Average-Case Analysis and Randomization

- Iextbook Reading
Chapter 7 & Sections 8.4, 9.2



Overview

e Do the easy thing and hope it works for most inputs
e Make random choices and hope they're good

Sorting (Quick Sort)
Permuting

Selection

Game tree evaluation
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Quick Sort Revisited

The running time is in O(n lg n), but the algorithm for finding the pivot is non-trivial
(and slow).

Blindly use the last element as pivot.

SimpleQuickSort(A, ¢, r) . Partition(A, ¢, r)
¢ il | i=L—1
2 then return 2 forj=~Ltor—|
3 m = Partition(A, ¢, r) 3 do if AJj] < AJr]
4 SimpleQuickSort(A, ¢, m —1) £ 4 - theni=i+l
5  SimpleQuickSort(A, m + 1, r) b ~swap Ali] and AJj]
6 swap Ali + 1] and A[r]
7 returni+]|
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Average-Case Analysis of Simple Quick Sort

Lemma: The average-case running time of SimpleQuickSort is in O(n Ig n).

We defined the average-case running time of an algorithm as the average of its
running time over all possible inputs of size n.

Problem: There are infinitely many different inputs of size n!

Observation: Simple Quick Sort behaves the same on all inputs whose elements have
the same relative order. ‘

Lo ey e R T e S

— The input to SimpleQuickSort is a permutation 7t of the sorted output sequence
(X[, 20, s X WE expect as the output o

= The average-case running tlme of SimpleQuickSort is the same as its expected
running time on a uniformly random input permutation.
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Partitioning Maintains Uniformity

Lemma: If A[..r] is a uniform random perm‘utation of the elements in A[( .. r], then
the two subarrays A[£.. m — I] and Alm +1.. r] produced by Partition(A, £, r) are also
uniform random permutations of the elements they contain. |

The behaviour of Partition depends only
on the sequence of —s and +s!

The —s are exactly the elements that end
up in A[€.. m — 1], the +s end up in

Alm+1..r]. | L L 5nd ' 86 2 D
n a uniformly random permutation, any e

permutation of the —s or +s is equally l

ikely.

Each such permutation produces a | — |+ | =|=|+|+]|=10P
different permutation of A[¢..m —1] or

Am+1..r].

= A[l..m—1I]and AiIm+1..r] are
uniform random permutations.
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Average-Case Analysis of Simple Quick Sort

Observation: The running time of SimpleQuickSort is in O(n + C), where C is the
number of comparisons it performs between input elements.

SimpleQuickSort(A, ¢, r) Partition(A, ¢, r)
|- &ifir < 4 | | | il |
2 then return 2 forj={Ltor—|
3 m = Partition(A, £, ) v 3 do if A[j] < A[r}
4 SimpleQuickSort(A, &, m—1) 4 theni=i+]|
5 SimpleQuickSort(A,m +1,r) 5 swap Ali] and A[j]
| | 6 swap Ali +1] and Alr]
7 returni+]| |

e There are Q(n) recursive calls in total.

e The cost of each recursive call, excluding the call to Partition is constant.

e The cost of Partition is O(l + # comparisons it performs).

— It suffices to prove that E[C] € O(nlgn).
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Average-Case Analysis of Simple Quick Sort

Observation: Two elements x; and x; are compared at most once.

e Each call SimpleQuickSort(A, {,r) ' SimpleQuickSort(A, ¢, r)
compares every element in A[¢..r —1] to ey |
the pivot p stored in Alr]. =

|
Hos 2 then return
e The pivot is not part of the recursive 3 m = Partition(A, ¢, r)
calls SimpleQuickSort(A, £, m — ) and 4 SimpleQuickSort(A, £, m — 1)
- SimpleQuickSort(A, m +1,r). 5 SimpleQuickSort(A, m + 1, r)
Lot C I if xi and and x; are compared Partition(A, €, r)
e 0 otherwise Rl
: 2 forj=Ltor—|
= O Z &; | | 3 do if A[j] < Alr]
A | | 4. theni=i+l
ot sl 5 e swap Ali] and AJj]
6 swap Ali+1] and Alr
= E[C]=E Z Ci| = Z E[Cy] 7 retuF:'n E+ I] y
N| )
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Observation: Two elements x; and x; are compared if and only if x; or x; is the first

element in {x;, Xi1, . . ., Xj} chosen as a pivot.
i . 7
7 / 4
% 7 v
7
78 Jl .
7 7z
7
/ /
e

Corollary: E[C;] = -

=i+l
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I
EICI= N+ E[C)]

i=l  j=i+l
nLJ
>3
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n-1 n
E[€] =N+ > EIGj]
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Average-Case Analysus of Slmple chk Sort

n

n+|dX X
nin+1) = / —<E <I+ ——I+Inn ‘

= E[C] < 2(n - )H, € O(nlgn)



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are difficult to
design and often have higher constant factors than algorithms that are efficient on
average. |



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are difficult to

design and often have higher constant factors than algorithms that are efficient on
average. |

Worst-case efficiency is desirable if we need performance guarantees every single
time we run the algorithm.



