow, and contains the special extra classes 

needed to accomplish this. 

A Java program generated from JGraph will contain a large number of variables resulting from single 

assignment and the fact that in JGraph variables are local to cases.

During translation of a Java program to JGraph, try-catch-finally statements are largely eliminated 

and replaced by conditionals. Some try-catch structures are reintroduced to deal with exceptions in a 
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very localised fashion. The end result is that in the JGraph code, there will be no finally cases, and 

each catch case simply outputs the caught exception. Any normal case that may throw an exception 

contains at least one operation that calls a method that may throw an exception, but has no exception 

root on its output bar. Finally, the only place an exception terminal may occur is on the output bar of 

the case of a method. Note that every method will have exactly one case.

The generated JGraph will include exception classes declared for holding the return values of meth-

ods, the exception classes will be imported to JGraph too as additional classes. The number of excep-

tion classes could be big if a project has many methods with many return types. 

There are various other trivial characteristics of a JGraph program generated from Java. For example, 

the conditions of conditional statements and loops are just variables, and the repeat operations do not 

have any array inputs.

6.4 Assessment of the translations

Although we have solved the problems of transforming JGraph programs into Java and vice versa in 

the previous chapters, the translations are not just inverses of each other. We have not shown an exam-

ple of applying the two translations end-to-end, however, it should be obvious to the reader that 

doing so will produce code that is quite different from the original, regardless of whether we start with 

a Java program or a JGraph program. An example of this non-reversibility is as follows.

When a JGraph program is translated to Java, a sequence of cases in the original program corresponds 

to nested try-catch-finally statements in the resulting Java program. During the reverse translation, 

these nested try-catch-finally statements are replaced by nested if-then statements, each of which 

becomes a two-case local operation. If the original sequence consisted of more than two cases, then it 

will not be the same as the final JGraph obtained after two translations, since it has case sequences of  

length at most two. Even if the sequence of cases in the original JGraph had only two cases, translat-

ing to Java and back does not produce the same code, as the following example shows. Note that for 
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simplicity we have not included the value-passing statements generated in step 5.6.11 in the example 

code.

Figure 6-1 shows the case windows of a two-case local operation Local. The Java code resulting from 

translating Local is as follows:

{

boolean bl;

<other declarations>

try

{

bl = op1();

if (!bl) throw new ICaseException();

op2();

}catch(ICaseException e)

{

Figure 6-1: The cases of a local operation
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}

}

which will be transformed, by applying preprocessing steps as described in Chapter 5, into the code 

below before it is translated back into JGraph again:

<declarations>

bl = op1();

if (!bl) 

{

v = new ICaseException(); 

}else{}

if(v==null)

{ 

op2(); 

}else {}

if(v != null)

{

if(v instanceof ICaseException)

{} else{}

}else{}

We can see that the original two-case local has turned into three conditional statements, each of which 

will become a two-case local after translation into JGraph.

Because of the major differences between JGraph and Java discussed in section 6.2 above, both trans-

lations introduce special mechanisms and structures, resulting in code that would not be written by a 

programmer proficient in the target programming language. For example, a Java programmer is 

unlikely to write code which embodies the single assignment rule of data flow and achieves condi-
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tional execution by throwing exceptions. Similarly, a proficient JGraph programmer is unlikely to cre-

ate a program in which exception throwing and handling is replaced by deeply nested conditional 

statements.

One question which arises naturally from the above discussion is the following. If we translate back 

and forth several times, does the process iterate towards some fixed point? The answer to the question 

is clearly negative, as illustrated by the above example, where each round of translations multiplies the 

number of two-case locals by three. The size of the code therefore increases at each step so no fixed 

point exists.

6.5 Future work

The goal of the JGraph project, of which the research reported here is a part, is to bring the benefits of 

visual programming to industrial software development. The success of this project depends on adher-

ing to a standard. Although JGraph is compatible with Java, for it to be acceptable to professional 

developers, some mechanism is necessary to allow easy transition back and forth between visual and 

textual representations of a program.

As background to the research reported here I have implemented a prototype JGraph editor, and 

experimented with translating between between Java and JGraph. Based on that experience, I have 

defined two translations and assessed their usefulness in terms of the overall goals of the project. 