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are difficult to
design and often have higher constant factors than algorithms that are efficient on
average. |

Worst-case efficiency is desirable if we need performance guarantees every single
time we run the algorithm.

Algorithms that are fast on average are often simpler and on average faster than
worst-case efficient algorithms.



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are difficult to
design and often have higher constant factors than algorithms that are efficient on
average. |

Worst-case efficiency is desirable if we need performance guarantees every single
time we run the algorithm.

Algorithms that are fast on average are often simpler and on average faster than
worst-case efficient algorithms.

They are a gOod choice when we want good performance most of the time and
possibly averaged over running the algorithm many times.
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Interpretation of Average-Case Analysis

What exactly is the meaning of the following statement?
“The average-case running time of algorithm A is T(n)."

‘If every input is equally likely, then we expect to see a running time of T(n) on
average.”

Thls assumption may not be true in some applications, invalidating the performance |
prediction we obtain using average-case analysis!

SimpleQuickSort takes ©(n?) time on almost sorted inputs.
There are applications where the inputs to be sorted are all almost sorted.

SimpleQuickSort is a poor choice of a sorting algorithm in such applications.
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Randomization

Average-case analysis is applied to a deterministic algorithm and assumes
randomness in the input. |

A randomized algomthm makes no assumptions about the input and ensures
randomness by making random chou:es |

Since a randomized algorithm behaves differently every time it runs, there is no way to
force |t to exhibit its worst-case running time!

The expected running time of a randomlzed algorlthm IS an expectatlon over the
random chmces the algorithm makes. |

= No more assumptions about the probability distribution. We know the distribution
of the choices the algorithm makes.
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Randomized Quick Sort, Take |

The expected running time of SimpleQuickSort on a uniform random permutation is in

O(n g n).

So why don't we just ensure the input is a uniform random permutation?

RandomPermutationQuickSort(A)

| RandomPermute(A)
2 SimpleQuickSort(A, 1, n)

We can compute a uniform random permutation in O(n) time in the worst case.

Corollary: The ‘expected running time of RandomPermutationQuickSort is in O(n Ig n).
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Randomized Quick Sort, Take 2

If the input is a uniform random permutation, then any element is equally likely to be
chosen as pivot. |

So why don't we make sure we choose a uniform random pivot, no matter the input
permutation? |

RandomPivotQuickSort(A, £,r)

if r <{

then return |
p = RandomNumber(Z, r)
swap Alp] and Alr]
m = Partition(A, ¢, r) |
RandomPivotQuickSort(A, £, m — )
RandomPivotQuickSort(A,m +1,r)

SOl Y. e sl R e

Lemma: The expected running time of RandomPivotQuickSort is in O(nlgn).

The analysis is 100% identical to that of SimpleQuickSort!
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RandomPermute(A)

. n=a

2 for j=n downto 2

3 do i = RandomNumber(l, n)
4 swap Ali] and AJj]

Observation: RandomPermute takes O(n) time.

Lemma: RandomPermute produces each permutation of the input array A with

ofe I |
probability e
| n.

Induction on n.

If n = 1, then it produces the only possible permutation with probability | = Tk



Uniform Random Permutation In Linear Time &

RandomPermute(A)

. n=a

2 for j=n downto 2

3 do i = RandomNumber(l, n)
4 swap Ali] and AJj]

Observation: RandomPermute takes O(n) time.

Lemma: RandomPermute produces each permutation of the input array A with
ofe I |
probability e
n!

It n > 1, then to produce the permutation (x;, x5, ..., x,) (event E), we need to

o Place x, into A[n] (event E;) and |
o Place x,x2,...,Xy—y into A[l..n—1] (event E>).



Uniform Random Permutation In Linear Time &

RandomPermute(A)

. n=a

2 for j=n downto 2

3 do i = RandomNumber(l, n)
4 swap Ali] and AJj]

Observation: RandomPermute takes O(n) time.

Lemma: RandomPermute produces each permutation of the input array A with

I
probability o

It n > 1, then to produce the permutation (x;, x5, ..., x,) (event E), we need to

e Place x, into A[n] (event E,) and
o Place x,x2,...,Xn_s into A[l..n — ] (event E>).

So PIE] = PIE: (1 Ez] = PIE] - PESE] = 1 - -~ = .




Randomized Selection

RandomlzedSeIectlon(A e r, k)

if r <{(

then return A[{]
p = RandomNumber(, r)
swap Alp] and Alr]
m = Partition(A, £, r)
iFm+Ef=K—k &

“then return Alm]

else ifm—4£€ >k ,

then RandomizedSelection(A, £, m — 1, k)
~ else RandomizedSelection(A,m +I,r,k — (m + | — {))
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Randomized Selection

RandomlzedSeIectlon(A e r, k)

if r </

then return A[{]
p = RandomNumber(¢, r)
swap Alp] and Alr]
m = Partition(A, £, r)
iFm+Ef=K—k &

“then return Alm]

else ifm—4£€ >k '

then RandomizedSelection(A, £, m — 1, k)
~ else RandomizedSelection(A,m +I,r,k — (m + | — {))

O O 0O ChEn L)

Lemma: The eXpected, running time of RandomizedSelection is in O(n).
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Randomized Selection

Observation: If we choose the ith smallest element as pivot, then® -\

E[T(n)] < O(n) + E[T(max(n —i,i —1))].

~ Corollary: E[T(n)] < O(n) + % iE;:E[T(max(n —i,i=1)]

Claim: E[T(n)] < cn, for some ¢ > 0.

Base case: | <n< 4.

Tn) <c<cn.
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Randomized Selection

n > 4.

E[T(n)] < an+ % z”: E[T(max(i — I, n —i))]

n—| »
< an+ % > E[T()]

i Ln/ZJ

<an+— Z ci

i=|hi/Z]|

-

ok 2nc ( (n2— ) [n/2]( Lg/Zj - I)>

s o= (3-) (3-2)
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n > 4.
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Randomized Selection

n > 4.

E[T(n)] §an+%iz;:E[T(max(i—l,n—i))] ’
&y = /i N

<an+ o |nn-1)- (5-1) (5-2)]

‘e /(3n* n

=an+H<T+§>

= a+*3c+i n
e & 2n)

= cn ye > 8a;
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Sorting in Linear Time?

Using comparisons onIy, as Insertion Sort, Merge Sort, Quick Sort do |t is impossible
to sort faster than in Q(nlgn) time.

By exploiting assumptions about the mput and usmg element values in the algorithm,
~ we can do better:

Counting "Sort: Sorts n IEVEE between | and n in O(n) time.

Radix sort: Sorts n integers between I and n® in O(cn) time. This is O( )if cis a
constant. |

Bucket sort: Sorts n real humbers drawn unlformly at random from an interval [a, b)
in expected linear time.
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Bucket Sort

Assume the inputs are real numbers drawn uniformly at random from some interval

[a,b).

a ' - b

We can normalize this to the interval [0, I).

Divide [0, 1) into subintervals of length %

& 6. Seee. - e . e TN . e

0

How many elements do we expect to end up in each subinterval? !

= Strategy:
e Bucket items according to the subinterval they belong to.
e Sort each bucket, hopefully in constant time.
e Concatenate the sorted buckets.



Bucket Sort

BucketSort(A)

n = |A|
B = an array of n empty singly-linked lists
fori=1ton |
do prepend A[i] to list B[l + |n - A[i]|]
fori=1ton &
do InsertionSort(B]i])
j=0
fori=1ton
do for every element x € BJi]
do Afj] = x
j=j+
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Bucket Sort

BucketSort(A)

n = |A| ;
B = an array of n empty singly-linked lists ;I'his E Yvhere we d.epart
fori=1lton rom using comparisons
do prepend A[i] to list B[l + |n - A[i]|] ik only!
fori=1ton & |
do InsertionSort(B]i])
jeop -
fori=1ton
do for every element x € BJi
do Afj] = x
) o

O (O 00~ Ol L) b

Worst-case running time: O(n?)
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BucketSort(A)
I ne=FA | . :
2 B =an array of n empty singly-linked lists This is where we depart
3 fori=1lton | from using comparisons
4 do prepend A[i] to list B[l + |n - A[i]]] ok S only!
5 Adori=1ton | | |
| g : doo npertionagRSEl o — 7 e Why not Merge Sort?
J — ' ‘
8 fori=1lton
9 do for every element x € BJi]
10 do AJj] = x

sl =]
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Bucket Sort

BucketSort(A)
| n=tA | - |
2 B =an array of n empty singly-linked lists This is where we depart
3 fori=Iton | from using comparisons
4 do prepend A[i] to list B[l + |n - A[i]]] o S only!
5 Adori=1ton | |
| €75 : doo npertionagRSEl o — 7 e Why not Merge Sort?
J —_— | " | :
8 fori=1ton t only helps in the worst case.
9 do for every element x € BJi] ~It's more complicated.
10 do Afl=x It actually hurts when buckets are

e ] | - small, which is what we expect.