As discussed in section 6.3, the two translations are not inverses of each other, and although the code 

produced by each is correct, it is not of the quality a proficient programmer would produce. An 

important question to be addressed, therefore, is whether reversible tranformations, producing better 

quality code, can be devised. This may require changes to the design of JGraph. On the implementa-

tion side, the prototype should be extended to include features of JGraph not currently supported, 

and to serve as a test bed for improved translations.
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APPENDIX A

JGraph Users Manual 
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Instruction :

JGraph is a visual programming language. This document describes how to use the JGraph prototype. 

It assumes that the reader is already familiar with the JGraph language. By using the prototype of 

JGraph, users can do following things:

1. Build and edit JGraph programs. 

2. Generate Java code from JGraph programs.

3. Import Java program into JGraph.

We will describe how to work with JGraph prototype in the following chapters. In this document, the 

material will be presented in the order in which the user encounters the various GUI items.  

1. Summary of JGraph
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Figure 1-1 Mainframe of JGraph

When JGraph starts up, the Main Frame appears. This frame contains all other JGraph windows, and 

provides top-level control of the JGraph application via the seven menus shown in Figure 1-1.

There are seven menus in the menu bar, providing the following functions.

The File menu contains items that create a new project, open an existing project, import java program 

into JGraph and save the current JGraph program. 

Figure 1-2 File menu

The menu Class provides items for changing the characteristics of the selected class. At one time, 

there could be only one class selected. The selected class in a class window can be set to “public”, 

“abstract”, “final” or “alias” by selecting items in this menu. 

                     

Figure 1-3 Class menu

The menu Method is used for setting the characteristics of the selected method. That is, selecting dif-

ferent items sets a method to “public”, “private”, “protected” or “abstract”. At one time, there could be 

only one method selected.

 

Figure 1-4 Method menu
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The menu Opers is used for setting the type of the selected operation in a case window. At one time, 

there is only one operation selected. The available operation types are “Simple operation”, “Get oper-

ation”, “Set operation”, “Allocation operation”, “Local operation”, “Literal operation” and “Repetition 

operation”. 

 

Figure 1-5 Opers menu

The Controls menu is used for adding controls to the selected operations in a case window and 

changing the type of selected roots or terminators.  The available controls types are “Next case (false)”, 

“Next case (false)”, “Term False case”, “Term True case”, “Finish False case”, “Finish True case”. The 

available types of roots and terminators are: “Origination”, “Reference”, “Array”, ”Loop”, “Enum”, 

“Finally” and “Thrown”.

 

Figure 1-6 Controls menu
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The menu Favorite provides users with some options for tailoring the environment to suit their pref-

erence. In the present implement, this menu simply allows the user to hide the project panel to reduce 

desktop clutter. 

 

Figure 1-7 Favorite menu

The menu Project is responsible to generate Java source code and compile it.

 

Figure 1-8 Project menu

2. Start working with a project.

There are several ways to start working with a project. The user can create a new project, open an 

existing project or create a project by importing a Java program into JGraph. These actions are per-

formed by selecting the New, Open, and Import Java code Items respectively from the File menu.

To import java source code into JGraph, the user must create a list of all the Java files to be included 

in the imported project, and then select the list file in the Dialog box to open a project. 
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Figure 2-1 The dialog box for the user to select a project.

After a project is selected, a project panel will appear so that users can work on it. The project panel 

contains all the classes and the related methods in the project in a tree.

If users feel inconvenient because the panel take some place, they can hide that panel by going to 

Menu “Favorite” and select “Hide”.
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Figure 2-2 The project panel

Table 2-1 The project buttons

The project panel appears after selected a project as shown in Figure 2-5. In this case, the project 

name is prjcode.

3 Edit classes.

Double click the mouse on the node “prjcode” in the project panel; an internal frame for editing 

classes will appear. Clicking the mouse anywhere in the frame will add a new class in the project and a 

class icon will be shown in the frame representing the class. Selecting the class icon and then pressing 

the “Delete” key will delete the class from the project. The class icon consists of two parts; double 

clicking the mouse on the right part of the icon will activate an internal frame via which the user can 

Table 1: 
icon description

Create a new package

Change the name of the current package

Delete the current package.
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edit the attributes and the packaged lists for the class. The user can also browse the list of methods 

associated to the class and modify some items such as method name and parameters in the frame.

Double clicking the mouse on the left part of the class icon will activate an internal frame in which 

the user can edit methods in the class.