Worst-case running time: O(n?)
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Bucket Sort

T(n) € O (n+ i nlz)
| il |

n; = the number of elements in B[i]

i I

E[T(n)] € O (n + iE[n;]z)

Lemma: E[n?] < 2.

Corollary: E[T(n)] € Ofn).
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Lemma: E[n?] < 2.

2

| Alj] ends up in BJi]
0 _otherwise

\

n
N = E Xj
: j=l

W . :
E[n’] = E (Z xj)
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2

| Alj] ends up in BJi]
0 ;otherwise

\

n
N = E Xj
j=
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Bucket Sort

Lemma: E[n?] < 2.

/

| Alj] ends up in BJi]
0 _otherwise

\

n
N = E Xj
, j=|

: g Nk . n n
Eln’] = E ( xj) =E ,: XXl =) > EXX]
j=1 | | j=I

n n n

LS CEDCT+ D HIL
. o
j

X

X; and X; are clearly not independent. X; and Xy are independent.
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Bucket Sort

E[n?] = Z EDCT+ ) & %‘ E[X]E[Xk] —n. 1 + (”nz_ )
= I
k#j

<2
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Randomized Bucket Sort?

For Quick Sort, we were. able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?
No!

For Quick Sort, we relied on a random ordering of the elements.

Randomly permuting the input to guarantee this does not affect the final result of the
algorithm.

Bucket Sort relies on the random distribution of the input values.

We can't simply change them without changing the algorithm's output.
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Ga me Tree Evaluation | Randomized Algorithms. Section 2.1

Consider a game where two players, Max and Minnie, take turns. Assume the game
cannot end in a draw.

We label a win for Max with | and a win for Minnie with 0.

Max (Minnie) has a winning strategy if he can win the game no matter how Minnie
(Max) plays.

We can model all possible games as a game tree:

Max | |
| I ; | Max-node:
Minnie ‘ label(v) = max label(w)
Max | NG |
Minnie €1 %0 £1 %0 £0 0 f0 1 - Minnie-node:
label(v) = min label(w)
Max child w

ot 0:0-002 100 0= 10 0000 i



T Motwani/Raghavan. |
Game Tree Evaluation | Randomized Algorithms. Section 2.1.

Consider a game where two players, Max and Minnie, take turns. Assume the game
cannot end in a draw.

We label a win for Max with | and a win for Minnie with O.

Max (Minnie) has a winning strategy if he can win the game no matter how Minnie
(Max) plays.

We can model all possible games as a game tree:

Max | '
| I - | Max-node:
Minnie ‘ label(v) = \/ label(w
Max I ' £ 0 | child w -
Minnie €1 %0 €1 %0 £0 %0 £0 %1  Minnie-node:
’ label(v) = label(w
Max \9 /\ (w)

L1001 0 100000 1.1 Sl



Game Tree Evaluation

Restrict ourselves to binary game trees of height 2k = n = 2°% leaves

Max i

Minnie IA/ \/\0
e g
Max | Vv | V| oV V|
o A \ - ety \
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Restrict ourselves to binary game trees of height 2k = n = 2°% leaves

Max .
Minnie
Max
Minnie

Max

lx/ \m ox/ \KI/Win Ve
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Game Tree Evaluation: A Deterministic Algorithm

GameValue(v)

if vis a leaf
then return its value
if not GameValue(v./eftChild)
then return | -
else return not GameValue(v.rightChild)

o1 A W N —

e One recursive call per node
e 2n—1| nodes
= Running time O(n)
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Game Tree Evaluation: Randomized Algorithm

RandomizedGameValue(v)

if vis a leaf
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if not f = GameValue(first)
then return |
else return not GameValue(second)
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Claim: Ei[T(n)] < cn* —d for some ¢ >d > 0 and all n > I, where
a=lg (22) <0754

Base case: | < n<?2.

T(n) € O(I) = E|[T(n)] < en® —d for any d and c sufficiently larger than d.
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Summary

Algorithms that are fast on average are often easier to design and faster in practice
than worst-case efficient algorithms.

In some applications, worst-case guarantees matter!

Average-case analysis provides a valid performance prediction only if the mputs are
uniformly distributed.

Randomized algorithms remove this dependence on the input distribution (but rely on
a good random number generator).

There are problems where randomized algorithms are provably faster than the best
possible deterministic algorithm.