The relationship between the class icon and the internal frames mentioned above is shown as Figure 

3-1:

  

          (a)

   

(b)         
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(c)

(d)

  Figure 3-1

In order to set up inheritance between two classes, just select the class icon to denote the subclass, 

press and hold the “Alt” key, move the mouse to the super class icon and click on it, then release the 

“Alt” key. The inheritance relationship between the two classes will be done as shown in the graph 

below. JClass1 is the super class of Jclass2:

 

Figure 3-2
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4. Edit methods.

Same way as editing classes above, the user can add a new method by clicking the mouse anywhere in 

the corresponding internal frame activated by double clicking the left part of a class icon, and delete it 

by selecting it and pressing the ”Delete” key.

The Method icon consists of two parts, double click the mouse on the right part of the icon will acti-

vate an internal frame via which the user can edit the attributes and browse the list of parameters for 

the method as well. Double click the mouse on the left part of the method icon will activate an inter-

nal frame in which the user can edit cases in the method.

The relationship between the method icon and the internal frames mentioned above is shown in Fig-

ure 4-1:
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Figure 4-1

5. Edit cases.

There are two long bars in a case by default. One of them locates on the topside of the case window 

denoting the beginning of a case. Another bar locates at the bottom of the case window denoting the 

termination of a case. Of course, the user can drag and drop them anywhere off their default location 

in the window. Clicking on the lower side of the start bar will create the parameters for that case. The 

parameters are represented by small circles. The user can specify details of them by double clicking on 

the specific small circles. The return terminals are represented by small circles also.

 

Figure 5-1

5.1  Specify the parameters.
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Click the mouse on the lower side of the top bar will create a new circle denoting a input parameter.  

Double click the mouse on it will pop up a small dialog to specify the type and the name of the 

parameter.

 

Figure 5-1-1

5.2 Edit operations

Clicking the mouse in the blank area of the case window cause to generate a new operation. Selecting 

the operation, going to the “Oper” menu and selecting an appropriate type to set the type of the oper-

ation.  Clicking the mouse on the topside of the operation will create a terminal. Clicking the mouse 

on the lower side of the operation will create a root. Double clicking the mouse on the terminal or 

root will pop up a small dialog box as Figure 5-1-1 to set the terminal or the root respectively. 

If the operation is a local method operation, double clicking the mouse on it will create a new case 

window within which the user can edit the local method.

If the operation is a local class operation, double clicking the mouse on the right side or the left side of 

the operation will activate internal frames as Figure 3.1 to edit a local class.
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Figure 5-2-1

5.3 Edit controls

After selected an operation, going to “Control” menu and selecting a menu item will apply a corre-

sponding control to the operation.

 

Figure 5-3-1

5.4 Connection between roots and terminals.

After selected a root or terminal, press and hold the “Alt” key and move the mouse to the terminal or 

root, it will set up the connection between the root and the termial.

                                         

Figure 5-4-1

5.5 Synchronization.
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After selected an operation, press and hold the “Shift” key and move the mouse to another operation, 

it will set up the synchronization between two operations.

           

Figure 5-5-1

5.6  Navigate the cases.

Move the mouse to the topside of the case window. A list of buttons will appear. Clicking the mouse 

on the left button will make a bar on the bottom of the case button visible. On the bar there list all 

the normal cases denoted by square boxes. Double click the mouse on the appropriate square box will 

activate the corresponding case window to edit, as Figure 5-6-1 (a) illustrates. Otherwise, click the 

middle button on the topside of the case window will make a bar on the bottom of the case button for 

catching exceptions visible. On the bottom bar there lists all the cases (denoted by square boxes as 

well) available for catching exceptions, as Figure 5-6-1 (b) illustrates. Double clicking the mouse on 

the appropriate box will activate the corresponding case window to edit. If clicking the right button 

on the topside of the case window, a bar on the bottom of the case will be made visible. There lists the 

only potential square box for the finally statement in Java, as Figure 5-6-1 (c) illustrates. Double click-

ing on it will activate the corresponding case window to edit. The user can also delete a case from the 

bottom. The user just need to select the corresponding square box and then press the “Delete” key.



141

 

(a)

(b)
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             (c)

Figure 5-6-1

6. Generate the Java source code.

It is quite simple to generate Java code from the JGraph program. It just need go to project menu and 

select “Generate source code” menu item. The correspondring Java source code will be generated in 

the directory where the project is opened from.

7. Build the generated Java program.

Go to the project menu and select “Build” menu item. The JGraph application will call Java Compile 

to compile the generated Java program.


